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Abstract

This paper analyses optimal treatment allocation of experimental units
to treatment and control group. ’Optimal’ means that the allocation of
treatments should balance covariates across treatment and control group
in a way that minimizes the variance of the treatment estimator in a given
linear model. This paper shows the benefits as well as the limits of this
approach. In particular, it presents a sample size formula as well as several
simulations to give some intuition on the minimum as well as the maximum
benefits of this approach compared to random allocation as well as to
alternative methods of treatment allocation.
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1 Introduction

Economic experiments are a major part of economic research. The typical ques-
tion analyzed within such experiments is whether a certain treatment causally
influences a particular dependent variable of interest. The main difference to ob-
servational studies is that within an experiment, the researcher can control parts
of the data generating process. In particular, given a sample of experimental
units,1 the researcher conducting the experiment can decide which of the units
to allocate to the treatment group and which to the control group.

In practice, most experimenters decide to use random treatment allocation: Ran-
domly allocate half of the sample to the treatment group and the other half to the
control group (e.g. Manning et al., 1987; Bennmarker et al., 2013; Lucifora and
Tonello, 2015; Potters and Stoop, 2016). This type of treatment allocation has a
strong justification whenever the treatment effect is estimated by the differences
in means of the dependent variable between treatment and control group. The
major theorem underlying randomized experiments states that whenever treat-
ments are allocated randomly, the difference in means estimator is an unbiased
estimator for the average treatment effect in the sample (Deaton and Cartwright,
2016). This theorem is very appealing, since it is almost assumption free. No
model regarding the effects of covariates on the dependent variable is required.

However, when sample sizes are small and the dependent variable strongly de-
pends on covariates of the experimental units, the difference in means estimator
will have a very high variance, which makes this approach impractical. Why is
this the case? Take a step back a think about what the purpose of an experiment
is. The main reason for economic experiments, or experiments in general, is to
find causal effects. This means, for a given unit, one seeks to know the effect of
applying a certain treatment all other things being equal. Consequently, consid-
ering two groups of experimental units, one of which receives a treatment, the
other one not, one wishes for these two groups to be as comparable as possible
(Saint-Mont, 2015). Whereas it is true that random treatment allocations on
average creates comparable or balanced groups, for a single experiment random
allocation can lead to a large degree of imbalance (Bruhn and McKenzie, 2009).

Whenever covariate information is available, there are two ways of reducing the
variance of the treatment estimator without increasing the sample size. First,
estimating a parametric model instead of difference in means estimation can help
control for imbalances and therefore to reduce the variance of the treatment es-
timate (Duflo et al., 2008, p.3924). Second, a systematic allocation of treatment
can rule out severe imbalances in the first place and thus reduce the variance
of the treatment estimator (Begg and Iglewicz, 1980; Smith, 1984; Duflo et al.,
2008; Senn et al., 2010; List et al., 2011; Howley and Storer, 2014; Ziliak, 2014;
Sverdlov, 2015; Deaton and Cartwright, 2016; Athey and Imbens, 2017).

For the field of development economics, Bruhn and McKenzie (2009) provide a
review on the usage of systematic treatment allocation algorithms. They find that

1For example people, groups of people, schools, hospitals or whatever unit is of interest for
the experiment.
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out of 18 reviewed papers, 15 use some kind of systematic treatment allocation
algorithm. According to the authors, the most popular algorithms in economic
research are stratification, multivariate matching and different re-randomization
methods. Lately, Kasy (2016a) brought up a new method. In a Bayesian infer-
ence framework, he proposes to select treatment allocations that minimize the
expected posterior mean squared error (MSE) of the treatment estimator, given
a prior probability distribution on potential models. Schneider and Schlather
(2017) propose a similar approach for frequentist inference. This approach, in
particular finding experimental designs that minimize (functions of) MSEs2 of
estimators inside a given model, has a long tradition in the statistical field of
optimal experimental design (see Pukelsheim (2006) for an overview).

This paper follows a similar approach to Schneider and Schlather (2017). In
contrast to them, this paper concentrates on the analyses of power and neces-
sary sample sizes under systematic treatment allocation on top of the MSE of
the treatment estimator. I propose the following experimental procedure: First,
commit to a specific model for the influence of the covariates and the treatment
on the dependent variable.3 In this paper, I will focus on a simple linear model.
Generalization are discussed in appendix D. Second, sample the experimental
units. Sampling can be either random or with respect to other considerations.
Sampling methods are not discussed in this paper. Third, measure all important
covariates of the experimental units (i.e. all covariates specified in the model).
Fourth, allocate treatments to experimental units in a way that minimizes the
variance of the treatment estimator inside the model. I will call this method of
assignment optimal model-based treatment allocation or simply optimal allocation.
Fifth, apply the treatment in the treatment group and measure the dependent
variable in treatment and control group. Sixth, analyze the data with the same
model used for allocating the treatments. This way, the allocation of treatments
requires exactly the same assumptions as the analyses of the data.

The proposed assignments with this approach are mostly deterministic up to two
possible allocations (see Kasy (2016b) for a formal proof of this result). Some
words on this: There is a strong justification of allocation algorithms that involve
randomness, whenever the method of inference from the experiment is based on
the assumption of random allocation (see Athey and Imbens (2017) for a recent
overview of randomization inference for economic experiments). Note however,
that the assumptions of a linear model are not assumptions on random allocation
of treatments but rather on random sampling from some infinitely large super-
population (Freedman, 2008; Athey and Imbens, 2017). Therefore, in a linear
model framework, there is no particular reason to allocate treatments randomly.
For are more detailed discussion of this distinction, see Aickin (2001).

2For unbiased estimators, the MSE is equal to the variance of the estimator.
3One should always commit to a model prior to conducting the experiment (Deaton, 2010).

When confronted with the experimental data, researchers have an incentive to choose exactly
those models that yield the highest, or most significant treatment estimate. The model selection
will thus depend on the realization of the error terms, which inhibits inference (see also Duflo
et al., 2008, pp. 3908ff).
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The goal of this paper is to show the benefits and the limits of optimal allocation
compared to random allocation and alternative methods of systematic allocation
in a frequentist inference framework with linear models. In particular, I am go-
ing to regard a situation in which the researcher commits to a particular model
prior to allocating the treatments and show what could be gained by allocating
subjects optimally compared to allocating them randomly or in any other way,
given that the model is true. This paper contributes to the literature in three
ways: First, it provides a rule of thumb for the sample size necessary to estimate
a treatment effect of a given size with a given power at a given alpha level. This
rule of thumb builds on a precise notion of covariate balance taken from medical
research (see Atkinson, 2002). List et al. (2011) and Athey and Imbens (2017)
present a similar sample size formula for difference in means estimation and ran-
dom treatment allocation. This paper generalizes this formula to linear models
and to different treatment allocation algorithms. Using this formula, I find that,
for the same model, optimal allocation can reduce sample sizes by approximately
m, the number of covariates in the model, compared to random allocation. Sec-
ond, this paper gives some simulation evidence on how many covariates should be
used in order to maximize the power of the experiment. This simulation shows
that when using optimal allocation, one should control for more covariates than
when using random allocation. Third, this paper compares different heuristics
for binary optimization to find (near) optimal treatment allocations. I suggest
to use a simple local search algorithm or a multiple local search algorithm with
multiple random starting points.

This paper is structured as follows. Section 2 provides a short overview over
the related literature. Section 3 introduces optimal treatment allocation for the
case of linear models. This section discusses intuitions behind optimal allocation
concerning the variance of the treatment estimator, the power of the experiment
and the necessary sample size. Section 4 shows the connection between opti-
mal allocation and the stratification and matching algorithm used in economic
research. Section 5 presents numerical algorithms for finding optimal treatment
allocations. Section 6 compares optimal allocation to other allocation algorithms
in a simulation. Section 7 concludes.

2 Related Literature

2.1 Optimal Design

This paper is closely related to the field of optimal experimental design (see
Pukelsheim (2006) for an overview). Optimal design approaches search for allo-
cations of experimental units that minimize (functions of) the MSE in the chosen
model. Traditionally, optimal design approaches target the case that covariates
of the experimental units can be chosen freely (Elfving, 1952; Kiefer, 1959; Kiefer
and Wolfowitz, 1959; Das et al., 2015) 4. Applications of this theory can be found

4For example in an experiment to develop a law of gravity, an experimental unit would be
one drop of a ball. Covariates could be the height from which the experimenter drops the ball,
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in all fields of research, including engineering (Harville, 1974), biology (Khinkis
et al., 2003), chemistry (Telen et al., 2016) and physics (Berger et al., 2017).

In economic experiments it is often the case that experimental units are attached
to fixed covariates. The only possibility to change the covariates in the sample
would be to exclude some experimental units from the sample and include oth-
ers with different covariate values (i.e., through sampling). Whenever sampling
is strictly exogenous, classical optimal design approaches can be applied to eco-
nomic research (e.g. Aigner, 1979; Aigner and Balestra, 1988). However, in most
experiments involving human subjects (not only in economic research, but also
in psychology, medicine, sociology, etc.), samples cannot be drawn exogenously.
One reason is that human subjects cannot be forced to participate in an experi-
ment. Take economic laboratory experiments for an example. Even though one
can invite specific individuals, it is not clear, whether these individuals will ac-
tually show up.

To deal with this issue, researchers have developed algorithms that find optimal
treatment allocations inside a given sample. This literature started in the field of
medical research (Atkinson, 1982; Sverdlov, 2015). The difference between eco-
nomic experiments and medical trials is that participants of the latter typically
enter the trial sequentially (Whitehead, 1997, preface). This means, at the time
the n-th participant enters the experiment, the previous n− 1 participants have
already been allocated and the covariates of the next participants are unknown.
In economic experiments it is often the case that all (or at a large part of) ex-
perimental units are known prior to allocating the treatments. This allows for
different and more powerful allocation algorithms.

In economic research the issue of treatment allocation is getting increasing atten-
tion (Bruhn and McKenzie, 2009; Hahn et al., 2011; Horton et al., 2011; Deaton
and Cartwright, 2016; Banerjee et al., 2016; Athey and Imbens, 2017). However,
most algorithms discussed in economic research are not optimal allocation al-
gorithms in the sense that they minimize the MSE or variance of the treatment
estimator in any given model. Kasy (2016a) introduced optimal design algorithms
for economic experiments. He targets optimal treatment allocation in a Bayesian
inference framework, similar to most decision-theoretic models. In particular,
he targets the case in which the researcher has a prior distribution on potential
models and through this, a prior distribution of potential treatment effect sizes.
The researcher uses the experiment to update her beliefs about the treatment
effect in a Bayesian way. Kasy’s paper shows how the researcher should opti-
mally allocate subjects to treatment and control group, in order to minimze the
posterior MSE of the treatment effect. Banerjee et al. (2016) extend this decision
theoretic framework to cases in which the researcher not only aims at minimiz-
ing the MSE of the treatment estimator given her prior, but also at convincing
an audience with presumably different priors. Finally Schneider and Schlather
(2017) take the optimal design approach to frequentist inference. They provide
a Stata ado-package that implements their approach.

the medium in which the ball is dropped, the size and weight of the ball, etc. For more examples
see Atkinson et al. (2007).
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2.2 Treatment Allocation in Economic Experiments

Since this paper targets optimal treatment allocation for economic experiments,
it is also related to the literature on allocation algorithms previously applied to
economic experiments. Bruhn and McKenzie (2009) provide an overview over the
usage of systematic treatment allocation algorithms in the field of development
economics. From a review of 18 research papers and a survey of 25 experts in
this field, they conclude that stratified randomization, multivariate matching as
well as re-randomization are the prevailing algorithms.

Stratified randomization, also called blocking, is, after purely random allocation,
probably the most popular treatment allocation algorithm in economics as well as
in other fields of research. The roots of this algorithm reach back to Fisher (1926).
The idea is to identify strata of experimental units that are approximately equal
concerning their covariates. Given these strata, the algorithm randomly assigns
units to treatment and control group, such that within each stratum an equal
number of units gets assigned to the treatment and to the control group. When-
ever strata are of odd size, the last unit is assigned randomly to one group. For
discrete covariates, strata are usually defined as all subjects that are equal in
every covariate. For two binary covariates, this would make 2 · 2 = 4 strata. If a
third variable can take on three different values, this makes 2 · 2 · 3 = 12 strata.
Continuous covariates or discrete covariates that can take on many different val-
ues, have to be discretized (see Bruhn and McKenzie, 2009; Ma and Hu, 2013).
Take for example the income in of the experimental subjects. To balance on this
variable with the stratification algorithm, one has to define categories on the in-
come, for example small income, middle income and high income. There are two
limitations to this algorithm. First, as the number of covariates increases, the
number of strata quickly increases to infinity, leading to many strata of size 1.5

Second, discretizing continuous covariates generally leads to a loss of information
(Ma and Hu, 2013).

To overcome these two limitations, multivariate matching, as introduced by Greevy
et al. (2004), proposes a more profound way of defining strata. Based on a sample
with an even number of n experimental units, this algorithm generates n/2 strata
with 2 subjects per block.6 The strata are selected as to minimize the sum of
Mahalanobis distances between the subjects of each block. Mahalanobis distance
is a popular multivariate measure of distance between covariates (Frazer Lock,
2011; Lock Morgan and Rubin, 2012). This distance measure allows to simulta-
neously balance on many discrete as well as continuous covariates.

Lastly, re-randomization refers to any algorithm that draws many random treat-

5For example in the case of 15 binary covariates, this already makes 215 = 32, 768 different
strata.

6The matching algorithm targeted in this paper should not be confused with the many
matching algorithms used in observational studies, such as for example propensity score match-
ing (Rosenbaum and Rubin, 1983). Those matching algorithms are usually used after individu-
als have self selected into treatment and control group. The treatment allocation algorithms of
this paper should be applied before the treatments are allocated, in cases in which the researcher
is able to allocate treatments freely.

5



ment allocations, and selects one of the draws according to some rule. In this
paper, I will regard what Bruhn and McKenzie (2009) refer to as the min-max
rule: For each draw, calculate the t-statistics for the difference in covariate means
between treatment and control group. This yields m t-statistics for each draw,
where m is the number of covariates. Select the draw that minimizes the maxi-
mum absolute t-statistic among all draws.

It is intuitive that these algorithms create groups that are balanced concerning
the covariates and intuitively, balance on cavariates will foster inference from the
experiment. However, the connection between these algorithms and the quality
of inference inside a particular model is not precisely clear. Even the word ”bal-
ance”, which is frequently used, has no precise meaning (see also Kasy, 2016a).
This paper will target the connection between the treatment allocation and the
distribution of the treatment estimator in a linear model. Following Atkinson
(2002), I will define covariate balance in terms of the variance on the treatment
estimator.

3 Treatment Allocation for Linear Models

This section repeats some well known results from linear regression theory in
order to explain the impact of the treatment allocation on the distribution of the
treatment estimator in a linear model. The section starts with a definition of the
kinds of experiments that this paper targets, then analyzes the role of treatment
allocation for the distribution of the treatment estimator, and finishes with the
consequences for statistical power and sample sizes.

3.1 Setting

I regard a sample of n individuals drawn from a population of possible subjects7.
For the data generating process, I assume a linear model:

Y = Xβx + Tβt + ε with E[ε] = 0; V[ε] = Iσ2 (1)

where Y ∈ Rn is the dependent variable, X = (1, X1, ..., Xm+1) ∈ Rn×m+1 is
the covariate matrix, and T ∈ {0, 1}n is the treatment allocation. The covariates
are measured prior to allocating the treatments. Each participant can only be
allocated either to the treatment group (Ti = 1) or to the control group (Ti = 0,
between subjects design). After determining the treatment allocation, the de-
pendent variable Y = (Y1, ..., Yn) ∈ Rn is observed. If individual i received the
treatment, Yi is given by xiβx + βt + εi, if not Yi = xiβx + ε, where xi denotes
the i-th row of X. The coefficients βx ∈ Rm+1 and βt ∈ R are unknown to the
researcher and have to be estimated on the basis of Y , X, and T .

Throughout this whole paper, I assume X to have full rank (no perfect collinear-
ity). Further, I denote T ⊂ {0, 1}n as the set of all treatment allocations T for

7This paper regards the sample as given. The role of sampling on experimental inference
will not be targeted in this paper.
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which the matrix (X,T ) has full rank.

I only regard one treatment and one control group and assume no interaction
effects between the treatment and the covariates. I discuss some generalizations
in appendix D.

3.2 Variance of the Treatment Estimator in a Linear Model

I start with the model to be estimated:

Y = Xβx + Tβt + ε with E[ε] = 0; V[ε] = Iσ2 (2)

Let b(T ) =

(
bx(T )
bt(T )

)
:= ((X,T )′(X,T ))−1(X,T )′Y denote the OLS estimates of

the coefficients. It is well known that the estimator bt(T ) is unbiased, meaning
E[bt(T )] = βt (e.g., Marquardt, 1970). The variance of bt(T ) is given through the
following two equivalent representations (e.g. Fox and Monette, 1992; Zuur et al.,
2010):

Proposition 3.1. Let T ∈ T . Then V[bt(T )] has the following two representa-
tions:8

(i) V[bt(T )] = σ2(T ′MXT )−1

(ii) V[bt(T )] = σ2

n·p̂T (1−p̂T )
· 1
(1−R2

T,X)

For T ∈ {0, 1}n \ T , I define V[bt(T )] =∞.

Here I used the following notations: MX := I − X(X ′X)−1X ′ is the projection
matrix into the orthogonal space of the space spanned by the columns of X.

p̂T :=
∑n
i=1 Ti
n

is the proportion of experimental units allocated to the treatment
group. R2

T,X is the R2 statistics of the OLS regression T = Y γ + ε̃. 1
R2
T,X

is

commonly known as the variance inflation factor (Marquardt, 1970; Kutner et al.,
2004, p.408).

The first of the two representations is useful for computation, whereas the second
is suited for an intuitive explanation concerning the impact of the treatment
allocation on the variance of the treatment estimator. The latter representation
distinguishes between the different factors that drive the variance of the treatment
estimator.

The influence of the sample size n is common knowledge. The higher the sample
size, the lower the variance of the treatment estimator. Also the influence of the
relative group size p̂T is frequently targeted (e.g. List et al., 2011). The more
equal the group sizes (i.e. the closer p̂ is to 0.5), the lower the variance of the
treatment estimator.9

8Note that this proposition does not require the regression errors to be normally distributed.
If the errors would be normally distributed, one could however further conclude that also bt(T )
is normally distributed.

9Note that equal group sizes are only desirable as long as the variance of the error term is
equal in treatment and control group two groups (which I assumed). For a discussion about
group sizes in cases of heteroskedasticity see List et al. (2011).
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The influence of the variance inflation factor is noted much less frequently in the
context of experiments: The lower the linear dependence between the treatment
variable and the covariates, the lower the variance of the treatment estimator.
Unlike other authors claim (e.g. McClelland, 1997; List et al., 2011; Carneiro et al.,
2016), the variance inflation factor is not equal to one when the random variables
that induce T and X are independent (for example in case of random treatment
allocation). R2

T,X is an empirical figure and it catches (possibly random) empirical
correlations between T and X. In fact, the variance inflation factor will be the
major driver for the benefits of systematic treatment allocation over random
allocation.

Definition 3.2. (Optimal treatment allocation)
A treatment allocation T ∈ {0, 1}is optimal if and only if it minimizes the variance
of the treatment estimator V[bt(T )] over all admissible treatment allocations.

This definition leads to the a very similar result than in the Bayesian frame-
work of Kasy (2016b). Whenever at least one covariate is continuous, the set of
optimal allocations almost surely contains exactly two elements T1 and T2, with
T1 = 1− T2 (Kasy, 2016b, Theorem 1).

3.3 Statistical Power

Up to now, I pointed out that the treatment allocation can affect covariate bal-
ance, as measured by the loss (definition 3.4), as well as the variance of the
treatment estimator (proposition 3.1). Now I will target the influence of the the
treatment allocation on the probabilities of type 1 and type 2 errors while testing
the null hypothesis of no treatment effect (βt = 0). For hypothesis testing, I use a
t-test on the regression estimate for the treatment effect. This is one of the most
common tests within linear models. For this test to be applicable, I will assume
the error ε in equation 1 to be normal distributed. If one assumes the errors to
be normally distributed, bt(T ) will also be normal distributed for every fixed T
(Rawlings et al., 2001, p.88), and the t-statistic will actually be t-distributed for
every fixed T ∈ T (Rawlings et al., 2001, p. 121):

bt(T )− βt√
V̂[bt(T )]

∼ tn−m−2 (3)

V̂[bt(T )] is the empirical variance of bt(T ), given by σ̂2(T ′MXT )−1, where σ̂2 is
the estimate of σ2, derived through the residual sum of squares. In order to test
the hypothesis βt = 0, one has to compare the statistic:

| bt(T )√
V̂[bt(T )]

|, (4)

to the 1− α
2

quantile of the tn−m−2-distribution. Under the nulle hypothesis, the
probability that the test statistic exceeds the 1− α

2
quantile, is obviously exactly
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α. Given that βt 6= 0, bt(T )√
V̂[bt(T )]

follows a noncentral t-distribution with non-

centrality parameter βt√
V[bt(T )]

, where βt is the true treatment effect and V[bt(T )]

is the true variance of the treatment estimator. The implications on the power,
i.e. the probability that (4) exceeds the quantile tn−m−2,1−α

2
, are summarized in

the following proposition (see Ghosh (1973) for a proof of the monotonicity):

Proposition 3.3. Let ε be normal distributed. Further, let α be given. Then the
power of the experiment is given by:

P(| bt(T )√
V̂[bt(T )]

| > td,1−α
2
) = Pα(n−m− 2, | βt√

V[bt(T )]
|), (5)

where P : N × R+ → [0, 1] is monotonously increasing in the both parameters,
whenever.

Therefore, under the assumption of normal distributed errors, a treatment allo-
cation that leads to a lower variance of the treatment estimator directly leads to
a higher power, given βt > 0.

What this section should show, is that the results for the variance and the power
hold for any fixed T ∈ T . No assumption on random allocation of treatments is
required.

3.4 Covariate Balance and Sample Sizes

The term covariate balance is frequently used but rarely precisely defined. What
most researchers will agree upon is the case of perfect balance. I will define a
perfectly balanced experiment as one in which treatment and control group have
the same size and the covariate means in treatment and control group are exactly
equal. A simple calculation shows that any treatment allocation that would
lead to perfect balance, will minimize the variance of the treatment estimator.10

Of course, depending on the covariate matrix, there does not have to exist a
treatment allocation that yields perfect balance. Therefore, the variance under
perfect balance, which is given by V∗ := 4σ2

n
, does not necessarily minimize the

variance of the treatment estimator V[bt(T )] over all T ∈ {0, 1}n, but serves as a
lower bound. These considerations justify to define covariate balance in terms of
the variance of the treatment estimator. As a measure of balance, I will use the
loss due to the lack of balance, as defined by Atkinson (2002):

Definition 3.4. Let V∗ := 4σ2

n
be the variance of the treatment estimator under

perfect balance. Then for a treatment allocation T ∈ {0, 1}n the loss due to the
lack of balance is defined by:

Ln(T ) := n(1− V∗

V[bt(T )]
) = n− 4 · T ′MXT (6)

10Recall proposition 3.1(ii). Note that R2
T,X ≥ 0 and R2

T,X = 0 if and only if the covariate
means in treatment and control group are equal. In addition, p̂T = 0.5 maximizes p̂T (1− p̂T ).
Proposition 3.1 (ii) thus shows that V[bt(T )] is minimized wheneve T yields perfect balance.
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The loss is a multivariate measure of balance. It measures imbalances because
of unequal group sizes as well as imbalance because of unequal covariate means
across treatment and control group. A loss of zero relates to the case of perfect
balance, whereas a higher loss indicates higher imbalances. The loss corrects
for the fact that random treatment allocation leads to asymptotically balanced
groups. As we will see, the average loss for random treatment allocation is more
or less constant for different sample sizes. The notion of loss gives rise to two
very appealing formulas:

Proposition 3.5. (Variance)
Consider a treatment allocation T , with Ln(T ) = L. Then:

V[bt(T )] =
4σ2

n− L
(7)

Proof. follows directly from the definition of the loss

Proposition 3.6. (Sample Size)
Consider a treatment allocation algorithm, which results in T being drawn from a
distribution η. Further assume Eη[Ln(T )] = L(n). Then the sample size necessary
to detect a treatment effect of a size of βt at an alpha level α with a power P solves
the following equation:

n = Sα,P,m(n) + L(n) (8)

with Sα,P,m(n) ≈ (2σ(tα+tP )
βt

)2, and tα := tn−m−2,1−α
2
, tP := tn−m−2,P .

Proof. See appendix B.1

Proposition 3.6 provides a sample size formula that takes into account the
treatment allocation algorithm. The function for the loss has to be determined via
simulations. As a rule of thumb, one can take Sα,P,m(n) to be constant by replac-
ing the quantiles of the t-distribution by the corresponding quantiles of the normal
distribution11, and keep the expected loss constant by taking L(n) = L(n∗). n∗

should be somewhere in the region where one would suspect the necessary sample
size to be. The simulation of section 6.1 helps to determine the loss of a particular
algorithm.

As another rule of thumb, the loss of random allocation is equal to m (see also
Atkinson, 2002), the number of covariates, and the loss for optimal allocation is
approximately 0. Therefore, when inference is made with the same model, opti-
mal treatment allocation can reduce the necessary sample size by approximately
m. As section 6.2 will show, one can and should control for more covariates when
using optimal allocation, then when using random allocation, leading to a further
reduction in necessary sample size.

11A general rule of thumb is that t-quantiles a fairly close to normal quantiles, whenever the
degrees of freedom are larger than 30, i.e. the sample size is larger than 32 plus the number of
covariates (Meier et al., 2015, p. 191).

10



4 Optimal treatment allocation as a generaliza-

tion of stratified and matched randomization

In this section, I will speak of optimal treatment allocation as an algorithms that
randomizes among all minimizers for the variance of the treatment estimator. I
will show that optimal treatment allocation is a generalization of the common
stratification and matching algorithm.

When using the latter two algorithms, Bruhn and McKenzie (2009) propose to
”control for the method of randomization in the analyses”(Bruhn and McKenzie,
2009). This means, if the allocation of treatments was based on k strata, they
propose to analyze the data with the following linear model:

Y = β0 + β1block1 + ...+ βk−1blockk−1 + βTT + ε, (9)

where block1, ..., blockk are dummy variables for the different strata.12 Now, let
us turn this around. As mentioned in the introduction, researchers should choose
their model for the analyses of the data prior to collecting the data. Suppose the
researcher commits to the model of equation 9 prior to conducting the experi-
ment. Further, assume that every block contains and even number of experimen-
tal units. Then optimal treatment allocation leads to the same allocation rule as
stratification:

Corollary 4.1. Assume the model of equation 9 to be true and every block to
contain an even number of experimental units. Then a treatment allocation T
is optimal the sense of definition 3.2, if and only if treatment and control group
contain an equal number of subjects from each block, i.e. whenever:

1

nj

n∑
i=1

block
(i)
j Ti =

1

2
, for all j = 1, ..., k

. where nj is the number of units in block j.

Proof. See appendix B.2.

Hence, whenever stratifying or matching leads to perfect balance, any opti-
mal allocation will lead to the same result. So what if at least some strata are
of unequal size? For the stratification algorithm, Bruhn and McKenzie (2009)
write: ”Whenever there is an odd number of units within a stratum, there will
be imbalance”. This is because, given an odd number of units stratification will
allocate the last unit simply randomly. Optimal allocation on the contrary, will
allocate the last unit in a way such that the variance of the treatment estimator
and thus the imbalance is minimized.

12As such, they have to fulfill
∑k

i=1 blocki =

1
...
1

, with blocki ∈ {0, 1}n. I removed the

k − th block from the model to avoid multicollinearity.
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On top of that, what if one assumes a model that is not compatible with strat-
ification or matching? For example, a simple linear model with one continuous
covariate. Then, there will never be two units that are exactly equal with re-
spect to their covariate. Hence it is not possible to build strata of units that
are exactly equal. In addition, if one assumes, several covariates to be relevant:
For example gender and race. Then stratification will automatically build strata
for all interactions of the factor levels. There will be a stratum for white males,
white females, black males, and so on. What if one assumes, that the interactions
(or some of them) are not important?13 Then the stratification algorithm will
build many useless strata, which increases the risk of having many strata with
an odd number of units (if the number of strata goes to infinity, strata sizes will
mostly be zero or one). In all of these cases, optimal treatment allocation will
arrange the allocation of treatments in a way that minimizes the variance of the
treatment estimator in the chosen model.

This is best explained in a simple example. Consider the case of four subjects
and one covariate on which we assume a linear effect. The subjects have covariate
values of 1,2,3 and 4, respectively. In this case, reasonable strata are 1,2; 3,4.14

Inference from a linear model will be optimized, when the difference in covariate
means between treatment and control group is zero (see section 3). Therefore
an allocation of {1, 4} to one group and {2, 3} to the other group would be op-
timal. When the subjects of each stratum are randomly allocated to treatment
and control group, the optimal allocation will only occur in 50% of all cases.15

5 Numerical Optimization

In this section, I will present two algorithms to find optimal treatment allocations
in practical applications. Recall the relevant optimization problem (definition
3.2):

max
T∈{0,1}n

T ′MXT (10)

This is a binary quadratic optimization problem, which is numerically very hard to
solve. Brute force solution would require to calculate T ′MXT for 2n times. Even
more sophisticated methods for calculating exact solutions to this problem can
usually only be applied to small problems of 100 variables or less (see Kochen-
berger et al. (2014) for a literature review on solvers for this problem). Much
interest in the field of binary quadratic optimization is therefore on heuristics
that provide near best solution very quickly. I suggest two very simple heuristics

13i.e. when one assumes that the effect of being a white female is just the effect of being
white plus the effect of being female, without an additional effect of being a white female.

14Mahalanobis Matching on this one covariate will yield exactly these strata. To see this,
note that for one covariate, matching with respect to Mahalanobis distance is equal to matching
with respect to euclidean distance.

15A quick calculation shows that the loss for the allocation {1, 4}; {2, 3} is equal to 0, for
{1, 3}; {2, 4} 0.8 and for {1, 2}; {3, 4} 3.2. Therefore, optimal allocation would have an expected
loss of 0, matching and stratification of 0.4 (since they only rule out the last allocation) and
random allocation 4/3 (since it rules out non of the allocations).

12



for this problem. For a comparison of those two algorithms to alternative opti-
mization algorithms, see appendix C.

The first is a local search algorithm. This algorithm is very simple, and provides
reasonably good solutions in a short amount of time. The local search algorithm
starts with some (for example random) treatment allocation T , and searches for
improvements in the neighborhood of T . The neighborhood of a treatment allo-
cation T is defined by all treatment allocations T̃ that differ from T in exactly
one coordinate (i.e. all T̃ ∈ {0, 1}n with ||T̃ − T || = 1, where || · || denotes the
euclidean distance). The algorithm moves in every step to the neighboring alloca-
tion with the highest improvement (i.e. the highest value of T̃ ′MX T̃ − T ′MXT ).
It terminates when there exist no more neighboring allocations that yield any
improvement over the current allocation.16 This algorithm will terminate very
quickly. However, it will terminate in every local optimum, i.e. whenever chang-
ing the treatment assignment of one experimental unit does not lead to any
improvement. This does not rule out that there are still improvement possible
once one changes the assignment for more than one experimental unit simultane-
ously.

If the solution of the local search algorithm is not good enough, I suggest to
combine this algorithm with re-randomization, which I call multiple local search
algorithm: Draw k treatment allocations randomly. Apply the local search algo-
rithm to each of them. Take the treatment allocation with the lowest variance of
the treatment estimator.

For both of those algorithms, I determine randomly which of the two groups
receives the treatment. In particular, if T ∗ is the solution of one of the above
algorithms, I choose T = T ∗ or T = (1− T ∗) with equal probabilities. Note that
(1− T ) leads to the exact same loss as T .

6 Simulations

In this section I provide some simulations, comparing optimal treatment alloca-
tion to random treatment allocation as well as to stratification, matching and
re-randomization. The first part of this section compares the different algorithms
for a constant model. This means, the model for estimating the data and in
particular the number of covariates stays the same for all algorithms. The second
part of this section compares the different algorithms for a varying number of co-
variates. In particular, I evaluate how the optimal number of covariates changes
depending on the treatment allocation algorithm.

The simulations use the statistical software R (R Development Core Team, 2008).
For implementing the matching algorithm, I use the package nbpMatching that
implements the optimal matching approach of Greevy et al. (2004) (see Lu et al.,
2011).

16This algorithm is also known as 1-Opt algorithm (Merz and Freisleben, 2002) or Greedy
algorithm (Kasy, 2016a).
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6.1 Fixed Number of Covariates

In this subsection I compare how the different algorithms perform on a given
model. I focus on comparing the losses due to the lack of balance of the different
algorithms. As propositions 3.5 and 3.6 show, the loss directly translates to the
variance of the treatment estimator and the power or rather necessary sample size
of the experiment. I simulate the average loss for the case of binary covariates.17

The results are very robust to different covariate distributions, with the exception
that stratification performs significantly worse for continuous covariates because
of the discretization of the continuous variables (see appendix A). I simulate the
data according to the following model:

Y = Xβx + Tβt + ε with ε ∼ N (0, I); βx =

1
...
1

 , (11)

and also base the treatment allocation and the estimation of the treatment effects
on this model. I provide simulations for 1, 10 and 25 covariates and for 16 to
256 experimental participants. Each simulation uses 1, 000 Monte-Carlo steps.
In every step, I draw a new covariate matrix and allocate treatments according
to each of the algorithms based on this matrix. Given this covariate matrix,
and the treatment allocation, I calculate the loss according to definition 3.4.18

The re-randomization algorithm uses 100 redraws and the multiple local search
algorithm uses 10 redraws:

Figure 1: Loss for binary covariates
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For one covariate, all allocation algorithms, except for random allocation, yield
the same loss. This is no surprise since for one binary covariate, treatment allo-
cation is very simple: The experimental units with a covariate of one as well as
the units with a covariate of zero have to be allocated equally across treatment
and control group.

For more than one binary covariate, we see that especially stratification performs
worse. In case of 10 covariates, there are already 210 = 1024 strata. Consequently,
there are many strata with only one subject. Subjects of strata with size one will
be allocated randomly. Therefore stratification will only yield low losses, if most

17In this paper, I use binary covariates that are equal to one with a probability of 0.5 and
zero otherwise.

18Note that this procedure does not require explicit simulation of errors.
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strata have sizes larger than one. For 10 covariates and 256 participants, we
see that stratification works slightly better than random allocation, however for
25 covariates (and consequently 33,554,432 strata) there is no difference between
random allocation and stratification anymore.

In the case of 10 and 25 covariates it also becomes apparent that the matching
algorithm performs comparably poor, especially for small sample sizes. The rea-
son for this is that matching still includes some degree of randomness. After the
matches are made, one randomly selected subject of each match is allocated to the
treatment group, the other to the control group. This randomness decreases the
performance of the algorithm whenever the matches are not perfect. For larger
sample sizes, the matches will get better and thus this problem is less severe.

The re-randomization algorithm performs worse than the local search algorithms
for two reasons. First, the goal function, i.e. the maximum t-statistic does not di-
rectly relate to the variance of the treatment estimator. Second, re-randomization
is not perfectly suited as a means of optimization (see appendix C.2).

Using proposition 3.6, these results on the loss directly translate to necessary
sample sizes. For example, take a model with 25 covariates and assume, that
the treatment effect is sufficiently strong, such that with random allocation one
would need exactly 125 subjects to achieve a power of 0.8. Then with matching or
re-randomization, one would only need around 115 subjects and with optimal allo-
cation only around 100 to obtain the same power. In this case, optimal allocation
can reduce necessary sample sizes by around 20% compared to random allocation,
and around 13% compared to multivariate matching and re-randomization.

While these plots show, how useful systematic and especially optimal tratment
allocation is for small scale experiments, they also show that there is little need
for systematic allocation whenever the number of covariates is very low compared
to the sample size of the experiment. Bruhn and McKenzie (2009) report that out
of 18 reviewed experiments in the field of development economics 12 experiments
use samples of 200 or less participants. The number of covariates to check balance
on ranges from 4 to 39 among these 12 experiments. For these experiments, a
systematic allocation of treatments might have been extremely useful. The au-
thors report two other experiments with sample sizes exceeding 1,000 and 12-14
covariates to check balance on. For these experiments, a systematic allocation of
treatments might not be necessary. Note however, that additional covariates to
control for nonlinearities, also count as covariates. For example, if one has one
continuous covariate, but assumes quadratic effects, this makes effectively two
covariates.

6.2 Endogenous number of covariates

Up to now, I always assumed the model for estimation to equal the data generat-
ing process. This means, I assumed that every observable covariate that influences
the dependent variable was controlled for in the regression. In practical applica-
tions this will most likely not be the case. In reality, there are often thousands of
variables that might influence the dependent variable. Of those variables, only a
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few are observed in the context of the experiment and even less are used in the
analyses of the experimental data.

Including a variable into the regression only makes sense when the upside from
including this variable exceeds the downside from including this variable. Con-
cerning the power of the experiment, most researchers see including an additional
variable as a trade-off between the degrees of freedom of the t-distribution and a
lower variance of the error term (e.g. Senedecor and Cochran, 1989; Box et al.,
2005; Bruhn and McKenzie, 2009; Kahan et al., 2014). However, there is another
effect of an additional covariate. As (Duflo et al., 2008, p.3925) note, in a ran-
domized experiment, a new covariate increases the loss due to the lack of balance
(see also figure 1).19 To understand this, suppose one includes a covariate Xi

that has a coefficient βi of zero. Then the estimate bi for this covariate will not
automatically be zero, but catches possible random correlations with the depen-
dent variable. Whenever the treatment variable is not perfectly orthogonal to
the covariates (perfect balance), this will lead to a more noisy estimation of the
treatment effect.

Since the loss due to the lack of balance differs across treatment allocation algo-
rithms, one might want to control for a different number of covariates, if one uses
a different allocation algorithm. In this section we analyze how the optimal num-
ber of covariates changes with the allocation algorithm and what influences this
has on the overall benefits of these algorithms. This analyses is fairly similar to an
analysis by Therneau (1993), who compares the optimal number of covariates for
stratification and minimization.20 For simplicity of the graphic, I only compare
random and optimal treatment allocation. Results for stratification, matching
and re-randomization would lie somewhere in between these two extremes.

I simulate the data according to the following model:

Y = Tβt + Xβx︸︷︷︸
observable sources of variation

+ ε︸︷︷︸
unbovservable source of variation

, with ε ∼ N (0, 1)

(12)

Further, I simulate all covariates X1, ..., Xm normal distributed with mean zero
and variance one. The coefficients of the covariates linearly decrease in size:

βi =
m− i
4m

, i = 1, ...,m (13)

In the analyses of the data, I only control for the j strongest covariates. Therefore
the model for estimation is given by:

Y = β0 +

j∑
i=1

βiXi + βtT + ε̃,with ε̃ ∼ N (0, σ2), (14)

19These three effects of covariates on the power of the experiment are also apparent in the
sample size formula of proposition 3.6

20Minimization is a popular algorithms for sequential treatment allocation in medical trials,
developed by Taves (1974) and Pocock and Simon (1975). This algorithm should not be confused
with the optimal treatment allocation proposed in this paper.
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where ε̃ decomposes to
∑m

i=j+1 βi + ε

The left graphic in figure 2 shows the variance of the treatment estimator depend-
ing on the number of control variables. This figure contains the true variance of
the treatment estimator, not the sample estimate thereof. Recall proposition 3.5
to see that there are only two influences of an additional covariate on the true
variance of the treatment estimator: First, an additional covariate reduces the
variance of the error σ2, leading to a lower variance of the treatment estimator.
Second, an additional covariate can increase the loss due to the lack of balance,
leading to a higher variance of the treatment estimator. The green and the blue
line are hypothetical cases. This means, there do not have to exist treatment
allocations that lead to this particular loss or power. The green line in represents
the case of a loss of 0 (i.e., the hypothetical case that all covariates are always
perfectly balanced). In the hypothetical case of perfect balance, an additional
covariate can only reduce the variance of the treatment estimator. The blue line
is a lower bound on the variance of the treatment estimator obtained for a hypo-
thetical allocation with a loss of zero in a model that controls for all 60 covariates.
The variance for the local search algorithm (red line), gets very close to the lower
bound. However as the number of covariates approach the sample size, there
is a mild increase, since the covariate matrices do not allow for perfectly bal-
anced allocations anymore. The variance of the treatment estimator for random
allocation (black line) hardly decreases with the number of covariates. At the
beginning, the reduction in the error term is slightly higher than the increase in
loss. However, as the effect sizes of additional covariates get weaker, the increase
in loss dominates. This figure already shows, that optimal treatment allocation is
able to retrieve much more information out of the same covariates, than random
allocation.
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Figure 2: Variance of the treatment estimator and power depending on number
of control variables
The right graphic in figure 2 presents the power, i.e. the probability of estimating
a significant treatment effect. For random treatment allocation, the power would
be maximized if 15 covariates are taken into account. Consequently, a researcher
who uses random treatment allocation and aims at maximizing statistical power,
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should control for 15 covariates. In case of 15 covariates, the power of the random
allocation is 78.2% and the power of the local search algorithm is 0.88%. How-
ever, when the researcher uses the local search algorithm, it would be optimal to
control for 37 covariates. In this case, the power is 94.4%. This shows, that the
comparison of these two algorithms for a fixed number of covariates provides only
a lower bound for the difference in statistical power in practical applications.

The blue line in Figure 2 presents the power for the hypothetical case, that the
variance of the treatment estimator does not change with the number of control
variables. This help to distinguish the importance of the two downsides of adding
control variables on the power. The first downside of an additional control vari-
able is an increase in the loss due to the lack of balance, the second is a decrease
in the degrees of freedom of the t-distribution. Since we keep the variance of the
treatment estimator constant, the only factor that leads the blue line to decrease
in the right graphic, is the degrees of freedom. Up to 45 or 50 controls, the blue
line decreases only slightly. For more than 50 controls, the line quickly goes to
0. This shows that as long as the number of covariates is not too close the the
sample size, the degrees of freedom play only a minor role for the power of the
experiment. Intuitively, one would expect a low power out of a regression with
40 covariates and 64 subjects. Figure 1 shows that this is only true for random
allocation and the main factor that drives the low power is the loss due to the
lack of balance.

In sum, this simulation shows that optimal treatment allocation retrieves much
more information from the covariates than random treatment allocation. Even
once one controls for covariates that have only weak effects on the dependent vari-
able, the power under optimal allocation might still increase. Generally, when
using optimal allocation, one should control for more covariates than when using
random allocation.

7 Conclusion

This paper analyses optimal model dependent treatment allocation algorithms for
linear models in the case of simultaneous allocation of treatments. Compared to
the treatment allocation algorithms currently applied to economic experiments,
optimal allocation results in a lower variance of the treatment estimator whenever
inference is made via a linear model.

I do not claim that the algorithms of this paper should be used as a standard
in every experiment. I agree with Deaton (2010) that there is no experimental
design that is superior all others design in every scenario. I rather see these
algorithms as part of a toolbox that should be kept in mind when conducting
experiments. Especially when there are restrictions on the sample size, these al-
gorithms can help to improve the estimation of the treatment effect and increase
statistical power.

I recommend researchers to fix the model used for the analyses of the experi-
mental data before the experiment is conducted for two reasons. First, whenever
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the model is specified after the experiment was conducted, researchers might
(consciously or unconsciously) determine the model in a way that their preferred
outcome is supported. Second, when the model is specified before the experiment
is conducted, treatment allocation can account for the same assumptions made
in the analyses of the data.

If this model happens to be a linear model, one of the algorithms of this paper
could be applied. However, the researcher has to decide whether the algorithm
provides sufficient benefit over random treatment allocation. When comparing
random and optimal model based treatment allocation, one should take into ac-
count, that optimal model based allocation allows to control for much more co-
variates which might increase the power of the experiment.
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A Figure 1 for Alternative Covariate Distribu-

tions

In section 6.1, I simulated the losses due to the lack of balance for different
treatment allocation algorithms for binary covariates. In this section, I provide
the same simulation for alternative distributions of the covariates. In particular,
I regard the following distributions:

• normal: A normal distribution with mean 0 and variance 1. This should be
an example of a continuous distribution.

• gamma: Gamma distribution with shape parameter 2 and scale parameter
1. This should be an example of a skewed distribution.

• different: Covariates that follow this distribution are a sum a a uniformly
distributed variable on [-10,10] and a second variable that is normal dis-
tributed with probability 2/3 and gamma distributed with probability 1/3.
This should be an example of a slightly more complex distribution that
composes of a continuous and a discrete part.

The simulations for all three covariate distributions show fairly similar results.
One difference to the binary case is that stratification performs even worse. The
reason is that stratification requires a discretization of continuous covariates. In
the simulation, I split the continuous variable at the median. This means, for
each covariate, I create a dummy variable that is equal to one, if the value of the
continuous variable is above the median, and zero, if the continuous variable is
below the median. Of course, this discretization leads to a loss of information.
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Figure 3: Loss for normal distributed covariates
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Figure 4: Loss for gamma distributed covariates
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Figure 5: Loss for different distributed covariates

B Proofs for the Paper

B.1 Proof of Proposition 3.6

Proof. Let d(n) = n − m − 2 and δ(n) = βt√
V[bt(T )]

. Further let P (d, |δ|) =

P(| bt(T )√
V̂[bt(T )]

| > td,1−α
2
) be the power function of proposition 3.3. For any fixed

d ∈ N the range P (d,R+) is equal to [α, 1). Thus, since P is monotonously
increasing both in d and |δ|, for any d ∈ N and P ∈ [α, 1) there exists a function
gP (d), such that:

P (d, |δ|) = P ⇔ |δ| = gP (d) (15)

Writing gP (n) := gP (d(n)) and plugging the definition of δ into equation 15 yields:

| βt√
V[bt(T )]

| = gP (n) (16)

By proposition 3.5:

⇔ β2
t (n− L(n))

4σ2
= gP (n)2 (17)

⇔ n =
4σ2gP (n)2

β2
t︸ ︷︷ ︸

Sα,P,m(n)

−L(n) (18)

It remains to show the approximation gP (n) ≈ tn−m−2,P + tn−m−2,1−α
2
. Let tα :=

tn−m−2,1−α
2
, tP := tn−m−2,P . I start by approximating the power function:

P (d, |δ|) = P(|bt(T )− βt√
V̂[bt(t)]

+
βt√

V̂[bt(T )]
| > tα) = P(|X +

βt√
V̂[bt(T )]

| > tα) (19)

where X follows a central t-distribution with n − m − 2 degrees of freedom. I
follow List et al. (2011), using two simplifications. The first approximation is to
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replace V̂ by its mean V and thus βt√
V̂[bt(T )]

by δ:

P (d, |δ|) ≈ P(|X + δ| > tα) (20)

= P(X < −tα + δ) + P(X < −tα − δ) (21)

The second approximation is to neglect the smaller of the two probabilities. The
error of this approximation has to be smaller than α

2
and will probably be much

smaller if P is large (which one would typically assume). This yields the approx-
imation:

P (d, |δ|) ≈ P(X < −tα + |δ|) (22)

Next, I invert this function to get an approximation g̃P (n):

P(X < −tα + |δ|) = P ⇔ −tα + |δ| = tP ⇔ |δ| = tα + tP (23)

Consequently: g̃P (n) = tα + tP

B.2 Proof of corollary 4.1

Proof. Let X := (1, block1, ..., blockk−1), with 1 =

1
...
1

.

⇐: By proposition 3.1(i): V[bt(T )] = σ2(T ′MXT )−1, withMX = Id−X(X ′X)−1X ′.
Equal allocation of units from each stratum to treatment and control group im-

plies: X ′T = 1
2


n
n1
...

nk−1

 = 1
2
X ′1 = 1

2
X ′Xe1, where e1 =


1
0
...
0

 is the first unit

vector in Rn. Thus

T ′MXT = T ′ − 1

4
e′1X

′X(X ′X)−1X ′Xe1 (24)

=
n

2
− 1

4
e′1X

′Xe1 (25)

=
n

2
− 1

4
1′1 (26)

=
n

2
− n

4
=
n

4
(27)

This shows that V[bt(T )] = 4σ2

n
, which is a lower bound on the variance of the

treatment estimator and thus a minimum.

⇒ Let T ∗ ∈ {0, 1}n be a treatment allocation with V[bt(T
∗)] = 4σ2

n
. By proposi-

tion 3.1(ii): V[bt(T )] = σ2

n·p̂T (1−p̂T )
· 1
(1−R2

T,X)
. Note that p̂T · (1 − p̂T ) ≤ 1

2
· 1
2

= 1
4

and R2
T,X ≥ 0 for all T ∈ {0, 1}. Therefore, V[bt(T

∗)] = 4σ2

n
implies p̂T = 1

2
and
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R2
T,X = 0. Let || · || be the euclidean norm, then:

R2
T,X = 0 (28)

⇔ ||X(X ′X)−1X ′T − p̂T · 1||2

||T − p̂T · 1||2
= 0 (29)

⇒ ||X(X ′X)−1X ′T − p̂T · 1||2 = 0 (30)

⇒ X(X ′X)−1X ′T =
1

2
· 1 (31)

⇒ X ′T =
1

2
·X ′1 (32)

⇒ 1

nj

n∑
i=1

block
(i)
j Ti =

1

2
, for all j = 1, ..., k (33)

C Comparison of Optimization Algorithms for

Finding Optimal Allocations

Section 5 suggests to use a simple local search algorithm or the multiple local
search algorithm with random starting points for finding optimal treatment al-
locations. This section should justify this suggestion. In the first part of this
section (part C.1), I compare the local search to some more profound algorithms.
In the second part (part C.2), I compare the local search to an optimization via
re-randomization. The third part (part C.3) provides the pseudo code for all
algorithms. The algorithms presented in this section aim at maximizing the goal
function T ′MXT over all T ∈ {0, 1}n. I compare the performance of the algo-
rithms with respect to the loss due to the lack of balance, which is a monotonously
decreasing transformation of the goal function (see section 3.4).

C.1 Local Search vs. Alternative Optimization Algorithms

Since exact methods for binary optimization generally work only on small prob-
lems (up to around 100 variables), I focus on heuristic methods. After all, each
subjects in the experiment represents a new variable for the optimization. I regard
three very popular algorithms:

1. A Randomized Greedy Algorithm (Merz and Freisleben, 2002):
The idea of this algorithm is simple: Start with a vector T̃ = (0.5, ...0.5)′,
and sequentially set coordinates to either 0 or 1, such that in each step
the improvement, i.e. the increase in the goal function, is maximized. To
preserve some randomness, a random draw determines which coordinate is
first and whether this coordinate should be set to 0 or 1. After that, the
algorithm calculates among all coordinates that have still a value of 0.5 the
coordinate with the highest improvement from changing it’s value to 1 and
the coordinate with the highest improvement from changing it’s value to 0.

28



Then with a specific chance proportional the the size of the improvement,
the first of the two coordinates is set to one, and otherwise the second
coordinate is set to zero. This procedure continues until the final vector T
consist only of zeros and ones.

2. A Tabu Search Algorithm (Glover, 1986; Beasely, 1998):
This Algorithm works similar to the simple local search algorithm, with one
difference: Whenever the algorithm is stuck in a local maximum, i.e. no
neighboring allocation yields any improvement, the algorithm moves to the
neighboring allocation with the lowest deterioration. In order avoid moving
back right away, the algorithm blocks the coordinate along with the last
move was made for a predefined number of steps. Since this algorithm will
not terminate by itself, we need to specify a maximum number of iterations
depending on the acceptable computing time of the algorithm. In the end,
the point with the highest goal function is selected.

3. A Simulated Annealing Algorithm (Kirkpatrick et al., 1983; Černý, 1985;
Beasely, 1998):
This algorithm also works similar to the local search algorithm. However, in
contrast to to simple local search algorithm, this method randomly selects
exactly one neighboring allocation in each step. If this neighbor yields an
improvement, the algorithm moves to this allocation. If the neighbor yields
a deterioration, the move might still be made with a certain probability.
This probability decreases both with the size of the deterioration and in
the course of the algorithm. The algorithm terminates when a predefined
number of iterations is reached.

Most modern heuristics for binary quadratic optimization are based on these three
methods (see Kochenberger et al., 2014). The randomized greedy algorithm is
often used to receive starting points for other algorithms. The tabu search and
simulated annealing algorithm improve on the simple local search algorithm by
avoiding to get stuck in local optima. In total, I compare six different algorithms:
randomized greedy, tabu search, simulated annealing, basic local search, multi-
ple local search with 10 random starting points (Opt MLSR) and multiple local
search with 10 randomized greedy starting points (Opt MLSG). To give some
bounds on the performance of these algorithms, I include random allocation as
a lower bound on the performance, and a multiple local search algorithm with
1, 000, 000 random starting points (Opt MLSM) as an upper bound. These are
much more redraws than in any reasonable experiment in practice, since this
algorithm takes up to 2.5 hours to compute the allocation of a single covariate
matrix. However, it should show how low the loss due to the lack of balance could
be.

Table 1 shows a simulation for 1, 4, 10, 25 and 50 covariates and a sample size
of 64. The values without parenthesis are the average losses for this algorithm,
whereas the value in parenthesis are the average computing times (in s) for one al-
location. In terms of computation time, the local search algorithm is much faster
than any other algorithm, except for random allocation. In terms of minimizing

29



the loss,21 the local search algorithm performs better than the greedy algorithm
and only slightly worse than the more profound tabu search and simulated an-
nealing algorithms. When using multiple random starting points (MLSR), the
local search algorithm even leads to a lower loss than tabu search or simulated
annealing, while still requiring less computation time. Randomized greedy start-
ing points in the multiple local search algorithm (MLSG) do not improve much
over random starting points and require more computation time.

Table 1: Average loss due to the lack of balance for binary optimization algorithms

1 Covariate 4 Covariates 10 Covariates 25 Covariates 50 Covariates
Random 1.02 4.11 10.24 25.53 50.52

(0) (0) (0) (0) (0)
Opt Greedy 0.39 0.57 1.12 3.44 12.5

(0.026) (0.027) (0.034) (0.03) (0.026)
Opt LocalSearch 0.01 0.04 0.29 2.22 11.03

(0.001) (0.003) (0.005) (0.008) (0.01)
Opt TabuSearch 0 0.02 0.24 1.95 10.52

(0.151) (0.142) (0.14) (0.129) (0.131)
Opt Annealing 0 0.02 0.23 1.95 10.37

(0.191) (0.194) (0.186) (0.161) (0.143)
Opt MLSR 0 0.01 0.16 1.53 8.84

(0.018) (0.036) (0.047) (0.062) (0.087)
Opt MLSG 0 0.01 0.16 1.55 8.72

(0.292) (0.306) (0.285) (0.284) (0.234)
Opt MLSM 0 0 0.02 0.55 7.45

(1372.679) (2447.998) (3986.627) (6159.142) (9622.744)

C.2 Local Search vs. Re-randomization

For a similar optimization problem, Kasy (2016a) suggests to use a re-randomization
algorithm. The algorithm is very simple: Draw a predefined number of random
allocations and pick the one with the highest value of the goal function. He argues
that this procedure performs ”reasonably well”. The argument, also picked up
by Banerjee et al. (2016), is the following: Suppose one re-randomizes for k ∈ N
times. Then the probability the the chosen allocation is better than 99% of all
allocations is 1− 0.99k, which quickly converges to one as k goes to infinity. For
k = 500 the probability is already larger than 99%.

However, what if the distribution of the loss due to the lack of balance has long
but thin tails? In this case, an allocation that is better than 99% of all alloca-
tions might still be not a very good allocation. For example in the case of 64
subjects, there are 264 ≈ 2 · 1019 possible allocations. Therefore, there are still
around 2 · 1017 allocations that are among the 1% of best allocations. These are
2 · 1017 allocations that are potentially better than the allocation determined by

21Or equivalently, maximizing T ′MXT .
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re-randomization.

To analyze the question whether re-randomization could be used as a simple al-
ternative to the local search algorithm, I regard the density of the loss due to
the lack of balance for random allocation. I simulate the density using 1,000,000
random allocations, for a sample size of 64 and for 10 as well as 50 covariates.
As a benchmark, I include the average loss of the local search algorithm, as well
as the minimum loss over 1, 000, 000 local search algorithms (MLSM).

Figure 6 shows that for 10 covariates, the 1% quantile is already very close to
0. For this case, re-randomization might be an alternative to the local search
algorithm. However, for 50 covariates, the one percent quantile is only slightly
better than an average random allocation. Even though the loss could be reduced
to less than 10, the one percent quantile is only slightly lower than 40. Even af-
ter 1,000,000 random allocations, the best allocation still yields a loss of 20. To
calculate losses for 1,000,000 random allocations and 50 covariates, the computer
needs around 30 min. The local search algorithm leads to a loss of half the size
in only 10 milliseconds.
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Figure 6: Distribution of loss for random allocation
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C.3 Pseudo code of the optimization algorithms

Opt Rerandomization:
Variables:
Retries % Number of Redraws

1. Draw Retries random treatment allocations and store them
in list T̂ .

2. Calculate T ′MXT for every T ∈ T̂ .

3. Return T ∗ with T ∗′MXT
∗ = min

T∈T̂
T ′MXT

Opt Greedy:
Variables:
C = {1,...,n} % indices of subjects

1. Set T = (0.5, ..., 0.5)′

2. For l = 0, 1, set T̃ = T and T̃i = l and compute gli = T̃ ′MX T̃−
T ′MXT

3. Set k0 = argmaxi∈Cg
0
i and k1 = argmaxi∈Cg

1
i

4. With probability
g0k0

g0k0
+g1k1

do

Set Tk0 = 0 and C = C \ {k0}
else

Set Tk1 = 1 and C = C \ {k1}

5. If C 6= φ
continue with step 2.

else
Return T
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Opt LocalSearch:
Variables:
Start % Treatment allocation to start from (for example a random
allocation)
t = 0 % iteration counter

1. Set T = Start and V = T ′MXT .

2. Set t = t+ 1; Store each neighbor of T in a list T̂ .22

3. Calculate T̃ ′MX T̃ for every T̃ ∈ T̂ .

4. If max
T̃∈T̂

T̃ ′MX T̃ > V :

Set T = argmax
T̃∈T̂

T̃ ′MX T̃ and V = max
T̃∈T̂

T̃ ′MX T̃ ;

Continue with step 2.

Else:
Return T ; t

Note: Let T̃ differ from T only in the coordinate i. Then
T̃ ′MX T̃ = T ′MXT + (T̃i − Ti) · (MXi,i + 2

∑
j=1,j 6=iMXi,j). I use

this formula in the implementation of this algorithm to efficiently
calculate T̃ ′MX T̃ for neighbors of T .

Opt MultipleLocalSearch:
Variables:
Retries % Number of Redraws

1. Draw Retries treatment allocations either randomly or with
the randomized greedy algorithm and store them in list T̂ .

2. Use Opt LocalSearch with Start parameter T for each T ∈
T̂ . Store resulting allocations in list T̂

3. Calculate T ′MXT for every T ∈ T̂ .

4. Return T ∗ with T ∗′MXT
∗ = min

T∈T̂
T ′MXT

22A neighbor of a treatment allocation T is defined as a treatment allocation T̃ ∈ {0, 1}n
with ||T̃ − T || = 1, where || · || denotes the euclidean distance. This means a neighbor T̃ differs
form T in exactly one coordinate.
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Opt TabuSearch:
Variables:
Start % Treatment allocation to start from (for example a random
allocation)
maxiter % Maximum Number of iterations (In the implementation,
I use max(200, 20000/n)
T ∗ % best allocation found so far
V ∗ = 0 % T ∗′MXT

∗

L = (L1 = 0, ..., Ln = 0) % The tabu value of coordinate i L∗ % The
tabu tenure. Determine by how much the tabu value Li is increased
if a move along coordinate i is made. (In the implementation, I use
L∗ = min(10, n/8))
t % iteration counter

1. Set T = Start and V = T ′MXT .

2. Set t = t+ 1

3. Let T (i) be the neighbor that differs from T in coordinate i.
Calculate T (i)′MXT

(i) for every i ∈ {1, ..., n} with Li = 0.

4. If max
i∈{1,...,n},Li=0

T (i)′MXT
(i) > V ∗:

Set j = argmax
i∈{1,...,n},Li=0

T (i)′MXT
(i)

Apply Opt LocalSearch for Start = T (j) and t = t
Set T = Opt LocalSearch.T and t = Opt LocalSearch.t
Set V = T ′MXT
Set T ∗ = T and V ∗ = V

Else: Set j = argmax
i∈{1,...,n},Li=0

T (i)′MXT
(i)

Set T = T (j) and V = T ′MXT ;

5. Reduce the tabu values: Li = max(Li − 1, 0) for every i =
1, ..., n
Set the tabu value for the most recent move: Lj = L∗

6. If t < maxiter
Continue with step 2

Else
Return T ∗
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Opt Annealing:
Variables:
Start % Treatment allocation to start from (for example a random
allocation)
maxiter % Maximum Number of iterations (In the implementation,
I use max(1000000, 10000 ∗ n)
T ∗ % best allocation found so far
V ∗ = 0 % T ∗′MXT

∗

temperature % the value of the temperature variable determines the
probability that a sub-optimal allocation will be accepted. (In the
implementation, I use temperature = n)
α % determines how far the temperature reduces in every iteration.
(In the implementation, I use α = 0.995)
t % iteration counter

1. Set T = Start and V = T ′MXT .

2. Set t = t+ 1

3. Determine j ∈ {1, ..., n} randomly. Let T (j) be the treatment
allocation that differs from T only in coordinate j.

4. Calculate T (j)′MXT
(j)

5. If T (j)′MXT
(j) > V ∗

Set T = T (j) and V = T (j)′MXT
(j)

Set T ∗ = T (j) and V ∗ = T (j)′MXT
(j)

Else:
If T (j)′MXT

(j) > V
Set T = T (j) and V = T (j)′MXT

(j)

Else:
With a probability of exp(− |V−T

(j)′MXT
(j)|

temperature
):

Set T = T (j) and V = T ′MXT % Move to new allocation
even though it is worse than the old one

6. If t < maxiter
Continue with step 2

Else
Apply Opt LocalSearch for Start = T ∗ and t = t
Set T ∗ = Opt LocalSearch.T
Return T ∗
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D Multiple Treatments and/or interaction ef-

fects

In this section, I extend the analyses on linear models involving interaction effects
and on experiments including multiple treatments. I consider the following model:

Y = Xβx +H(X,T )βh + Tβt + ε, with ε ∼ N (0, Iσ2), (34)

X =

1 X1,1 ... X1,m
...

...
...

1 Xn,1 ... Xn,m

 denotes the covariate matrix;

The matrix T =

T1,1 ... T1,k
...

...
...

Tn,1 ... Tn,k

 describes the allocation of treatments.

Ti,j = 1 means that unit i receives treatment j. Whenever Ti,j = 0 for all
j ∈ {1, ..., k}, the unit is assigned to the control group.

H =

h1(X1,·, T1,·) ... hl(X1,·, T1,·)
...

...
...

h1(Xn,·, Tn,·) ... hl(Xn,·, Tn,·)

 is the matrix of interaction effects.

h1, .., hl are (possibly nonlinear) functions of the covariates and the treatments.
One example is a simple linear interaction effect h(Xi,·, Ti,·) = Xi,j1 · Ti,j2 , with
j1 ∈ {1, ...,m}, j2 ∈ {1, ..., k}
Let C = (X,H, T ), then the OLS estimates of βx, βh and βt are given by b =bxbh
bt

 = (C ′C)−1C ′Y .

In a next step, the researcher has to decide, which effects are most important.
In many experiments this will be the estimators of all treatment effects βt, but
maybe the researcher is also interested in some of the interaction effects. I denote
the effect that are most important to the researcher major effects23, and all other

effects minor effects. Let βz =

βz,1
...

βz,m̃

 be vector of major effects. Further let Z

be the columns of C that correspond to these major effects and N be the columns
that correspond to the remaining minor effects. Up to a permutation of columns,
C = (N,Z).

The variance-covariance matrix of all estimators b is given by V[b] = σ2(C ′C)−1 =

σ2

(
N ′N N ′Z
Z ′N Z ′Z

)−1
. The variance-covariance matrix of the estimators for the

major effect bz is the lower right k̃ × k̃ sub matrix of V[b]. Using an inversion

23In most applications the major effect will simply be all treatment effects. However, re-
searcher might also be interested in some of the interaction effects, or they are only interested
in a selection of the treatment effects
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formula for block matrices,24 this matrix is given by:

V[bz] = σ2(Z ′MNZ)−1 (35)

Similar to the case of one treatment and no interaction effects, the goal is thus
to maximize:

Z ′MNZ (36)

Note that in general N as well as Z depend on the allocation of treatments T .
Whenever the number of major effects m̃ is equal to one, this matrix reduces to
a scalar, which can be maximized by the same binary optimization techniques
presented in the paper. Whenever m̃ > 1 this is however a matrix and maximiza-
tion is not clearly defined. In order to define a goal function for optimization, the
researcher therefore needs to specify a function g that maps the matrix V[bz] to
a real number.

In the field of optimal experimental design, popular functions for g are:

1. The determinant: g(V[bz]) = det(V[bz]). Treatment allocation that min-
imize det(V[bz]) are called D-optimal treatment allocations. D-optimal
treatment allocations minimize the volume of the confidence region for bz
(Khinkis et al., 2003).

2. The trace: g(V[bz]) = tr(V[bz]). Treatment allocations that minimize V[bz]
are called A-optimal treatment allocations. A-optimal treatment alloca-
tions minimize the average variance of the estimators of the major effects.
Schneider and Schlather (2017) propose to use a weighted average, i.e.
g(V[bz]) = tr(V[bz]diag(w)), with w = (w1, ..., wm̃) being weights defining
which effects are of most interest.

3. The maximum eigenvalue: g(V[bz]) = λmax(V[bz]). Treatment allocations
that minimize λmax(V[bz]) are called E-optimal treatment allocations. E-
optimal treatment allocations minimize the worst possible variance of all
linear combinations of the major effects (Pukelsheim, 2006, chapter 6.4).

For more information regarding statistical properties and intuitions behind these
functions and their spread in the field of experimental design, see Pukelsheim
(2006, chapter 6).

Having defined the model and the major effects, the function γ = g(Z ′MNZ) is a
mapping from the set of possible covariate matrices X and the set of admissible
treatment allocations T to the real numbers: γ : X ×T → R. Given the covariate
matrix X, γ(X,T ) solely depends on T and can be optimized according to the
binary optimization techniques presented in this paper.

24The inversion formula yields(
A B
B′ C

)−1
=

(
A−1 + A−1B(C −B′A−1B)−1B′A−1 −A−1B(C −B′A−1B)−1

−(C −B′A−1B)−1B′A−1 (C −B′A−1B)−1

)
for a regular block matrix

(
A B
B′ C

)
(Bernstein, 2009).
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