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Abstract

This paper shows that popular linear fixed-effects panel-data estimators (first-differences,
within-transformation) are biased and inconsistent when applied in a discrete-time hazard set-
ting, that is, one with the outcome variable being a binary dummy indicating an absorbing
state, even if the data generating process is fully consistent with the linear discrete-time hazard
model. Besides conventional survival bias, these estimators suffer from another source of – po-
tentially severe – bias that originates from the data transformation itself and is present even in
the absence of any unobserved heterogeneity. We suggest an alternative, computationally very
simple, adjusted first-differences estimator that cures the data-transformation driven bias of the
classical estimators. The theoretical line of argument is supported by evidence from Monte
Carlo simulations and is illustrated by an empirical application.

JEL Codes: C23, C25, C41.
Keywords: linear probability model, individual fixed effects, short panel, discrete-time hazard,
duration analysis, survival analysis, non-repeated event, absorbing state, survival bias,
misscaling bias.

∗Address for correspondence: Harald Tauchmann, Professur für Gesundheitsökonomie, Findelgasse 7/9, 90402 Nürn-
berg, Germany. Email: harald.tauchmann@fau.de. Phone: +49 (0)911 5302 635. The user-written Stata R© ado-file
xtlhazard that implements the estimation procedure suggested in this paper is available from ssc (Boston College Sta-
tistical Software Components). I would like to thank Daniel Kühnle, Helmut Herwartz, Simon Reif, Boris Hirsch, Claus
Schnabel, Stefan Pichler, the members of the dggö Health Econometrics Working Group, the participants of the 2019 Ger-
man Stata Users Group Meeting, the RWI Research Seminar, the Nuremberg Research Seminar in Economics, and the
Verein für Socialpolitik Annual Conference 2019 for valuable comments and suggestions. Excellent research assistance
from Helene Könnecke, Sabrina Schubert, and Irina Simankova is gratefully acknowledged.

mailto:harald.tauchmann@fau.de


1 Introduction

Many economically relevant outcomes are non-repeated events, i.e, absorbing states. Death, re-

tirement, firm bankruptcy, plant closure, technology adoption, and smoking initiation are just a

few examples among numerous others.1 Hazard models, also referred to as duration, failure-

time, survival, and event history analysis are usually used for modeling such outcomes. If the

analysis is based on panel data, in which the outcome is not continuously observed but only at

a limited number of points in time2, discrete-time hazard models are often regarded as the es-

timation method of choice. These models are simply stacked binary outcome models (Jenkins,

1995; Cameron and Trivedi, 2005, p. 602), such as probit, logit, or cloglog (Prentice and Gloeckler,

1978). The discrete-time hazard binary-outcome model approach has much appeal since it is not

only technically simple but also intuitive as it allows thinking of a process that may lead into the

absorbing state as a series of binary choices.

Following the general trend towards using linear models in applied econometrics, which put

little emphasis on correctly specifying the data generating process but rely on their capability of

identifying average partial effects even in the presence of non-linearities (Angrist and Imbens,

1995), the linear probability model has developed into an increasingly popular alternative to non-

linear binary outcome models (cf. Angrist and Pischke, 2009, 2010). One argument in favor of

the linear probability model is that it allows straightforwardly removing unobserved individual

heterogeneity as a possible source of bias, using the within- or the first-differences transformation.

Allowing for individual fixed effects is far less straightforward in non-linear models (e.g. Greene,

2004; Stammann et al., 2016). In fact, in recent empirical analyses the linear probability model

with individual fixed effects has frequently been applied not only to repeated events, but also

to non-repeated event data (e.g. Miguel et al., 2004; Ciccone, 2011; Brown and Laschever, 2012;

Cantoni, 2012; Harding and Stasavage, 2014; Jacobson and von Schedvin, 2015; Fernandes and

Paunov, 2015; Wang et al., 2017; Bogart, 2018). This suggests that there is little awareness that the

favorable properties of the popular linear fixed-effects estimators do not in the same way apply

to non-repeated event settings as they apply to other kinds of dependent variables. We are, in

fact, not aware of any article that explicitly establishes the properties of the conventional linear

fixed-effects estimators in a discrete-time hazard setting.3

1In empirical applications, it often depends on the institutional setting, the available data, the research question, and
the economic model one has in mind, whether thinking of such events – retirement for instance – as non-repeated is
appropriate.

2This includes both, cases in which the time structure is intrinsically discrete (e.g. termination of a rolling fixed-period
contract) and cases in which thinking of time as a sequence of periods of significant length is an artifact of incompletely
observing the process of interest.

3Allison and Christakis (2006) and Allison (2009, chap. 5) discuss obstacles to fixed-effects estimation of in non-linear
hazard models but do not consider the linear model. Allison (1994) considers linear fixed-effects estimation but thinks
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In this paper we show that conventional linear fixed-effects estimators (first-differences, within-

transformation) fail to remove unobserved individual heterogeneity if the outcome variable indi-

cates an absorbing state. This applies even if the true data generating process is fully consistent

with the linear hazard assumption. Moreover these estimators are – contingent on the data gen-

erating process of the explanatory variables – potentially severely biased, even if the unobserved

heterogeneity is uncorrelated with the explanatory variables in the population. The bias orig-

inates from two sources. One is selective survival that renders the unobserved heterogeneity

correlated with the explanatory variables in the estimation sample. This bias is not specific to

fixed-effects estimation but – in a somewhat different way – also applies to pooled OLS. The sec-

ond source of bias is specific as it originates from the first differences and within-transformation

itself that makes the exogenous variables enter the conditional mean of the disturbance. For this

reason this second source of bias is present even in the absence of any unobserved individual

heterogeneity. Moreover this second source of bias turns out to be the clearly dominant one in

many settings.

Building on this result, we suggest a novel adjusted first-differences estimator that eliminates

the second source of bias. Though the suggested estimator still suffers from survival bias, it

outperforms conventional fixed estimators in almost all considered settings. This in particular

applies to applications to small samples and non-stationary explanatory variables for which the

bias of the conventional estimators can be of strange magnitude. The contribution of this paper

is twofold. Firstly it pins down why conventional fixed-effects estimators should not be used in

a discrete time hazard framework. Secondly it suggests an alternative estimator that – though

not consistent – usually suffers from a smaller asymptotic bias and, more importantly, confines

the asymptotic bias to survival bias. This is a source of bias researchers should anyway be aware

of since also OLS is subject to it, even if the unobserved heterogeneity is uncorrelated with the

explanatory variables in the population.

The remainder of this paper is organized as follows. In section 2 we establish biasedness and

inconsistency of the conventional fixed-effects estimators and develop an alternative method that

eliminates the data-transformation driven bias. In section 3 we use Monte Carlo simulations to

compare the different estimators. Section 4 presents an empirical application, which is based on

the analysis of peer effects in the timing of retirement by Brown and Laschever (2012). Section 5

concludes.

of non-repeated events as explanatory variables rather than outcome variables. Horowitz and Lee (2004) suggest a
fixed-effects estimator for continuous-time proportional hazard model with multiple-spells. Horowitz (1999) proposes
a random-effects estimator for a similar setting with single-spell data.

3



2 Model and Theory

2.1 The Data Generating Process

Consider a linear probability model in a panel data context. We observe N units i in a panel of

T waves t, i.e. i = 1, . . . , N and t = 1, . . . , T. The units i are independently sampled from the

population. The number of panel waves is finite and fixed and is small compared to the num-

ber of cross-sectional units. Any argument regarding asymptotic properties is hence in terms of

N → ∞. yit denotes a binary outcome variable. The scalar ai denotes unobserved, time-invariant

individual heterogeneity, with E(ai) = α. xit is a 1× k row vector of exogenous explanatory vari-

ables observed for unit i in period t, which does not include a constant. β is a k× 1 column vector

of coefficients subject to estimation. We assume ai + xitβ ∈ [0, 1] for any i and any t. That is,

the argument of Horrace and Oaxaca (2006) that the least squares linear probability estimator is

biased and inconsistent if this condition is violated, by assumption, does not apply.

yit = 1 represents an absorbing state and, in consequence, only a single spell at risk is observed

for any unit i.4 In other words, after observing yit = 1 for the first time, any possible available

subsequent observations of i do not contain any additional information about the data generating

process, since for s ≥ 1, yit+s equals one, irrespective of xit+s. In many applications one may not

even observe xit+s.5 The number of periods Ti ≤ T for which unit i is (effectively) observed is

hence not fixed but endogenous. By thinking of T as fixed, we implicitly allow for right censoring,

i.e. we may not observe the (first) occurrence of yit = 1 for some units. We use yit− to denote the

vector of outcomes for all periods prior to t. The data generating process (DGP) of yit reads as

yit = ai + xitβ + εit (1)

and for the disturbance term εit = yit − ai − xitβ necessarily holds

εit =


1− ai − xitβ if t = Ti and i is not censored

−ai − xitβ if t = Ti and i is censored

−ai − xitβ if t < Ti

(2)

since yit equals one for the final observation of a noncensored unit and is otherwise zero.

4If the spell is considered the genuine unit of observation and, correspondingly, the constant α is spell rather than unit
(individual, firm, country, etc.) specific, the line of argument likewise applies to cases that allow for multiple spells at risk
being observed for one unit.

5Events such as death or bankruptcy may render some time varying characteristics of i ill-defined or unobservable
after the event has occurred and will usually result in attrition from the panel.
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Assuming zero conditional mean for the disturbance

E (εit|ai, xit, yit− = 0) = 0 (3)

renders (1) a regression model and yields a conditional probability of the event yit = 1

P(yit = 1|ai, xit, yit− = 0) = ai + xitβ (4)

which is linear in ai and xit.

2.2 Estimation by Ordinary Least Squares

First, using pooled ordinary least squares (OLS) to estimate β, this empirical model captures the

mean of ai conditional on entering the estimation sample αc ≡ E(ai|t ≤ Ti, X) by including a

constant term in the regression.6 However, the model does not take into account the heterogeneity

in ai. For this reason, the disturbance in this regression is not εit but εOLS
it ≡ yit − αc − xitβ and for

its conditional mean we get

E
(

εOLS
it |ai, xit, yit− = 0

)
= P(yit = 1|ai, xit, yit− = 0) (1− αc − xitβ)

+P(yit = 0|ai, xit, yit− = 0) (−αc − xitβ)

= (ai + xitβ) (1− αc − xitβ)

+(1− ai − xitβ) (−αc − xitβ)

= ai − αc (5)

For Cov(ai, xit) 6= 0 the well known problem of unobserved heterogeneity rendering least squares

biased and inconsistent arises. One may hence think of applying the within- or first-differences

transformation to the data, in order to eliminate ai and to allow unbiased and consistent estima-

tion by least squares. The subsequent section demonstrates that this well established approach

does not succeed in the considered setting, i.e. with an indicator for a non-repeated event entering

the regression model on the left-hand side.

6The larger ai is, the more likely it is that the event yit = 1 occurs and that Ti is small. The estimation sample is hence
selective with respect to ai and αc 6= α. X denotes the regressor matrix.
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2.3 Biasedness of the First-Differences Estimator

Consider the conventional first-differences estimator for the above linear probability model. For

the first-differenced dependent variable we have ∆yit ≡ yit − yit−1 = yit, since yit−1 = 0 fol-

lows from the fact that yit denotes a non-repeated event. ∆xit ≡ xit − xit−1 denotes the vector

of the first-differenced right-hand side variables, and the first-differenced disturbance εFD
it is just

yit − ∆xitβ. The conventional first-differences estimator that does not include a constant term7

reads as follows:

bFD =

(
N

∑
i=1

Ti

∑
t=2

∆x′it∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆x′ityit

)
= β +

(
N

∑
i=1

Ti

∑
t=2

∆x′it∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆x′itε
FD
it

)
(6)

The conditional mean of the disturbance εFD
it in this regression is

E(εFD
it |ai, xit, xit−1, yit− = 0) = P(yit = 1|ai, xit, yit− = 0) (1− ∆xitβ)

+P(yit = 0|ai, xit, yit− = 0) (−∆xitβ)

= (ai + xitβ) (1− ∆xitβ) + (1− ai − xitβ) (−∆xitβ)

= ai + xit−1β (7)

In this setting, taking first-differences fails to remove unobserved individual heterogeneity and,

in turn, fails to generate a transformed disturbance that is conditional mean independent of

the exogenous variables. This is so even if ai is uncorrelated with the regressors in the popu-

lation. The result in (7) has much intuitive appeal. Since the left-hand-side variable remains

unaffected by the first-differences transformation, the disturbance needs to fully compensate for

the transformation that is applied to the deterministic part of the right-hand side. This is why

E(εFD
it |ai, xit, xit−1, yit− = 0) −E(εOLS

it |ai, xit, yit− = 0) equals αc + xit−1β, which is what is sub-

tracted from the deterministic part by taking first-differences. This argument in general also holds

true for the within-transformation, which for T = 2 is fully equivalent to taking first-differences

(e.g. Wooldridge, 2002, p. 284).8 That the first-differences estimator bFD is biased follows directly

7A constant in a first-differences regression model is equivalent to a linear time trend in the regression in levels. Hence,
one usually only includes a constant if the empirical model involves a linear time trend. Yet, since most applications of
discrete-time hazard models will allow for duration dependence of the baseline hazard by including a trend or, more
typically, wave indicators, the first-differences model will effectively include a constant.

8For the general case T > 2, the conditional mean of the disturbance in the within-transformation model is a much
more complicated function than (7), see equation (24) in Appendix A.1. However, the crucial result that ai and xis, with
s < t, enter the conditional mean holds for any value of T. It is important to note that the former argument does not apply
if yit is a repeated event. In this alternative setting, the first-differences transformation is not immaterial for the dependent
variable and yields a transformed disturbance with the desired properties, see Appendix A.2.
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from (6) and (7):

E
(

bFD|X, a
)

= β +

(
N

∑
i=1

Ti

∑
t=2

∆x′it∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆x′itai

)

+

(
N

∑
i=1

Ti

∑
t=2

∆x′it∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆x′itxit−1

)
β

6= β (8)

Now consider an alternative first-differences estimator, denoted by bFDC, that includes a con-

stant9 term. In a panel of only two waves this estimator coincides with the within-transformation

estimator if the latter includes a wave indicator. The disturbance in this regression model is

εFDC
it ≡ yit − α̃c − ∆xitβ and its conditional mean reads as

E(εFDC
it |ai, xit, xit−1, yit− = 0) = P(yit = 1|ai, xit, yit− = 0) (1− α̃c − ∆xitβ)

+P(yit = 0|ai, xit, yit− = 0) (−α̃c − ∆xitβ)

= (ai + xitβ) (1− α̃c − ∆xitβ)

+(1− ai − xitβ) (−α̃c − ∆xitβ)

= (ai − α̃c) + xit−1β

= ãi + x̃it−1 β̃ (9)

with ãi ≡ ai − α̃c, β̃′ ≡ [α̃c β′], and x̃it−1 ≡ [0 xit−1]. Though including a constant term still

does not remove the individual effects from the disturbance, it captures their mean, which in

consequence does not enter the disturbance. Let ∆̃xit ≡ [1 ∆xit] denote the vector of the right-

hand side variables including the constant term. For the conditional mean of the first-differences

estimator with a constant term we get

E
(

bFDC|X, a
)

= β̃ +

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

∆̃x
′
it ãi

)

+

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

∆̃x
′
itx̃it−1

)
β̃ (10)

Though (10) looks very similar to (8), the crucial difference is that the demeaned rather than the

raw unobserved individual heterogeneity enters the conditional means. This will usually render

the first bias term in (10), i.e.
(

∑N
i=1 ∑Ti

t=2 ∆̃x
′
it∆̃xit

)−1(
∑N

i=1 ∑Ti
t=2 ∆̃x

′
it ãi
)
, much smaller than its

counterpart in (8).

9Since the first panel wave is effectively excluded from the estimation sample through taking first-differences, the
constant captures α̃c = E(ai |1 < t ≤ Ti , X) rather than αc.

7



A natural extension to including a single constant in the first differences estimator is to include

a set of T− 1 wave specific constants. This is what one usually does in order to allow for a baseline

hazard that is not flat. While this is straightforward and does not alter the nature of the model, one

has to be aware that wave specific constants do not capture the genuine time effects on the baseline

hazard for the same reason for which a single constant does not capture the population mean of

the unobserved heterogeneity. They rather capture both, true changes in the baseline hazard and

that the conditional mean E(ai|t, X) changes from one period to the next due to selective survival.

The baseline hazard is hence not identified even if period specific constants are included in the

empirical model.10

2.4 Inconsistency of the First-Differences Estimator

To determine the asymptotic properties of bFDC we define ξFDC
it ≡ εFDC

it − ãi. Then we write the

first-difference estimator with constant term as

bFDC = β̃ +

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

∆̃x
′
it ãi +

N

∑
i=1

Ti

∑
t=2

∆̃x
′
itξ

FDC
it

)
(11)

Based on (9) and assuming that the data are well behaved, i.e. finite first and second moments of

xit and xit−1 exist, we get

plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
itξ

FDC
it

)
= plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
itx̃it−1

)
β̃ (12)

which will in general deviate from 0, unless β equals zero or xit follows a random walk. For the

probability limit of the term in (11) that involves ãi we get

plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it ãi

)
= plim

(
1
N

N

∑
i=1

Ti

∑
t=2

x̃′it ãi

)
− plim

(
1
N

N

∑
i=1

Ti

∑
t=2

x̃′it−1 ãi

)
(13)

That is, this term converges in probability to a weighted sum of differences in conditional co-

variances i.e. ∑T
t=2 wt

(
Cov(ai, xit|yit− = 0)−Cov(ai, xit−1|yit− = 0)

)
. These differences may de-

viate from 0 for two reasons. Firstly (13) will obviously not vanish in the limit, if we have

Cov(ai, xit) 6= Cov(ai, xit−1) in the population, which is equivalent to having Cov(ai, ∆xit) 6= 0. In

other words, (13) deviates from 0 if the individual heterogeneity is correlated with the changes in

the explanatory variables. For the population, one may rule this out by assumption. Yet, secondly,

even assuming that ai is uncorrelated with ∆xit in the population does not render (13) zero. The

10See Appendix A.4 for simulation results that consider time effects in the data generating process and in the model
specification that is estimated.

8



reason for this is survival bias in the sense that conditioning on yit− = 0 affects the covariance of

ai and xit. This is most obvious for Cov(ai, xit−1|yit− = 0). Conditioning on yit− = 0 means that

xit−1 enters the conditional covariance only if yit−1 = 0 holds. This implies that large xit−1 are

more likely to enter for a small value of ai than for a large value of ai. Conditioning on survival

thus renders ai and xit−1 negatively correlated, unless xit−1 is immaterial for survival that is β = 0.

This does not one-to-one apply to Cov(ai, xit|yit− = 0), since that covariance is unconditional on

the contemporaneous yit. However, if xit exhibits some persistence over time, the negative corre-

lation with ai carries over to xit. In the case of perfect persistence, that is if xit follows a random

walk, the conditional covariance is the same for xit−1 and xit. In consequence (13) equals 0 if xit

follows a random walk. Yet, the smaller the persistence of xit is, the more Cov(ai, xit|yit− = 0)

deviates from Cov(ai, xit−1|yit− = 0), rendering ai and ∆xit positively correlated for a positive

β. Besides the dynamic properties of xit, the variance of ai plays an important role for the size

of the survival bias. If the variance of ai is small then survival from t− 1 to t is hardly selective.

If so, conditioning or not conditioning on the contemporaneous yit makes little difference for the

distribution of xit. This renders (13) close to zero and in turn renders survival bias a minor issue.

It is important to note that not only the first differences estimator but also pooled OLS suffers

from survival bias, even if ai and xit are uncorrelated in the population. Yet, for OLS it is not the

differences in conditional covariances but only the levels of Cov(ai, xit|yit− = 0) that matter. This

implies that the survival bias is to the opposite direction for OLS and increases, rather than de-

creases, in the degree of persistence xit exhibits. Moreover, since a conditional covariance rather

than a difference in conditional covariances generate the survival bias, between-group hetero-

geneity, that is differences in the level of xit across the units i, contribute to the bias.

Denoting the identity matrix by I, from (11), (12) and (13) then follows

plim(bFDC) = plim

I +

(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
itx̃it−1

) β̃

+plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it ãi

)
= β̃ + asymptotic misscaling bias + asymptotic survival bias (14)

In other words, bFDC is an inconsistent estimator for β̃, that suffers from two sources of asymp-

totic bias. Assuming that ai and ∆xit are uncorrelated in the population, one is the survival bias

discussed above. The other is that β̃ enters erroneously scaled. This second source of bias origi-

nates from the first differences transformation making the conditional mean of the disturbance a

function of xit−1β. This misscaling bias is present even for ãi = 0, that is, in the absence of any

9



unobserved, time-invariant individual heterogeneity. It hence does not originate from a failure to

remove individual heterogeneity but from the first-differences transformation itself. Both sources

of asymptotic biases disappear either for β = 0, or for xit following a random walk. Even in these

cases bFDC is not consistent for α, since the constant converges to in probability to ãc rather than

to its unconditional counterpart. This likewise holds for period specific constants that are not

consistent for true time effects.

2.5 An Adjusted First-Differences Estimator

While little can be done about the survival bias, the misscaling bias can be eliminated by appro-

priately rescaling bFDC. This is of major importance to applied work, since in many settings the

survival bias turns out to be small while misscaling bias is the overwhelmingly dominant source

of bias; see section 3 for Monte-Carlo simulation results. Since the misscaling bias depends only

on moments of observables, one can straightforwardly derive an adjusted first-differences esti-

mator from (14)

bFDC
adjust =

I +

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

∆̃x
′
itx̃it−1

)−1(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

∆̃x
′
ityit

)
(15)

that does not suffer from misscaling bias even in small samples. The shape of the adjustment ma-

trix
(

I +
(

∑N
i=1 ∑Ti

t=2 ∆̃x
′
it∆̃xit

)−1 (
∑N

i=1 ∑Ti
t=2 ∆̃x

′
itx̃it−1

))−1
, that we denote H, depends strongly

on the data generating process of the variables in xit. If xit follows a random walk, H converges in

probability to the identity matrix I. This corresponds to our earlier result that bFDC is consistent

for this special case and no adjustment ist required. If xit is however covariance stationary – that is

in the population we have E
(
x′itxit

)
= Q and E

(
x′itxit−1

)
= E

(
x′it−1xit

)
= Q∆ for all t – H would

converge to 2I, if the moments of xit were not affected by conditioning on yit− = 0. This renders a

scaling factor of simply two an important benchmark for settings in which the considered process

exhibits little selectivity. In general, the elements of bFDC
adjust are just matrix weighted sums of the

elements of bFDC. This implies that bFDC
adjust also rescales the survival bias in bFDC. The probability

limit of bFDC
adjust thus reads as follows:11

plim(bFDC
adjust) = β̃ + plim

H

(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1(
1
N

N

∑
i=1

Ti

∑
t=2

∆̃x
′
it ãi

) (16)

Equation (16) illustrates that for bFDC
adjust – unlike bFDC – survival bias is the only source of asymp-

totic bias.

11In (16) one may rewrite H
(

1
N ∑N

i=1 ∑Ti
t=2 ∆̃x

′
it∆̃xit

)−1
as
(

1
N ∑N

i=1 ∑Ti
t=2 ∆̃x

′
it[1 xit]

)−1
.
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2.6 Existence of the Adjusted First-Differences Estimator

bFDC
adjust only exists if

(
I +
(

∑N
i=1 ∑Ti

t=2 ∆̃x
′
it∆̃xit

)−1(
∑N

i=1 ∑Ti
t=2 ∆̃x

′
itx̃it−1

))
, that we denote G, is non-

singular. This is a non-trivial condition that may be violated even if bFDC exists. This issue

becomes obvious by thinking of
(

∑N
i=1 ∑Ti

t=2 ∆̃x
′
it∆̃xit

)−1(
∑N

i=1 ∑Ti
t=2 ∆̃x

′
itx̃it−1

)
as a matrix that is

composed of the coefficient vectors one gets from regressing each lagged explanatory variable on

the contemporaneous changes of all variables in xit. If, for instance, one explanatory variable is

perfectly negatively correlated with its own forward change, then G is singular because it con-

tains a column of zeros. A trivial example for this is when xit includes a dummy variable agemin

indicating the youngest age, measured in years, observed in an individual-level yearly panel. In

this case, we have

agemin
it−1 =


1 if t = 2 and agei1 = min

it
(ageit)

0 else
(17)

∆agemin
it =


−1 if t = 2 and agei1 = min

it
(ageit)

0 else
(18)

In other words, agemin
it−1 is perfectly predicted by −∆agemin

it . The fact that the adjusted first-

differences estimator does not allow estimating some empirical models that can be estimated

using the simple first-differences or the within-transformation estimator, seems, at first glance,

to be a major shortcoming of bFDC
adjust. However, the non-existence of bFDC

adjust just reveals that one

cannot obtain information about some model parameters of interest, even if the corresponding

coefficients are seemingly identified by bFDC. From (14) we see that – ignoring the survival bias

for a second – bFDC converges in probability to a matrix-weighted sum of the true model parame-

ters β̃. Yet, β̃l receives no weight in this sum if the lth column of G is 0 and, in consequence, there

is no way to retrieve any information about β̃l from β̂FDC.

2.7 The Variance of the Adjusted First-Differences Estimator

From (9) for the variance of the disturbance in the first-differences model with constant we get

Var(εFDC
it |ai, xit, xit−1, yit− = 0) = P(yit = 1|ai, xit, yit− = 0) (1− α̃c − ∆xitβ− ãi − xit−1β)2

+P(yit = 0|ai, xit, yit− = 0) (−α̃c − ∆xitβ− ãi − xit−1β)2

= (ai + xitβ) (1− ai − xitβ)2

+(1− ai − xitβ) (−ai − xitβ)2

= (ai + xitβ) (1− ai − xitβ) (19)

11



This is the error variance of a standard linear probability model (cf. Greene, 2014, p. 727), except

for the constant being individual specific. This straightforwardly follows from εFDC
it being yit

minus a term which is conditional on ai, xit, and xit−1 a constant, see (9). For the disturbance

covariance we get

Cov
(

εFDC
it , εFDC

it−s |ai, xi1, . . . , xit, yit− = 0
)
= 0 for s ≥ 1 (20)

since yit is only observed conditionally on yit−s = 0, and in consequence, conditionally on εFDC
it−s

taking one specific value.12 Therefore the standard result (e.g. Greene, 2014, p. 302) for the vari-

ance of least squares in the presence of heteroscedasticity holds:

Var
(

bFDC|X, a
)
=

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

σ2
it∆̃x

′
it∆̃xit

)(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1

(21)

with σ2
it denoting

(
ai + xitβ

)(
1− ai − xitβ

)
. Since conditional on the explanatory variables bFDC

adjust

is just bFDC weighted by a matrix of constants, for Var
(
bFDC

adjust|X, a
)

we get

Var
(

bFDC
adjust|X, a

)
= H

(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1( N

∑
i=1

Ti

∑
t=2

σ2
it∆̃x

′
it∆̃xit

)(
N

∑
i=1

Ti

∑
t=2

∆̃x
′
it∆̃xit

)−1

H′ (22)

For the same reason, the asymptotic normality of the least squares estimator bFDC carries over to

bFDC
adjust; see section 3.5 for simulations corroborating this result.

With estimates of β in hand, (22) can in principle be estimated, using 1
Ti

∑Ti
t=1
(
yit − xit β̂

FDC
adjust

)
to estimate ai. For a small Ti, however, ai and in turn σ2

it are poorly estimated by this procedure.

Moreover
(
âi + xit β̂

FDC
adjust

)
may well be negative or exceed unity, leading to invalid estimates of σ2

it.

In applied work, calculating a heteroscedasticity robust estimate of Var
(
bFDC) and adjusting it by

H seems to be preferable to estimating analytical standard errors based on (22) and estimates of

β and ai. This straight forward and simple method, however, ignores the survival bias bFDC and

bFDC
adjust may suffer from. Using White (1980) robust standard errors is nevertheless a conservative

approach, since in the presence of survival bias 1
∑N

i=1 Ti−1 ∑N
i=1 ∑Ti

t=2(e
FDC
it )2∆̃x

′
it∆̃xit will asymptot-

ically overestimate 1
∑N

i=1 Ti−1 ∑N
i=1 ∑Ti

t=2 σ2
it∆̃x

′
it∆̃xit by relying on residuals eFDC

it that capture a bias.

Naturally bootstrapping provides an alternative approach to estimating (22) that circumvents the

issue of survival bias. See section 3.4 for simulations addressing the estimation of standard errors.

12The standard argument in favor of the within-transformation as compared to the first-differences estimator that taking
first-differences brings serial correlation into the model (cf. Wooldridge, 2009, p. 430), does not apply in the considered
setting.
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2.8 Higher-Order Differences

The result that the adjusted first-differences estimator only suffers from survival bias critically

hinges on having Cov(ai, ∆xit) = 0 in the population. Contingent on the specific application, this

non-testable assumption might neither be valid nor plausible. However, assuming

Cov(ai, ∆jxit) = 0 instead, with the integer j greater than unity, may possibly be less question-

able. In such settings, an adjusted estimator bJDC
adjust based on higher-order differences ∆jxit can be,

analogously to bFDC
adjust, straightforwardly constructed. More specifically, bJDC

adjust is just an adjusted

jth-differences estimator with constant term

bJDC
adjust =

I +

(
N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′
it∆̃jxit

)−1( N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′
it

˜(xit − ∆jxit)

)−1

×
(

N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′
it∆̃jxit

)−1( N

∑
i=1

Ti

∑
t=j+1

∆̃jx
′
ityit

)
(23)

∆jxit denotes the vector of the jth-differenced explanatory variables. For j = 2 we have ∆2xit ≡

∆xit − ∆xit−1, for j = 3 we have ∆3xit ≡ (∆xit − ∆xit−1) − (∆xit−1 − ∆xit−2), et cetera. Here

(xit − ∆jxit) is the analogue to xit−1 in (15). It originates from the conditional mean of the dis-

turbance in the unadjusted jth-differences estimator that – analogously to (9) – involves ∆jxitβ

minus xitβ. As before, tildes indicate that the vectors of jth-differenced explanatory variables are

augmented by a constant term and that (xit − ∆jxit) is augmented by a column of zeros. Follow-

ing the same line of argument as above, bJDC
adjust suffers only from survival bias but from no other

source of asymptotic bias, as long as Cov(ai, ∆jxit) = 0. Naturally, bJDC
adjust coincides with bFDC

adjust for

j = 1, and with pooled OLS for j = 0. Evidently, taking higher-order differences removes much

variation from the explanatory variables. The price one pays in terms of precision to establish

desirable asymptotic properties under alternative, possibly weaker, assumptions is, hence, likely

to be high.

3 Monte Carlo Analysis

In this section we present results from Monte Carlo (MC) simulations. For yit we consider the data

generation process described in section 2.1, with xit consisting of just one variable xit.13 The slope

13One may not feel comfortable with considering a DGP for yit that is consistent with the linear hazard model, because
the linear model requires strong assumptions regarding the DGPs of xit and ai to guarantee P (yit = 1|ai , xit, yit− = 0) ∈
[0, 1]. For this reason, applied researchers might primarily be interested in the performance – in terms of estimating
average marginal effects – of the linear estimators when applied to data that is generated by a process that is consistent
with a classical nonlinear binary outcome models such as probit or logit. The simulation results presented in the Appendix
A.3 consider this case.
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coefficient is β = 1.14 We specify ai to be iid. continuously uniformly U(0.05, 0.15) distributed,

implying E(ai) = α = 0.1. We consider a short panel with T = 5. We examine the properties of

the considered estimators for three different data generating processes for xit:

(i) xST
it = ai + 0.1 + ζit, with ζit ∼ iid. U(−0.035, 0.035), i.e., xST

it is stationary

(ii) xRW
it = xRW

it−1 + νit, with xi1 = ai + 0.1 and νit ∼ iid. U(−0.05, 0.05),

i.e., xRW
it follows a random walk without drift

(iii) xTR
it = ai + 0.075 + ηit, with ηit ∼ iid. U(0, 0.025t),

i.e., xTR
it exhibits a trend and increasing variance around the trend

For all three data generating processes ai is positively correlated with xit but uncorrelated with

∆xit in the population.15 Besides the estimators discussed above – that is bFD, bFDC, and bFDC
adjust –

we also consider pooled ordinary least squares bOLS as reference and the within-transformation

estimator bWI, which appears to be the most popular fixed-effects estimator in applied work and

does not coincide with bFD for T > 2.

In order to assess the large sample properties of the estimators, we choose N = 4 · 107. We

report the point estimates from one-shot regressions using this very large artificial sample, see

Table 1. Along with the point estimates we report (heteroscedasticity robust) standard errors.

Note that they are not non-parametrically generated by replicating the analysis, but are calculated

following the procedure suggested in section 2.7. They are hence not meant for assessing the

sampling variability of the different estimation methods by means of an MC simulation. They are

only reported in order to provide some intuition on ‘how distant from infinite size’ the artificial

sample is, as the standard errors would collapse to zero in this case.

To study the estimators’ small sample properties, we choose N = 400. Here we replicate

the regressions 10 000 times. The reported coefficients are averages over the replications and the

reported standard deviations are non-parametrically calculated from the simulated distribution.

They, hence, illustrate the degree to which the different estimators suffer from sampling error in

the considered settings. We consider two variants for the Monte Carlo experiment. In the first we

redraw ai and xit in each replication, see Table 2, upper panel. In the second we keep ai and xit

fixed and only vary yit in each replication, see Table 2, lower panel.

14This choice is simply to make the simulation results more conveniently comparable to the true parameter value. It
implies that xit is scaled such that a one unit change is all but a marginal change. Rescaling xit appropriately would hence
straightforwardly yield a β-coefficient whose magnitude would be better in line with what one would consider a marginal
effect in a binary outcome model.

15The parameter values are chosen to align P(yit = 1) and Var(∆xit) across the different data generating processes
and to guarantee that the condition ai + xitβ ∈ [0, 1] is satisfied for any i and any t = 1, . . . , 5. For the unconditional
correlations we have Cor(ai , xST

it ) = 0.82, Cor(ai , xRW
it ) = 0.58, and Cor(ai , xTR

it ) = 0.70.
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Table 1: Monte Carlo Analysis - Large Sample Estimates

bOLS bWI bFD bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.6671 0.0012 0.9024 0.0025 0.7072 0.0022 0.5008 0.0019 0.9980 0.0037
α̂ −0.0345 0.0002 0.1160 0.0005 0.2899 0.0001 0.0955 0.0007
xRW

it follows random walk

β̂ 1.4267 0.0009 0.9472 0.0019 1.0011 0.0022 1.0000 0.0018 0.9999 0.0018
α̂ 0.0134 0.0002 0.1072 0.0004 0.2882 0.0001 0.0951 0.0004
xTR

it with trend and increasing variance around trend

β̂ 1.5715 0.0012 6.0363 0.0019 4.4998 0.0020 0.6725 0.0019 1.0075 0.0028
α̂ −0.0180 0.0002 −0.9154 0.0004 0.2950 0.0001 0.0936 0.0006

Notes: True coefficient values: β = 1, α = 0.1; N = 4 · 107, T = 5; the # of observations for xST
it is 71 748 906, the

corresponding # of observations for xRW
it is 71 823 746, and for xTR

it it is 72 218 321. For bOLS the #s of observations are
higher by 4 · 107 observations, since the first wave is not eliminated by the within-transformation or the first-differences
transformation. See Table A4 for simulation results using a different seed for the RNG.

3.1 Large Sample Properties

Considering the large sample results16 presented in Table 1, consistent with xit being positively

correlated with the unobserved individual heterogeneity ai, the estimated β-coefficient from bOLS

exhibits substantial upward bias. The results for bFDC
adjust and bFDC are also in line with the analytic

results derived for their large sample properties. bFDC
adjust hits the true value of β almost exactly. The

simulations, hence, point to survival bias being of very little importance in the considered setting.

For xST
it the estimate of β is marginally smaller than the true parameter, though survival bias

should operate in the opposite direction. Only for xTR
it the positive deviation from the true value

of β seems to indicate a non-negligible bias of this kind. However, choosing different starting

values for the random number generator regularly yields estimates much closer to unity, see

Table A4 in the Appendix. Simulation results for bFDC also reflect what theory predicts. No bias

occurs if xit is generated by a random walk. If xit is stationary, bFDC yields a large sample estimate

that is almost exactly β/2. This is approximately the value that should occur due to the misscaling

bias bFDC suffers from. The very small upward deviation from 0.5 may represent survival bias.

Yet, taking the estimated standard error into account, it could also be attributed to sampling

variability. If the mean and variance of xit are functions of time, the slope coefficient of bFDC is

erroneously scaled by a factor between one-half and one. Consistent with our earlier argument,

the large sample estimates bFDC
adjust yields for the constant are slightly smaller than α but almost

perfectly coincide with the average ai in the estimation samples.17 bFD hits the true value of β

only if xit is generated by a random walk. For stationary xit, it exhibits a substantial bias towards

16The standard errors are fairly small but still clearly different from zero. While sampling error should play a minor role
in the reported point estimates, the reported standard errors illustrate that a sample of more than 100 million observations
is still a clearly imperfect approximation of a sample of infinite size.

17The estimation sample averages of ai are 0.0951, 0.0951, and 0.0952 for xit stationary, following a random walk, and
exhibiting a trend.
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zero. If xit has a trend, bFD exhibits very poor large sample properties. This is consistent with our

earlier argument that bFD – unlike bFDC and bFDC
adjust – let α̃c enter the disturbance, which renders

plim
(

1
N ∑N

i=1 ∑Ti
t=2 ∆x′itai

)
6= 0 a major source of asymptotic bias, even if the selective survival

driven correlation of ∆xit and ai is negligibly small. The reason for this is that neither ∆xit nor ai

have zero mean if ai is not demeaned by including a constant and xit exhibits a trend. bWI exhibits

large sample properties similar to those of bFD, which is not too surprising since a short panel is

considered and both coincide for an extremely short panel of only two waves. First of all, bWI is

severely biased when xit has a trend. Yet, a sizable bias towards zero is also observed when xit is

stationary and even when xit follows a random walk. The extreme biases found for bFD and bWI

for xit with a trend would be moderated if a time trend or a set of time dummies were used as

additional regressors. However, the time effects themselfs are then severely biased; see Appendix

A.4 for a more detailed discussion of how including time indicators affect the results the different

estimators yield.

3.2 Small Sample Properties

Turning to the small sample results, we begin by considering xit and ai random. The results in

the upper panel of Table 2 show that the mean coefficients are very close to the coefficients we

got from the large sample. This suggests that bFDC
adjust does not only suffer from very little large

sample bias in the considered setting but, unconditionally on ai and xit, also from little small

sample bias. bFDC exhibits the same kind of misscaling bias in small and in large samples. The

same applies to the endogeneity bias of bOLS and the biases of bFD and bWI, which appear to be

of the same size in small samples as they are asymptotically. The standard deviations indicate

that all considered estimators suffer from substantial sampling error in settings similar to the one

considered here. Not surprisingly, bOLS does best in this respect, while bFDC
adjust and bFDC exhibit the

largest variance.18

Now we turn to the small sample results, with xit and ai considered as fixed, presented in the

lower panel of Table 2. Whether one thinks of xit and ai as random or fixed appears to make

little difference for the small sample properties of bOLS, bFDC, and bFDC
adjust. In particular, the slope

coefficient from bFDC
adjust appears to suffer from rather moderate small sample bias conditional on

xi and ai. Yet, this does not apply to bFD and bWI. For them the bias with xST
it and xRW

it is much

bigger if xit and ai are fixed. For bWI the bias is even in the opposite direction than when xit

and ai are random. This pattern, at first glance astonishing, is easily explained by the fact that

18Since bFDC
adjust just re-scales bFDC, the standard errors of both estimators are the same up to the scaling factors that apply

to the respective coefficient.
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Table 2: Monte Carlo Analysis - Small Sample Estimates

bOLS bWI bFD bFDC bFDC
adjust

Mean S.D.† Mean S.D.† Mean S.D.† Mean S.D.† Mean S.D.†

xit and ai random
xST

it stationary

β̂ 1.6755 0.3808 0.9208 0.7885 0.7240 0.7038 0.5133 0.5902 1.0167 1.1728
α̂ −0.0356 0.0746 0.1128 0.1549 0.2903 0.0171 0.0923 0.2286
xRW

it follows random walk

β̂ 1.4278 0.3004 0.9485 0.6089 1.0068 0.69504 1.0019 0.5862 1.0027 0.5856
α̂ 0.0138 0.0582 0.1068 0.1195 0.2887 0.0170 0.0954 0.1131
xTR

it with trend and increasing variance around trend

β̂ 1.5763 0.3654 6.0427 0.6069 4.5072 0.67781 0.6691 0.6155 0.9940 0.9147
α̂ −0.0186 0.0733 −0.9167 0.1167 0.2950 0.0187 0.0965 0.1909

xit and ai fixed
xST

it stationary

β̂ 1.6443 0.3826 1.3168 0.7160 0.8548 0.6678 0.5351 0.5790 1.0326 1.1189
α̂ −0.0310 0.0743 0.0324 0.1390 0.2853 0.0168 0.0865 0.2161
xRW

it follows random walk

β̂ 1.4208 0.3227 1.6595 0.5408 1.5261 0.6514 0.9350 0.5921 0.9807 0.6203
α̂ 0.0125 0.0627 −0.0344 0.1054 0.2852 0.0166 0.0969 0.1209
xTR

it with trend and increasing variance around trend

β̂ 1.5638 0.3795 5.9851 0.5921 4.5432 0.6561 0.6581 0.6064 0.9792 0.9023
α̂ −0.0172 0.0751 −0.8950 0.1113 0.2903 0.0177 0.0973 0.1855

Notes: True coefficient values: β = 1, α = 0.1; N = 400, T = 5; 10 000 replications. †S.D. denotes the empirical
standard deviation of the coefficient in the simulated sample. In order to interpret these values in terms of standard
errors for the respective mean-estimator, one has to multiply the value of the S.D. by 10 000−0.5 = 0.001. See Table A5
for simulation results using a different seed for the RNG.

1
N ∑N

i=1 ∑Ti
t=2 ∆x′itai may well substantially deviate from zero in a small and fixed sample of data,

even if xit does not exhibit a trend and ∆xit is not correlated with ai in the population. To illustrate

this, running the same simulation with a different seed for the random number generator (RNG)

yields very different biases for bFD and bWI, see Table A5, lower panel in the Appendix. bFD and

bWI are for this reason prone to substantial small sample bias.

3.3 Analyzing the Survival Bias

The simulation results discussed above provide little evidence for survival bias being a significant

issue for the considered estimation methods, bFDC
adjust in particular. This, however, might just be an

artifact of the choice of the parameters, and survival bias might be a more important issue in

different settings. To make the simulation setting more prone to survival bias we increase the

variance of the unobserved heterogeneity. The simulation results presented below – see Table 3

– originate from simulations in which ai is sampled from the U(0, 0.5) distribution rendering its

standard deviation 0.144 in the population.19 This value substantially exceeds 0.029, which is the

corresponding value for the simulations discussed in sections 3.1 and 3.2. Allowing for larger

19The standard deviation of a continuous uniformly distributed random variable a is (amax−amin)/
√

12. The upper limit
for the standard deviation of ai is 0.5. In this very special case, ai is Bernoulli b(0.5) distributed. For Cov(ai , xit) = 0 in the
population, β = 0 must hold to satisfy ai + xitβ ∈ [0, 1] for all i and t. In consequence yit deterministically depends on ai .
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values of ai decreases the survival rate in the artificial sample. For this reason we adjusted the

number of units, which is now N = 108, and also the length of the panel, which is now T = 3.

Accordingly, in this section we analyze the properties of the estimators only in a large sample.

The DGP for yit is the same as above, with unity still being the true value of β.

As another important deviation from the previous design, we consider DGPs for which ai and

xit are uncorrelated in the population. This makes survival bias the only source of bias for bOLS,

which allows comparing this type of bias across bOLS and bFDC
adjust. The discussion will focus on

these two estimation methods, since the remaining three estimators are subject to more than one

source of bias. As before, we consider three data generating processes for xit, which however

deviate from the hitherto considered ones in some respects. To make the design more flexible,

we sample xit from the beta distribution rather than from the continuous uniform distribution.20

Moreover, instead of considering a linear trend in xit, we distinguish two stationary process. For

one, all variation in xit is purely transitory, while for the other a substantial share of the variation

is between the units i. Finally we also consider a random walk for the DGP of xit, which in this

simulation involves a drift21:

(i) xSTT
it = 1

2 ζit, with ζit ∼ iid. B(6, 2),

(ii) xSTB
it = 1

4 µi +
1
4 ηit, with µi ∼ iid. B(6, 2) and ηit ∼ iid. B(6, 2),

(iii) xRWD
it = xRWD

it−1 +
(

1
6 νit − 1

12

)
, with xRWD

i1 = 1
6 + 1

6 νi1 and νit ∼ iid. B(6, 2)

The results displayed in the first panel of Table 3 (upper panel) indicate that in the considered

setting bFDC
adjust is subject to a moderate, yet non-negligible, upward survival bias if xit is stationary.

Yet, if xit follows a random walk the simulations do not reveal any large sample bias as predicted

by theory. In contrast, survival bias seems only to be an issue for bOLS if xit follows a random

walk. In this case the downward bias is however severe and substantially exceeds the survival

bias bFDC
adjust exhibits with stationary xit. Inconsistent with the prediction from theory, bOLS seems

not to suffer from survival bias if xit is stationary with a major share of its variation being between

groups. This puzzle can be explained by the majority of observations that enter OLS are from the

initial period that by design does not suffer from survival driven selection. To address this issue,

the lower panel of Table 3 displays result from regressions excluding the initial panel wave. In

real data applications this corresponds to analyzing data subject to left censoring, i.e. some – or

even all – units are not observed from the very beginning of the process under scrutiny. With the

initial period excluded, the results for bOLS exhibit the expected pattern. While no bias occurs

20See Appendix A.5 for results considering other beta distributions than B(6, 2).
21Since the B(6, 2) distribution has a mean of 0.75 the drift parameter is 0.0417.
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Table 3: Monte Carlo Analysis - Survivor Bias, Large Sample Estimates

bOLS bWI bFD bFDC bFDC
adjust

Mean S.D.† Mean S.D.† Mean S.D.† Mean S.D.† Mean S.D.†

initial period included
xSTT

it stationary, all variation in xit transitory

β̂ 0.9998 0.0005 1.3172 0.0012 1.2045 0.0009 0.5418 0.0006 1.1346 0.0013
α̂ 0.2264 0.0002 0.1074 0.0005 0.5500 0.0001 0.1317 0.0005
xSTB

it stationary, between-group variation in xit

β̂ 0.9991 0.0008 1.3554 0.0025 1.2403 0.0019 0.5571 0.0013 1.1352 0.0027
α̂ 0.2267 0.0003 0.0936 0.0010 0.5511 0.0001 0.1322 0.0010
xRWD

it follows random walk with drift

β̂ 0.4653 0.0009 8.5661 0.0015 9.9046 0.0013 1.0006 0.0025 1.0004 0.0025
α̂ 0.3940 0.0003 −2.1406 0.0005 0.4947 0.0001 0.1917 0.0009

initial period excluded (left censoring)
xSTT

it stationary, all variation in xit transitory

β̂ 1.0002 0.0009 1.0971 0.0016 1.0971 0.0016 0.5229 0.0012 1.0918 0.0024
α̂ 0.1821 0.0004 0.1458 0.0008 0.5220 0.0001 0.1189 0.0009
xSTB

it stationary, between-group variation in xit

β̂ 0.9282 0.0013 1.1271 0.0034 1.1271 0.0034 0.5405 0.0024 1.1014 0.0049
α̂ 0.2089 0.0005 0.1352 0.0016 0.5214 0.0001 0.1168 0.0018
xRWD

it follows random walk with drift

β̂ 0.7483 0.0015 9.8897 0.0023 9.8897 0.0023 0.9961 0.0045 0.9960 0.0045
α̂ 0.2786 0.0005 −2.8706 0.0010 0.4941 0.0002 0.1658 0.0017

Notes: True coefficient values: β = 1, α = 0.25; N = 108, T = 3. The initial wave # one naturally comprises N = 108

observations; observation #s for wave two are: 37 503 419 (xSTT
it ), 37 492 118 (xSTB

it ), and 45 837 313 (xRWD
it ); observation

#s for wave three are: 16 141 100 (xSTT
it ), 16 271 318 (xSTB

it ), and 21 235 298 (xRWD
it ).

for purely transitory variation in xit, a downward bias is found for both, constant between-group

variation and persistence in the DGP of xit.

To complete this discussion, we have a brief look on the remaining estimators that – unlike

bOLS and bFDC
adjust – suffer from both survivor and misscaling bias in this setting. For a stationary

regressor, bFDC is throughout close to the one-half of the true value of β, suggesting that misscaling

is the dominant source of bias in the considered setting. With xit following a random walk, bFDC

as expected does not exhibit a significant bias. bWI and bFD appear to be moderately biased – yet

slightly more than bFDC
adjust – for stationary xit. However, with xit having a drift they exhibit the

same weird behavior as with the explanatory variables having a trend.

Finally, we dig deeper into the question of what role the variance of the unobserved hetero-

geneity plays for the bias, the survival bias in particular. To this end we run a simulation that

generalizes the data generating process (ii) considered above. Now we consider ai to be sampled

from the U(0, q) distribution, while we have xSTB
it = ((1−q)/2) µi + ((1−q)/2) ηit for the regressor,

with µi and ηit as above being sampled from the beta B(6, 2) distribution. We vary q between 0

and 0.96 and thus consider values for
√

Var(ai) in the range between 0 and 0.277. In order not

to violate the condition ai + xit ∈ [0, 1], considering a large variance for ai requires considering

a small one for xit. This is why q also enters the DGP for xit. Figure 1 plots the estimated slope

coefficients of the considered estimators as function of
√

Var(ai). Since we consider regressions
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Figure 1: Estimated β coefficients as functions of
√

Var(ai) = q/
√

12. DGPs of ai and xit: ai sam-
pled from the U(0, q) distribution; xSTB

it = ((1−q)/2) µi + ((1−q)/2) ηit with µi and ηit independently
sampled from the beta B(6, 2) distribution. q varied in the range between 0 and 0.96. Dashed sub-
sidiary lines mark 95 percent confidence intervals. The thin solid subsidiary lines indicate the true
coefficient value β = 1 and the β-element of Gβ̃, respectively. The vertical dotted line indicates
the corresponding results in Table 3 (lower panel, middle row). See Appendices A.5 and A.6 for
simulations considering alternative DGPs for xit and ai. Source: Own simulations.

with the initial period excluded, i.e only two waves enter the estimation sample, bWI and bFD

coincide. Dashed lines mark estimated 95 percent confidence intervals. They get wider with

increasing values of q since xit then exhibits less and less variation. The vertical dotted line in-

dicates
√

Var(ai) = 0.144 that is the parameter value for which results are reported in Table 3

(lower panel, third row). The upper thin solid line marks the true parameter value β = 1. The

lower thin solid line marks the value bFDC would take, if misscaling bias would be its sole source

of error, i.e. the β-element of Gβ̃. This line is very close to – but does not perfectly coincide with –

the benchmark value of 0.5. The Appendices A.5 and A.6 present results for simulations that vary

this design in two dimensions: (i) beta distributions other than B(6, 2) are considered, (ii) for ai a

Bernoulli rather an a continuous uniform distribution is assumed.22

22Simulation results in the Appendix (Fig. A1, bottom row, right; Fig. A2, bottom row) seem to suggest that bFDC does
not suffer from misscaling bias, if xit is binary, and no unobserved heterogeneity enters the DGP. Yet this is an artifact of
the simulation design which in this specific case specifies P(yit = 1|xit, yit− = 0) = xit. Since xit is either zero or one, the
outcome is deterministically linked to xit.
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Turning back to Figure 1, for Var(ai) = 0, i.e. in the absence of any unobserved heterogeneity,

bOLS and bFDC
adjust hit the true parameter value of 1 almost perfectly. This does not apply to bFD

and bFDC, which are severely biased. This illustrates that the misscaling bias originates from the

data transformation itself, not from its failure to remove unobserved heterogeneity. The vertical

distance between the two thin solid subsidiary lines is the misscaling bias in bFDC that is elim-

inated by bFDC
adjust. Hence for little variation in ai, misscaling is the almost sole source of bias in

bFDC and bFDC
adjust is close to asymptotic unbiasedness. If, however, the variance of the unobserved

heterogeneity increases, the survival bias kicks in. This does not only hold for bFDC and bFDC
adjust

but also for bOLS. Yet, as predicted, for the latter the bias operates in the opposite direction. With

substantial survival bias in bFDC – in Figure 1 this is the vertical distance between bFDC and the

lower thin subsidiary line – bFDC
adjust does not hit the true parameter value. Eliminating the misscal-

ing bias rather comes to the cost of re-scaling the survival bias in bFDC. Nevertheless, according

to our simulations, misscaling is the dominant source of bias in bFDC, even if the variance of ai is

big. Thus adjusting the first difference estimator with constant still reduces the asymptotic bias

substantially. This suggests that using bFDC
adjust is advisable even in settings that are prone to sur-

vival bias which is not cured by the suggested adjustment. Moreover, the survival bias in bFDC
adjust

seems to be of similar magnitude of the survival bias in bOLS, yet as discussed above, this depends

on the dynamic properties of the DGP of xit. The behavior of bFD turns out to be rather strange

in the considered simulation. As indicated by Figure 1, depending on the variance of the unob-

served heterogeneity bFD may exhibit a substantial upward, a substantial downward bias, or no

bias at all. Yet, this pattern turns out to be very sensitive even to minor changes of the DGP for

xit; see Appendix A.5 for simulation results using slightly altered DGPs for xit. Hence using the

first-differences or the within-transformation estimator without constant – or without a saturated

set of wave indicators, respectively – is clearly not advisable.

3.4 Methods for Estimating Standard Errors

We now use the Monte Carlo simulation to examine different methods for estimating standard

errors for bFDC
adjust. The first column of Table 4 just lists the Monte Carlo simulated, small sample

standard errors already reported in Table 2 (rightmost column, lower panel). They are compared

to the mean estimated standard errors obtained from 10 000 Monte Carlo replications. That is, in

each replication – with xit and ai kept fixed but yit replaced – standard errors for bFDC
adjust and aFDC

adjust

are calculated and the averages over 10 000 replications are reported in Table 4, columns 2–5. Four

methods for calculating the standard errors are compared: (i) equation (22), using the true values

of β and ai; since the true parameter values are unknown in real data applications, this variant
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Table 4: Monte Carlo Analysis - Estimated Standard Errors

MC simulated ŝeanalytic(bFDC
adjust) H-adjusted ŝerobust(bFDC)

true ai and β âi and β̂ White cluster robust

xST
it stationary

ŝe(bFDC
adjust) 1.1189 1.1118 0.8734 1.1187 1.1172

ŝe(aFDC
adjust) 0.2161 0.2149 0.1683 0.2162 0.2161

xRW
it follows random walk

ŝe(bFDC
adjust) 0.6203 0.6180 0.4849 0.6236 0.6234

ŝe(aFDC
adjust) 0.1209 0.1201 0.0936 0.1212 0.1218

xTR
it with trend and increasing variance around trend

ŝe(bFDC
adjust) 0.9023 0.8963 0.6500 0.9003 0.9053

ŝe(aFDC
adjust) 0.1855 0.1848 0.1335 0.1856 0.1867

Notes: True coefficient values: β = 1, α = 0.1; N = 400, T = 5; xit and ai fixed; 10 000 replications. See Table A6 for
simulation results using a different seed for the RNG.

serves as benchmark but is not an applicable method; (ii) equation (22), using the estimates β̂FDC
adjust

and âi; (iii) obtaining White (1980) heteroscedasticity robust standard errors for bFDC and adjust-

ing them by H; (iv) obtaining cluster robust standard errors for bFDC, with clustering by i, and

adjusting them by H.

The pattern of results is quite clear. The Monte Carlo simulated standard errors and the analyt-

ical ones that use the true parameter values almost coincide. This is what one should expect. The

estimated standard errors that are based on robust variance–covariance estimation also yield very

similar results on average. This means that obtaining conventional robust standard errors from a

linear regression of yit on ∆̃xit and adjusting them appropriately, appears to be a reliable approach

to calculating standard errors for bFDC
adjust. Whether White (1980) or cluster robust standard errors

are used does not make a significant difference. This does not come as surprise since the errors

are known to be uncorrelated in the considered setting, see (20). In contrast, calculating analytical

standard errors based on the estimates β̂FDC
adjust and âi yields results that severely underestimate

the sampling variability in bFDC
adjust. This is explained by the fact that 1

Ti
∑Ti

t=1

(
yit − xitbFDC

adjust

)
is

a poor estimator for ai, and by numerous invalid variance estimates. The latter forces us to use

max
(

0, (1− âi − xit β̂
FDC
adjust)(âi + xit β̂

FDC
adjust)

)
, rather than (1− âi − xit β̂

FDC
adjust)(âi + xit β̂

FDC
adjust), as the

estimate of σ2
it. This method for estimating standard errors should not be used in applied work.

The results presented in Table 4 originate from a simulation design that generates almost no

survival bias in bFDC
adjust, and might hence be of little relevance to settings in which survival bias

is a significant issue. To address this concern, we rerun the above simulation using the design

already used in section 3.3 to analyze the survival bias. As the only deviation of that design,

we now consider a small sample consisting of only N = 1 000 observations.23 We consider re-

gressions that include the initial period. Results are presented in Table 5. Though bFDC
adjust suffers

23Just as for the results presented in Table 3 we use q = 0.5, i.e. the population standard deviation of ai is 0.144.
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Table 5: MC Analysis - Estimated Standard Errors, significant Survivor Bias

MC simulated ŝeanalytic(bFDC
adjust) H-adjusted ŝerobust(bFDC)

true ai and β âi and β̂ White cluster robust

xSTT
it stationary, all variation in xit transitory

ŝe(bFDC
adjust) 0.4100 0.3997 0.3444 0.4166 0.4099

ŝe(aFDC
adjust) 0.1541 0.1502 0.1271 0.1565 0.1544

xSTB
it stationary, between-group variation in xit

ŝe(bFDC
adjust) 0.8624 0.8474 0.7251 0.8771 0.8673

ŝe(aFDC
adjust) 0.3227 0.3169 0.2698 0.3280 0.3246

xRWD
it follows random walk with drift

ŝe(bFDC
adjust) 0.8180 0.8030 0.6803 0.8327 0.8332

ŝe(aFDC
adjust) 0.2843 0.2790 0.2356 0.2893 0.2898

Notes: True coefficient values: β = 1, α = 0.1; N = 1 000, T = 3; xit and ai fixed; 10 000 replications.

from non-negligible asymptotic survival bias in this setting – except for the case that xit follows

a random walk – our earlier results in qualitative terms still apply. Most importantly, White

(1980) robust standard errors are close to their Monte Carlo simulated counterparts. As predicted

by theory, the former are slightly larger. Yet, the deviation from the simulated ones is of fairly

small magnitude.24 This suggests obtaining conventional robust standard errors from simple first

difference estimation and adjusting them by H as a reasonable and conservative method for esti-

mating standard errors in applied work, even if bFDC
adjust suffers from survival bias.

3.5 Asymptotic Normality

Related to the inference issues discussed in section 3.4, we finally present simulation results which

address the asymptotic distributions of bFDC and bFDC
adjust. More specifically, we test whether the

simulations yield normally distributed coefficient estimates as predicted by theory; see section

2.7. We rely on the same simulation designs as in section 3.4, except for the values of N. In or-

der to preserve the spirit of simulating an asymptotic distribution, we increase N by the factor

1 000 relative to the simulations for which results are presented in the Tables 4 and 5.25 More

specifically, N is 4 · 105 for the variant with negligible survival bias and 106 for the variant with

sizable survival bias.26 Figure 2, upper panel, displays the simulated distribution of the slope

coefficient for the former setting, in which survival bias is a negligible issue. The estimated kernel

densities look very much ‘normal like’. Moreover – presumably more important – statistical tests

(D’Agostino et al., 1990; Doornik and Hansen, 2008; Bera et al., 2016; Kolmogorov-Smirnov) pro-

vide no evidence for deviations from normality. See the p-values reported in Table 6, left panel.

24For larger sample sizes, the deviation of simulated and White (1980) based estimated standard errors gets even smaller.
25Yet, even for the rather small sample sizes considered in section 3.4, the simulated distributions of bFDC and bFDC

adjust do
not exhibit a sizable deviation from normality; see Appendix A.7, Figure A3.

26Choosing very large values for N, like the ones considered in the sections 3.1 and 3.3, and at the same time replicating
the regression analysis 10 000 times would result in excessive run times for the simulations.
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Figure 2: Monte Carlo simulated distribution of bFDC and bFDC
adjust for different DGPs of xit based

on 10 000 replications; upper panel: same simulation design (no significant survival bias) as for
the results in Table 1 (right-most columns) and Table 4 (left-most column), except for the sample
size N, which is 4 · 105; lower panel: same simulation design (significant survival bias) as for
the results in Table 3 (upper panel, right-most columns) and Table 5 (left-most column), except
for the sample size N, which is 106. The thin vertical subsidiary lines mark the true coefficient
value 1; see Appendix A.7 for corresponding Figures considering smaller samples. Source: Own
simulations.
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Table 6: MC Analysis - Tests for Normality of bFDC and bFDC
adjust (p-values)

no significant survival bias† significant survival bias‡

xST
it xRW

it xTR
it xSTT

it xSTB
it xRWD

it

Skewness and Kurtosis test (D’Agostino et al., 1990)[

bFDC 0.6996 0.2351 0.8704 0.8984 0.1968 0.8798
bFDC

adjust 0.6734 0.2039 0.8781 0.8503 0.2786 0.8969
Skewness and Kurtosis test (Doornik and Hansen, 2008)\

bFDC 0.6823 0.2436 0.8607 0.8969 0.1865 0.8852
bFDC

adjust 0.6547 0.2128 0.8680 0.8491 0.2687 0.9031
Quantile-Mean Covariance test (Bera et al., 2016)]

bFDC 0.8868 0.3524 0.1066 0.9890 0.0130 0.8102
bFDC

adjust 0.9036 0.2076 0.1260 0.9911 0.0329 0.8929
Kolmogorov-Smirnov test§

bFDC 0.9889 0.8821 0.6704 0.9574 0.1778 0.8798
bFDC

adjust 0.9796 0.9540 0.6953 0.9525 0.2559 0.9704

Notes: †same simulation design as for the results in Table 1 (right-most columns) and Table 4 (left-most column), yet
N = 4 · 105; ‡same simulation design as for the results in Table 3 (upper panel, right-most columns) and Table 5 (left-
most column), yet N = 106; DGPs for xit are: xST

it is stationary, xRW
it follows random walk, xTR

it has trend and increasing
variance around trend, xSTT

it is stationary, with all variation being transitory, xSTB
it is stationary, with between-group

variation, xRWD
it follows random walk with drift; 10 000 replications; [omnibus test; \Stata R© implementation by Baum

and Cox (2001) used; ]p-values for test based on the T3-statistic and ε = 0.1, Stata R© implementation by Alejo et al.
(2016) used; §known to have little power as a test for normality; normality is the null for all considered tests.

The lower panel of Figure 2 displays the simulated distributions of bFDC and bFDC
adjust for the alter-

native setting, which corresponds to Table 3 (upper panel) and Table 5 and in which survival bias

plays a significant role. This is graphically depicted by the distributions of bFDC
adjust not being cen-

tered at the true coefficient value of one, except for the case that xit follows a random walk. Yet,

the simulated distributions still look very much ‘normal like’. This impression is warranted by

statistical tests. See the p-values reported in Table 6, right panel.27 The simulations, thus, confirm

asymptotic normality of bFDC and bFDC
adjust, which allows for conventional inference after using the

adjusted first-differences for estimation.

4 An Application to Real Data

The empirical application presented in this section is directly based on Brown and Laschever

(2012). More specifically, as the first step we replicate the results of one of their empirical mod-

els (Brown and Laschever, 2012, page 104; table 4, column 8). Subsequently, we compare these

results to those we get from applying the estimators discussed in the previous sections. Thanks

to the fact that the data and the code are available from the web page of the American Economic

Association28, replication of the original results is straightforward. We provide just very limited

information about the analysis of Brown and Laschever (2012). Readers interested in the details of

their paper, results from further empirical models in particular, are referred to the original article.

27The single occurrence (quantile-mean covariance test, xSTB
it ) of a small p-value may well be attributed to type I error.

28https://www.aeaweb.org/aej/app/data/2011-0132_data.zip
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The analysis of Brown and Laschever (2012) is concerned with the retirement behavior of

school teachers in the Los Angeles Unified School District (LAUSD), in particular with the ques-

tions of how their retirement decisions are affected by the retirement behaviour of peers (teachers

working at the same school). The identification rests on exogenous variation in the financial in-

centives for retirement that was induced by two unexpected pension reforms. Teachers were

heterogeneously affected by these reforms, which allows using the reform-induced changes in

financial incentives as instruments for peers’ retirement behavior. In comparing different meth-

ods for estimation, we focus on one – among numerous other specifications for which results are

reported in Brown and Laschever (2012) – reduced form model for simplicity.29 In this specifi-

cation, information from three panel waves is used to explain the dummy variable ‘retirement’,

indicating that a teacher retires in the respective period, by: (i) lagged average changes in pen-

sion wealth (present value of future pension income, Brown and Laschever, 2012, p. 94) of peer

teachers, which serves as instrumental variable (Table 7, first panel), (ii) teacher-specific variables

capturing the changes in own financial incentives for retirement (Table 7, second and third panel),

(iii) school-level controls (Table 7, fourth panel), (iv) age indicators (Table 7, fifth panel), (v) panel

wave (academic year) indicators (Table 7, sixth panel), and (vi) teacher fixed effects. Since re-

tirement is an absorbing state and teachers are no longer observed after they have retired, this

empirical model fits into the considered framework very well.

Columns 1 and 2 of Table 7, denoted bWI, just replicate30 the analysis of Brown and Laschever

(2012) for which the popular within-transformation estimator was used. In the original article

estimated coefficients are only reported for the explanatory variables in the first and the second

panel. The most important result is that the coefficient of ‘lagged change in pension wealth of

peers’ is positive and statistically significant at the 5 percent level. This, though just marginally

significant, also holds for the corresponding variable that considers a lag of two years. Hence

retirement incentives to which other teachers are exposed matter, conditionally on the own incen-

tives, for the own decision to retire. This is key to the identification of peer effects by Brown and

Laschever (2012). The estimated coefficients in the second panel are consistent with theory. An

increase in own pension wealth increases the probability of retirement. The coefficient attached to

‘change in own peak value’ (option value of postponing retirement, Brown and Laschever, 2012,

p. 96), as to be expected, is negative. Yet, it lacks statistical significance. We compare the results

29To keep things simple, we consider the reduced form model rather than the two-stage least-squares estimation.
30We use a differently constructed set, yet the same number, of age indicators to parameterize the baseline hazard. This

does not change the nature of the model at all. The estimated age coefficients are, however, more conveniently interpreted
as they directly capture the increase in the retirement baseline hazard when a teacher gets older by one year. Moreover, we
exclude from the estimation sample two teachers, whose reported ages are obviously incorrect. For one, the age increases
by several years from one year to the next, for the other, the age even decreases. Excluding these six observations has
virtually no impact on the estimated coefficients.
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Table 7: Brown and Laschever (2012) Reduced Form Model and Alternative Empirical Models

bWI (replication)‡ bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E.

change in pension wealth of peers (t− 1) 0.003∗∗ 0.001 0.003∗∗ 0.001 −0.007 0.095
change in pension wealth of peers (t− 2) 0.002∗ 0.001 0.002 0.001 −0.004 0.054

change in own pension wealth 0.033∗∗∗ 0.011 −0.003 0.009 −0.005 0.041
change in own peak value −0.002 0.002 −0.002∗ 0.001 −0.005∗ 0.003

salary 0.045∗∗∗ 0.015 0.037∗∗ 0.016 0.048 0.085
years of service in LAUSD (squared) 0.002∗∗∗ 0.000 0.002∗∗∗ 0.000 0.000 0.000

av. age of teachers aged ≥ 55 at school −0.002 0.003 −0.002 0.003 0.002 0.025
av. service of teachers aged ≥ 55 at school −0.002∗ 0.001 −0.002∗ 0.001 −0.005 0.017
pupil to teacher ratio 0.001 0.001 0.001 0.001 0.010 0.009
share of teachers with masters or higher −0.126∗ 0.075 −0.154∗∗ 0.072 −0.386 0.339
share of female teachers 0.148∗∗ 0.067 0.146∗∗ 0.060 0.263 0.600
av. rank on standardized math test 0.000 0.004 0.002 0.003 −0.003 0.008
# of teachers aged ≥ 55 at school −0.001 0.001 −0.002∗ 0.001 0.002 0.003

age ≥ 54 years −0.154∗∗∗ 0.013 −0.179∗∗∗ 0.015
age ≥ 55 years −0.123∗∗∗ 0.013 −0.163∗∗∗ 0.015 −0.016 0.029
age ≥ 56 years −0.140∗∗∗ 0.012 −0.174∗∗∗ 0.014 −0.013 0.011
age ≥ 57 years −0.138∗∗∗ 0.013 −0.173∗∗∗ 0.014 0.001 0.010
age ≥ 58 years −0.127∗∗∗ 0.012 −0.163∗∗∗ 0.014 0.008 0.014
age ≥ 59 years −0.099∗∗∗ 0.014 −0.132∗∗∗ 0.015 0.030∗∗∗ 0.010
age ≥ 60 years −0.051∗∗∗ 0.015 −0.076∗∗∗ 0.017 0.056∗∗ 0.022
age ≥ 61 years −0.024 0.017 −0.038∗∗ 0.019 0.034 0.028
age ≥ 62 years 0.027 0.020 0.023 0.021 0.060∗∗∗ 0.020
age ≥ 63 years −0.009 0.021 0.001 0.023 −0.022 0.031
age ≥ 64 years −0.055∗∗∗ 0.021 −0.054∗∗∗ 0.021 −0.052∗ 0.030
age ≥ 65 years 0.000 0.025 −0.009 0.026 0.037 0.046
age ≥ 66 years −0.025 0.026 −0.024 0.026 −0.017 0.034

academic year 1999-00 −0.157∗∗∗ 0.027
academic year 2000-01 −0.080∗∗∗ 0.014 −0.009 0.006 −0.018 0.051
constant −0.451∗∗ 0.219 0.110∗∗∗ 0.017 −0.524 0.489

Notes: ‡Replication of the results of Brown and Laschever (2012, p. 109; table 4, column 8), subject to a
marginal modification of the estimation sample due to inconsistent age information, see fn. 30. ∗∗∗ p-value < 0.01;
∗∗ p-value < 0.05; ∗ p-value < 0.1. Standard errors clustered at the school level. 21 290 observations, 8 320 teach-
ers, and 586 school clusters for within-transformation estimation. 12 968 observations, 7 088 teachers, and 578 school
clusters for first-differences estimation. Since N observations are redundant in the within-transformed model, the
number of non-redundant observations for the within-transformed model does not differ from that of the first-
differences models. Two further observations are missing in the first-differences estimation due to missing values
in ‘average rank on standardized math test’ for the year 2000. While the within-transformation can still be applied
to the corresponding observations for 1999 and 2001, first-differences cannot be calculated, unless one allows for
unequally spaced periods. Source: Brown and Laschever (2012) and own estimations; variables names are – sub-
ject to minor modifications – borrowed from the additional online materials to Brown and Laschever (2012); see
https://www.aeaweb.org/articles?id=10.1257/app.4.3.90.

from this model to the corresponding ones from alternative estimation methods, more specifically

bFDC and bFDC
adjust. Because the model specification includes a saturated set of wave dummies, bFD

is fully equivalent to bFDC.

The original specification of Brown and Laschever (2012) includes a set of age dummies, in-

cluding one for the youngest age found in the sample, i.e., 53 years, and an ‘older than’ dummy

for the residual age category. This renders the matrix G singular for two reasons. Firstly, the

‘youngest age’ dummy causes the problem discussed in section 2.6. Secondly, the column associ-

ated with the ‘older than 65’ indicator is linearly dependent on the columns associated with the

age indicators. The original model specification can, hence, not one-to-one be estimated by the ad-

justed first-differences estimator. For this reason we excluded the dummy indicating the youngest
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Figure 3: Sample distribution of predicted conditional retirement probabilities from bWI, bFDC,
and bFDC

adjust. Predictions from within-transformed estimator based on three waves, i.e. 21 290 obs.;
predictions from first-differences estimators based on two waves, i.e. 12 968 obs. The mean out-
come (rel. frequency of retirement events) is 0.085 in the three-waves sample and 0.095 in the
two-waves sample. Source: Own calculations based on Brown and Laschever (2012).

age cohort in the sample from the adjusted first-differences estimation and re-parameterized the

age indicators, see footnote 30. Naturally, one wave indicator has to be dropped if the estimation

is based on first-differences.

The point estimates for the key coefficients obtained from the unadjusted first-differences es-

timation are very similar to the original ones. Only ‘change in own pension wealth’ gets substan-

tially smaller and turns statistically insignificant. Yet, most importantly, a reduced form effect

of a change in pension wealth of other teachers is still found in the first-differences estimation.

Turning to the results from the adjusted first-differences estimation, this pattern changes. Very

few coefficients are statistically significant. In particular, the instrumental variables (change in

pension wealth of peers) turn statistically insignificant. The point estimates even turn negative.

This clearly conflicts with being interpreted in terms of peer effects mattering for retirement, as

suggested by Brown and Laschever (2012). Using bFDC
adjust instead of bWI as the estimation method,

hence, substantially changes the economic implications of the empirical analysis.
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In order to shed more light on what is different about these results, we examine predicted con-

ditional retirement probabilities.31 Figure 3 displays the sample distribution of the fitted values

the three considered estimation methods yield in the respective estimation samples.32 As to be

expected when using a linear probability model, all estimators yield some predicted probabilities

outside the unit interval. Yet the extent by which this happens varies a great deal. While for bWI

and bFDC more than 70 percent of the predictions are outside the valid range, the corresponding

share for bFDC
adjust is smaller than 20 percent. With respect to bFDC one reason for this result is that

the predictions are incorrectly centered. In other words, the sample mean of the prediction devi-

ates a great deal from the sample mean of the outcome variable. This does not come as a surprise,

since the intercept in a model that is estimated in first differences is not ȳ− x̄β̂. In contrast, the

predictions from bWI and bFDC
adjust are both precisely centered to the sample mean of the outcome

variable. However, the former still does a very poor job in generating reasonable predictions. In

fact, very little mass of the distribution of fitted values is located in the meaningful range. On the

basis of the predicted probabilities, one would judge bFDC
adjust as clearly superior to bFDC and bWI in

the present application. A possible explanation for the very different estimated distributions of

retirement probabilities are the estimated age coefficients, which in absolute terms are typically

much bigger for bWI and bFDC than for bFDC
adjust. Most prominent, unlike bFDC

adjust, the unadjusted es-

timators yield a steady and steep, and statistically significant decrease in the baseline retirement

hazard for teachers in their sixth decade of life, which is in no way mirrored by the unconditional

sample retirement rates.33 Indeed, according to the results from applying the within estimator

the baseline retirement hazard decreases by 83 percentage points between the age of 53 and the

age of 60, which seems to make little sense. A poorly estimated baseline hazard seems to be

the main reason for the poor predictions generated by the within-transformation and the simple

first-differences estimator. This interpretation is corroborated by simulation results in which the

with-transformation estimator yields heavily biased results for the base line hazard; see Table A2

in Appendix A.4.

31The predictions are calculated as
(
α̂WI + xit β̂

WI), (α̂FDC + xit β̂
FDC), and

(
α̂FDC

adjust + xit β̂
FDC
adjust

)
, respectively. They are

thus unconditional on ai .
32For first-differences estimators the first wave cannot be considered since only one academic year dummy is identified.
33The descriptive counterparts, i.e., the changes in relative retirement rates between age 54 and age 66 is: 0.002, 0.028,
−0.007, 0.004, 0.018, 0.027, 0.062, 0.037, 0.026, −0.008, −0.021, 0.013, and 0.009. The strange pattern of estimated age coef-
ficients is not an artifact of including the ‘age≥ 54’ indicator of the specification estimated with bWI and bFDC. Though less
pronounced, the general pattern of estimated age coefficients – and the strange distribution of the predicted probabilities
– survives if ‘age ≥ 54’ is dropped.
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5 Conclusions

Eliminating individual time-invariant heterogeneity by taking first-differences or applying the

within-transformation to the data is a powerful tool of applied econometrics that makes the lin-

ear regression model very appealing in the analysis of panel data. However, the logic that these

transformations remove individual time-invariant heterogeneity and therefore allow for consis-

tent and unbiased estimation by least squares does not apply in a discrete-time hazard setting,

in which an observation unit is only observed until that period in which the event of interest oc-

curs. As shown above, conventional fixed-effects estimators are in fact biased and inconsistent

in this case. Besides conventional survival bias, which would also affect pooled OLS even if the

individual heterogeneity is uncorrelated with the explanatory variables in the population, these

estimators suffer from a second source of bias that originates from the data transformation itself.

It is therefore present even in the absence of any unobserved heterogeneity. This second source

of bias turns out to be the dominant one in many settings, with its magnitude heavily depending

on the data generating process of the explanatory variables. The conventional first-differences

and the within-transformation estimators should for this reason not be applied to discrete-time

hazard models.

In this paper, we suggest a novel alternative adjusted first-differences estimator for this setting

that is computationally very simple and cures this second source of bias. Under the assumption

that any unobserved time-invariant, individual heterogeneity is uncorrelated with the first – or

alternatively higher-order – differences of the explanatory variables, it confines the bias to sur-

vival bias. It thus allows confining the bias to survival bias under alternative, supposedly weaker

assumptions than pooled OLS, for which uncorrelatedness with the levels of the explanatory vari-

ables is required. Compared to conventional linear fixed-effects estimators, its crucial advantage

is that it corrects for the misleading matrix-weighting of coefficients that originates from the data

transformation these estimators involve. The contribution of this paper hence is twofold. Firstly,

it shows why conventional linear fixed-effects estimators should not be used in a discrete-time

hazard framework. Secondly, it introduces an alternative estimator that confines a possible bias

to a single source. This remaining source is just a variant of conventional survival bias researchers

should always be aware of when estimating a linear discrete-time hazard model.
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A Appendix

A.1 Within-Transformation of Non-Repeated Event Data

For the within-transformation estimator the analogue to (7) reads as

E
(

εWI
it |ai, xi1, . . . , xiT , yit− = 0

)
= P(yit = 1|ai, xit, yit− = 0)

(
t− 1

t
−
(

xit −
1
t

t

∑
s=1

xis

)
β

)

+
T

∑
Ti=t+1

[
P(yiTi = 1|ai, xiTi , yiTi− = 0)

(
Ti−1

∏
s=t

P(yis = 0|ai, xis, yis− = 0)

)

×
(
− 1

Ti
−
(

xit −
1
Ti

Ti

∑
s=1

xis

)
β

)]

+

(
T

∏
s=t

P(yis = 0|ai, xis, yis− = 0)

)(
−
(

xit −
1
Ti

T

∑
s=1

xis

)
β

)

= (ai + xitβ)

(
t− 1

t
−
(

xit −
1
t

t

∑
s=1

xis

)
β

)

+
T

∑
Ti=t+1

[
(ai + xiTi β)

(
Ti−1

∏
s=t

(1− ai − xisβ)

)(
− 1

Ti
−
(

xit −
1
Ti

Ti

∑
s=1

xis

)
β

)]

+

(
T

∏
s=t

(1− ai − xisβ)

)(
−
(

xit −
1
Ti

T

∑
s=1

xis

)
β

)
(24)

For t = T, that is, when the event does not occur in the waves 1, . . . , T − 1 and in consequence Ti

equals T, (24) simplifies to

E
(

εWI
iT |ai, xi1, . . . , xiT , yiT− = 0

)
=

(
T − 1

T

)
ai +

1
T

(
T−1

∑
s=1

xis

)
β (25)

If the panel is very short and consists of only two waves, i.e., T = 2, we get

E
(

εWI
i2 |ai, xi1, xi2, yi1 = 0

)
=

1
2

ai +
1
2

xi1β (26)

This coincides with (7) since for T = 2, the within-transformed data are just 1
2 times the first-

differenced data for t = 2 and − 1
2 times the first-differenced data for t = 1.

i



A.2 First-Differences Transformation of Repeated Event Data

When yit is a repeated event, that is any sequence of zeros and ones can be observed, the first-

differenced outcome ∆yit ≡ yit − yit−1 is

∆yit =


1 if yit = 1 and yit−1 = 0

0 if (yit = 1 and yit−1 = 1) or (yit = 0 and yit−1 = 0)

−1 if yit = 0 and yit−1 = 1

(27)

and the corresponding first-differenced disturbance εFDR
it ≡ ∆yit − ∆xitβ reads as

εFDR
it =


1− ∆xitβ if yit = 1 and yit−1 = 0

−∆xitβ if (yit = 1 and yit−1 = 1) or (yit = 0 and yit−1 = 0)

−1− ∆xitβ if yit = 0 and yit−1 = 1

(28)

For the conditional mean of the disturbance in the first-differenced linear probability model with

repeated events one obtains

E(εFDR
it |ai, xit, xit−1) = [P(yit = 1|ai, xit) · P(yit−1 = 0|ai, xit−1)] (1− ∆xitβ)

+[P(yit = 1|ai, xit) · P(yit−1 = 1|ai, xit−1)

+P(yit = 0|ai, xit) · P(yit−1 = 0|ai, xit−1)] (−∆xitβ)

+ [P(yit = 0|ai, xit) · P(yit−1 = 1|ai, xit−1)] (−1− ∆xitβ)

= [(ai + xitβ) · (1− ai − xit−1β)] (1− ∆xitβ)

+ [(ai + xitβ) · (ai + xit−1β) + (1− ai − xitβ) · (1− ai − xit−1β)] (−∆xitβ)

+ [(1− ai − xitβ) · (ai + xit−1β)] (−1− ∆xitβ)

= [(ai + xitβ) · (ai + xit−1β) + (1− ai − xitβ) · (1− ai − xit−1β)

+(ai + xitβ) · (1− ai − xit−1β) + (1− ai − xitβ) · (ai + xit−1β)] (−∆xitβ)

+(ai + xitβ) · (1− ai − xit−1β)− (1− ai − xitβ) · (ai + xit−1β)

= −∆xitβ + xitβ− xit−1β

= 0 (29)

That is, for repeated events, applying the first-differences transformation eliminates unobserved,

time-invariant heterogeneity and yields a transformed disturbance that is conditional mean in-

dependent of the explanatory variables, allowing unbiased and consistent estimation by least

squares.
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A.3 Simulation Results for Probit Model as True DGP

Table A1: Monte Carlo Analysis - Probit as true DGP (Large Sample Estimates)

bOLS bWI bFD bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary: average marginal effect 0.3373 (fist wave included), and 0.3353 (fist wave excluded)

β̂ 0.5667 0.0004 0.3038 0.0008 0.2383 0.0007 0.1694 0.0006 0.3363 0.0012
β̂/av. marg. effect 1.6804 0.0012 0.9007 0.0025 0.7108 0.0022 0.5053 0.0019 1.0028 0.0037

xRW
it follows random walk: average marginal effect 0.3359 (fist wave included), and 0.3330 (fist wave excluded)

β̂ 0.4783 0.0003 0.3117 0.0006 0.3337 0.0007 0.3334 0.0006 0.3333 0.0006
β̂/av. marg. effect 1.4238 0.0009 0.9280 0.0019 1.0022 0.0022 1.0011 0.0018 1.0010 0.0018

xTR
it with trend and incr. var. around trend: av. marg. effect 0.3395 (fist wave incl.), and 0.3424 (fist wave excl.)

β̂ 0.5389 0.0004 2.0046 0.0006 1.4954 0.0007 0.2331 0.0006 0.3484 0.0009
β̂/av. marg. effect 1.5873 0.0011 5.9040 0.0018 4.3669 0.0019 0.6806 0.0018 1.0175 0.0027

Notes: True DGP: P(yit = 1|ai , xit, yit− = 0) = Φ(−1.44 + 3(ai + xitβ)); true coefficient value: β = 1; N = 4 · 107,
T = 5; same DGPs for xit as in the simulations discussed in section 3.1; the # of observations for xST

it is 72 281 765, the
corresponding # of observations for xRW

it is 72 311 334, and for xTR
it it is 72 775 017. For bOLS the #s of observations are

higher by 4 · 107 observations, since the first wave is not eliminated by the within-transformation or the first-differences
transformation. See Table 1 for corresponding simulation results assuming a DGP consistent with the linear model.

Table A1 shows results from simulations in which the linear estimators are applied to data that

was generated by the process P (yit = 1|ai, xit, yit− = 0) = Φ (−1.44 + 3(ai + xitβ)), with β = 1,

E(ai) = α = 0.1, and Φ denoting the CDF of the standard normal distribution. The explanatory

variable xit and the unobserved heterogeneity ai are generated by the same DGPs as considered

in section 3.1. The scaling factor 3 and the constant −1.44 are introduced to generate probabili-

ties that exhibit (almost) the same sample mean and same sample variance as the corresponding

linear probabilities considered in section 3.1. Though the true slope coefficient β is still 1, in

the considered probit model the quantity of interest is not β but the corresponding average of

the marginal effect ∂ P(yit=1|ai ,xit ,yit−=0)
∂3xit

that is 1
∑N

i=1 Ti
∑N

i=1 ∑Ti
t=1 βφ (−1.44 + 3(ai + xitβ)). Its true

value is roughly 1/3 for all considered DGPs for xit. The entries in Table A1 are (i) the estimated

slope coefficients – as raw estimates of the average marginal effect – and (ii) the estimated slope

coefficient relative to the true mean marginal effect. The latter can directly be compared to the

estimated slope coefficients in Table 1. From this comparison it becomes obvious that the pattern

of biases is the same for the true DGP being linear or being of probit-type. This findig is in line

with the literature (e.g. Wooldridge, 2002, 455) that states that in term of average partial effects the

linear probability model does very good job in approximating the results from non-linear binary

response models. In consequence, the above simulation results indicate that the advantage of the

adjusted estimator over the unadjusted conventional ones carries over to settings in which the

true DGP is not consistent with the linear hazard model.
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A.4 Simulation Results for Specification with Wave Indicators

Table A2: Monte Carlo Analysis - Large Sample Estimates, Wave Indicators included

bOLS bWI bFD‡
bFDC bFDC

adjust

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.6648 0.0012 0.6396 0.0021 – – 0.5008 0.0019 0.9980 0.0037
τ̂2 −0.0008 0.0001 0.2947 0.0001 – –
τ̂3 −0.0005 0.0001 0.1430 0.0001 – – −0.0044 0.0001 −0.0020 0.0001
τ̂4 −0.0010 0.0002 0.0920 0.0001 – – −0.0092 0.0001 −0.0025 0.0002
τ̂5 −0.0007 0.0002 0.0670 0.0002 – – −0.0136 0.0002 −0.0022 0.0002
α̂ −0.0331 0.0002 −0.1032 0.0004 – – 0.2948 0.0001 0.0979 0.0007
xRW

it follows random walk

β̂ 1.4245 0.0010 1.2059 0.0016 – – 1.0000 0.0018 0.9999 0.0018
τ̂2 −0.0015 0.0001 0.2951 0.0001 – –
τ̂3 −0.0007 0.0001 0.1426 0.0001 – – −0.0057 0.0001 −0.0022 0.0001
τ̂4 −0.0004 0.0002 0.0909 0.0001 – – −0.0127 0.0001 −0.0023 0.0002
τ̂5 0.0003 0.0002 0.0649 0.0002 – – −0.0205 0.0002 −0.0022 0.0002
α̂ 0.0151 0.0002 −0.2143 0.0003 – – 0.2951 0.0001 0.0975 0.0004
xTR

it with trend and increasing variance around trend

β̂ 1.6896 0.0012 0.9041 0.0022 – – 0.6689 0.0019 1.0092 0.0028
τ̂2 −0.0094 0.0001 0.2839 0.0001 – –
τ̂3 −0.0091 0.0001 0.1443 0.0001 – – 0.0079 0.0001 −0.0022 0.0001
τ̂4 −0.0096 0.0002 0.0972 0.0001 – – 0.0153 0.0002 −0.0026 0.0002
τ̂5 −0.0094 0.0002 0.0740 0.0002 – – 0.0227 0.0002 −0.0025 0.0002
α̂ −0.0293 0.0002 −0.1496 0.0004 – – 0.2869 0.0001 0.0958 0.0006

Notes: τt denote coefficients of dummies indicating waves ≥ t. True coefficient values: β = 1, α = 0.1, τ2 =

. . . = τ5 = 0; ‡ bFD not considered since including a saturated set of waves indicators makes bFD and bFDC coincide;
N = 4 · 107, T = 5; the # of observations for xST

it is 71 748 906, the corresponding # of observations for xRW
it is 71 823 746,

and for xTR
it it is 72 218 321. For bOLS the #s of observations are higher by 4 · 107 observations, since the first wave

is not eliminated by the within-transformation or the first-differences transformation. See Table 1 for corresponding
simulation results based on specification without wave indicators.

Table A.4 displays large sample simulation results for as specification fully equivalent to the

one for which results are displayed in Table 1, except for including a saturated set of time indica-

tors. These additional dummies indicate that an observation is from waves t or a later wave. The

attached true coefficients, hence, capture how the baseline hazard changes from t− 1 to t. To iso-

late the effect including the time indicators has on the results, we use exactly the same simulated

data that is used for generating the results shown in Table 1. This means that the true DGP does

not involve time effects but exhibits a constant baseline hazard. While including these dummies

has almost no effect on β̂ one gets from bOLS, bFDC, and bFDC
adjust, the within-transformation estima-

tor bWI turns out to be quite sensitive to this change of the model specification. While the extreme

upward bias for an xit with trend disappears and is replaced by an moderate downward bias, the

upward bias for a stationary xit gets more pronounced. For xit following a random walk, instead

of suffering from a small downward bias, bWI exhibits a sizable upward bias, if time indicators are

included. Moreover, bWI yields estimated time effects on the baseline hazard that are completely

misleading. This mirrors the counterintuitive age effects bWI yields in the real data application;

see section 5. The simulation results are inline with our earlier argument about bFDC
adjust being biased
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Table A3: Monte Carlo Analysis - Large Samp. Est., true Time Effects and Wave Indicators

bOLS bWI bFD‡
bFDC bFDC

adjust

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.6670 0.0012 0.6394 0.0021 – – 0.5019 0.0018 1.0001 0.0037
τ̂2 −0.1008 0.0001 0.1947 0.0001 – –
τ̂3 0.1997 0.0001 0.2937 0.0001 – – 0.1963 0.0001 0.1983 0.0001
τ̂4 −0.0512 0.0002 0.0746 0.0001 – – 0.1405 0.0001 −0.0530 0.0002
τ̂5 −0.0007 0.0002 0.0791 0.0002 – – 0.1359 0.0002 −0.0023 0.0002
α̂ −0.0335 0.0002 −0.0918 0.0004 – – 0.1948 0.0001 −0.0025 0.0007
xRW

it follows random walk

β̂ 1.4261 0.0010 1.2029 0.0017 – – 1.0022 0.0018 1.0022 0.0018
τ̂2 −0.1015 0.0001 0.1951 0.0001 – –
τ̂3 0.1994 0.0001 0.2932 0.0001 – – 0.1950 0.0001 0.1981 0.0001
τ̂4 −0.0504 0.0002 0.0736 0.0001 – – 0.1370 0.0001 −0.0526 0.0002
τ̂5 −0.0000 0.0002 0.0765 0.0002 – – 0.1283 0.0002 −0.0026 0.0002
α̂ 0.0148 0.0002 −0.2024 0.0003 – – 0.1951 0.0001 −0.0029 0.0004
xTR

it with trend and increasing variance around trend

β̂ 1.6912 0.0012 0.8988 0.0023 – – 0.6687 0.0019 1.0046 0.0029
τ̂2 −0.1094 0.0001 0.1840 0.0001 – –
τ̂3 0.1909 0.0001 0.2949 0.0001 – – 0.2085 0.0001 0.1981 0.0001
τ̂4 −0.0596 0.0002 0.0800 0.0001 – – 0.1650 0.0001 −0.0529 0.0002
τ̂5 −0.0093 0.0002 0.0862 0.0002 – – 0.1723 0.0002 −0.0025 0.0002
α̂ −0.0296 0.0002 −0.1369 0.0004 – – 0.1868 0.0001 −0.0033 0.0006

Notes: τt denote coefficients of dummies indicating waves ≥ t. True coefficient values: β = 1, α = 0.1, τ2 = −0.1,
τ3 = 0.2, τ4 = −0.05, τ5 = 0; ‡ bFD not considered since including a saturated set of waves indicators makes bFD and
bFDC coincide; N = 4 · 107, T = 5; the # of observations for xST

it is 73 382 281, the corresponding # of observations for
xRW

it is 73 457 235, and for xTR
it it is 73 847 642. For bOLS the #s of observations are higher by 4 · 107 observations, since

the first wave is not eliminated by the within-transformation or the first-differences transformation.

with regard to the baseline hazard that is α, and τ2 . . . τ5. According to the estimates of τ2 . . . τ5 the

baseline hazard decreases over time, though the data generating process does not involve such

time dependence. This is explained by the fact that τ̂t captures the decrease of E(ai|t, X) due to

selective survival.

Table A3 shows simulation result for the same model specification used to generate the results

displayed in Table A2. Yet unlike the latter, here the true DGP involves time effects, i.e. the true

baseline hazard is not flat. More precisely the jumps in the true baseline hazard are: τ2 = −0.1,

τ3 = 0.2, τ4 = −0.05, and τ5 = 0. In qualitative terms, the results mirror what is found for a flat

baseline hazard. As befor, bFDC
adjust does not estimate the baseline hazard unbiasedly. Yet, the error

in the estimated baseline hazard turns out to be rather small. bWI still yields poor results both in

terms of the baseline hazard and in terms of the β̂.
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A.5 Simulation Results for Alternative Beta Distributions
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Figure A1: Estimated β coefficients as functions of
√

Var(ai) = q/
√

12. DGPs of ai and xit:
ai sampled from the continuous uniform U(0, q) distribution; xSTB

it = ((1−q)/2) µi + ((1−q)/2) ηit
with µi and ηit sampled from beta distributions, specifically line-by-line: B(5, 1), B(3, 5), B(1, 1),
B(0.5, 0.5), B(0.4, 0.2), and B(o, o), with o → 0. The latter (bottom row, right) is a rather special
case for which the beta distribution coincides with the Bernoulli b(0.5) distribution. To empha-
size the idea of xit being Bernoulli distributed, in this case we adjust the DGP for xit as follows:
xSTB

it = (1− q)ρit with ρit ∼ b(ψi) and ψi ∼ U(0, 1). q varied in the range between 0 and 0.96.
Dashed subsidiary lines mark 95 percent confidence intervals. Thin solid subsidiary lines indi-
cate the true coefficient value β = 1 and the β-element of Gβ̃, respectively. See section 3.3 for a
detailed description of the Monte Carlo experiment. Source: Own simulations.
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A.6 Simulation Results for Bernoulli distributed ai
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Figure A2: Estimated β coefficients as functions of
√

Var(ai) = q/2. DGPs of ai and xit: ai = qιi,
with ιi sampled from the Bernoulli b(0.5) distribution; xSTB

it = ((1−q)/2) µi + ((1−q)/2) ηit (left col-
umn) and xSTT

it = (1− q)ηit (right column), with µi and ηit sampled from beta distributions,
specifically: B(6, 2) (first row) and B(0.2, 0.2) (second row), in the bottom row we use the
Bernoulli b(ψ) distribution, instead of the beta, to generate xit, specifically: xSTB

it = (1 − q)ρit
with ρit ∼ b(ψi) and ψi ∼ U(0, 1) (left), and xSTT

it = (1− q)$it with $it ∼ b(0.5) (right). q varied
in the range between 0 and 0.98. Dashed subsidiary lines mark 95 percent confidence intervals.
Thin solid subsidiary lines indicate the true coefficient value β = 1 and the β-element of Gβ̃, re-
spectively. See section 3.3 for a detailed description of the Monte Carlo experiment. Source: Own
simulations.
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A.7 Simulated Distribution of bFDC and bFDC
adjust (small sample)
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Figure A3: Monte Carlo simulated distribution of bFDC and bFDC
adjust for different DGPs of xit based

on 10 000 replications; upper panel: same simulation design (no significant survival bias) as for
the results in Table 2 (lower panel, right-most columns) and Table 4 (left-most column), small
sample N = 4 · 102; lower panel: same simulation design (significant survival bias) as for the
results in Table 5 (left-most column), small sample N = 103. The thin vertical subsidiary lines
mark the true coefficient value 1. Source: Own simulations.
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A.8 Simulation Results for Alternative RNG Seeds

Table A4: Monte Carlo Analysis - Large Sample Estimates (alternative RNG seed)

bOLS bWI bFD bFDC bFDC
adjust

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.6712 0.0012 0.9041 0.0025 0.7113 0.0022 0.5048 0.0019 1.0060 0.0037
α̂ −0.0353 0.0002 0.1157 0.0005 0.2899 0.0001 0.0939 0.0007
xRW

it follows random walk

β̂ 1.4262 0.0009 0.9445 0.0019 0.9999 0.0022 1.0003 0.0018 1.0005 0.0018
α̂ 0.0135 0.0002 0.1077 0.0004 0.2882 0.0001 0.0950 0.0004
xTR

it with trend and increasing variance around trend

β̂ 1.5715 0.0012 6.0331 0.0019 4.4948 0.0020 0.6677 0.0019 1.0004 0.0028
α̂ −0.0180 0.0002 −0.9148 0.0004 0.2950 0.0001 0.0951 0.0006

Notes: True coefficient values: β = 1, α = 0.1; N = 4 · 107, T = 5; the # of observations for xST
it is 71 728 549, the

corresponding # of observations for xRW
it is 71 820 407, and for xTR

it it is 72 225 012. For bOLS the #s of observations are
higher by 4 · 107 observations, since the first wave is not eliminated by the within-transformation or the first-differences
transformation. See Table 1 for simulation results using a different seed for the RNG.

Table A5: Monte Carlo Analysis - Small Sample Estimates (alternative RNG seed)

bOLS bWI bFD bFDC bFDC
adjust

Mean S.D.† Mean S.D.† Mean S.D.† Mean S.D.† Mean S.D.†

xit and ai random
xST

it stationary

β̂ 1.6712 0.3813 0.9021 0.8081 0.7068 0.7169 0.5000 0.5967 0.9907 1.1873
α̂ −0.0345 0.0749 0.1167 0.1589 0.2906 0.0172 0.0977 0.2316
xRW

it follows random walk

β̂ 1.4301 0.2941 0.9472 0.6091 1.0063 0.6885 1.0063 0.5803 1.0070 0.5799
α̂ 0.0134 0.0573 0.1071 0.1197 0.2887 0.0172 0.0947 0.1125
xTR

it with trend and increasing variance around trend

β̂ 1.5757 0.3670 6.0381 0.5989 4.5047 0.6652 0.6624 0.5984 0.9855 0.8892
α̂ −0.0183 0.0736 −0.9153 0.1151 0.2954 0.0184 0.0986 0.1854

xit and ai fixed
xST

it stationary

β̂ 1.6721 0.3750 1.1176 0.7340 0.8101 0.6786 0.5115 0.5852 0.9987 1.1434
α̂ −0.0355 0.0734 0.0732 0.1439 0.2892 0.0167 0.0950 0.2230
xRW

it follows random walk

β̂ 1.4301 0.2922 0.3939 0.5121 0.5579 0.6429 1.0232 0.5863 1.0158 0.5813
α̂ 0.0138 0.0561 0.2130 0.0999 0.2851 0.0170 0.0921 0.1100
xTR

it with trend and increasing variance around trend

β̂ 1.5864 0.3757 6.0438 0.5885 4.4193 0.6429 0.6837 0.5937 1.0111 0.8761
α̂ −0.0207 0.0750 −0.9135 0.1116 0.2939 0.0180 0.0928 0.1819

Notes: True coefficient values: β = 1, α = 0.1; N = 400, T = 5; 10 000 replications. †S.D. denotes the empirical
standard deviation of the coefficient in the simulated sample. In order to interpret these values in terms of standard
errors for the respective mean-estimator, one has to multiply the value of the S.D. by 10 000−0.5 = 0.001. See Table 2
for simulation results using a different seed for the RNG.
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Table A6: Monte Carlo Analysis - Estimated Standard Errors (alternative RNG seed)

MC simulated ŝeanalytic(bFDC
adjust) H-adjusted ŝerobust(bFDC)

true ai and β âi and β̂ White cluster robust

xST
it stationary

ŝe(bFDC
adjust) 1.1434 1.1550 0.9040 1.1631 1.1601

ŝe(aFDC
adjust) 0.2230 0.2253 0.1759 0.2269 0.2264

xRW
it follows random walk

ŝe(bFDC
adjust) 0.5813 0.5767 0.4517 0.5828 0.5830

ŝe(aFDC
adjust) 0.1100 0.1092 0.0849 0.1104 0.1112

xTR
it with trend and increasing variance around trend

ŝe(bFDC
adjust) 0.8761 0.8746 0.6357 0.8800 0.8844

ŝe(aFDC
adjust) 0.1819 0.1818 0.1315 0.1829 0.1839

Notes: True coefficient values: β = 1, α = 0.1; N = 400, T = 5; xit and ai fixed; 10 000 replications. See Table 4 for
simulation results using a different seed for the RNG.
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