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Abstract

Reporting effect sizes and corresponding confidence intervals is increasingly demanded, which

generates interest to analyze the performance of confidence intervals around effect sizes. As

effect sizes take on the value zero in case of no effect per definition, not only the inclusion

of the population effect, but also the exclusion of the value zero are therefore performance

criteria for these intervals. This study is the first to compare the performance of confidence

interval methods applying these two criteria via determining their finite relative efficiency.

Computing the quotient of two methods’ minimum required sample sizes to achieve pre-

specified levels of both criteria allows to account for the problem of limitations in available

observations, which often occurs in the educational, behavioral or social sciences. Results

indicate that confidence intervals based on a noncentral t-distribution around the robust

effect size proposed by Algina et al. (2005) possess high relative efficiency.
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Relative Efficiency
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1. Introduction

An increasing number of journals require research’s findings to be presented by effect

sizes in addition to or even instead of the reporting of null hypothesis tests’ p-values (Trafi-

mow and Marks, 2014,Wasserstein and Lazar, 2016). Various limitations of p-values, as

being influenced by sample size, encouraging dichotomous decisions on (not) rejecting null

hypotheses or being incapable of informing about the magnitude of an existing population

effect can be coped with by reporting effect sizes. These statistics are dimensionless quanti-

ties, independent of sample size, show the size of an estimated population effect in standard

deviations, and take on the value ’zero’ in case of no population effect (Cohen, 1969). In

the ’Methods for the Behavioral, Educational, and Social Sciences’ the measurement of the

extent of an effect is of special interest, but accompanying confidence intervals around effect

sizes is demanded to reveal the level of uncertainy in the estimation of population effects

to add information to these single point estimates. In contrast to the communication of

findings in terms of effect sizes, the simultaneous reporting of confidence intervals around

these statistics has not shown an equally strongly increasing trend, even though this practice

is perceived as being research’s future, and being especially important for the MBESS (e.g.

Bird, 2002, Thompson, 2002, Kelley, 2007a, Peng et al., 2013). Thus, emphasis should be

given to spreading the benefits and importance as well as fostering the understanding of the

statistical methods of computing confidence intervals around effect sizes.

This paper focusses on the performance comparison of confidence intervals around stan-

dardized mean difference effect sizes for two identically and independently distributed groups.

In the field of location difference measures, the most commonly used and known effect sizes

are Cohen’s d and Hedges’s g (Cohen, 1969, Hedges, 1981). When assuming normally dis-

tributed populations, confidence intervals around these effect size statistics can be calculated

using the noncentrality interval estimation approach based on a noncentral t-distribution (see

Steiger and Fouladi, 1997, Cumming, 2001). When the population is not assumed to be nor-

mally distributed, the application of robust measures of population effects has been stressed

and a robust effect size estimator has been proposed by Algina et al. (2005). In case of

nonnormally distributed parent populations recommendations were made to compute con-

fidence intervals around effect sizes via nonparametric bootstrap methods (Micceri, 1989,
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Algina et al., 2005). Thus, facing a variety of effect size estimators and confidence interval

calculation methods that differ in underlying assumptions, it is essential to examine and

contrast the performance of these methods especially in situations when assumptions are

violated.

Literature so far compared the performance of the noncentrality interval estimation

approach, the percentile bootstapping method and the bootstrap corrected and acceler-

ated method for computing confidence intervals around effect sizes estimated by Cohen’s d,

Hedges’s g, Algina et al.(2005)’s (AKP’s) dR, and variations of trimmed effect sizes at under-

lying (non-)normal distributed parent populations. When parent populations are normally

distributed, the exact method, thus the noncentrality interval estimation approach using

Cohen’s d as effect size estimator is suggested. When parent populations were nonnormally

distributed, the usage of the bootstrap corrected and accelerated method using Hedges’s g

as effect size estimator (Kelley, 2005) or applying the percentile bootstrap method using

a robust effect size estimator dR (Algina et al., 2005, Algina et al., 2006a , Algina et al.,

2006b) was recommended. Approximate confidence interval methods around variations of

effect sizes were shown to provide accurate results, as long as sample sizes were moderately

large (Viechtbauer, 2007).

However, all of these recommendations for confidence interval calculation methods around

effect sizes were made based on the criterion of precisely meeting the nominal level of coverage

probability, thus on the probability of including the population effect. For some recommenda-

tions, the criterion of an interval possessing small width was regarded as well. Both criteria,

coverage probability and interval width are well established in analyzing the performance of

confidence intervals around different statistics. Nevertheless, this paper claims that ignoring

the criterion ’power’, which is the probability that a confidence interval does not include

the value ’zero’, yields an incomplete performance comparison of confidence intervals around

effect sizes, since effect sizes are defined as taking on the value ’zero’ if no population effect

exists.

Consequently, this paper is the first to compare the performance of confidence interval

methods around effect sizes by simultaneously regarding coverage probability and power.

This contrasting by simultaneously considering two criteria was accomplished by determining
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the finite relative efficiency between two confidence interval methods, which is computing the

quotient of these methods’ minimum required sample sizes to achieve prespecified levels of

both criteria. Inserting the parameter ’minimum required sample size’ as central part of this

paper’s efficiency comparisons allows to deal especially with the behavioral and educational

research’s often occuring restrictions on available observations as well as meeting exploratory

and primary studies’ needs. Moreover, performance is contrasted at normally distributed as

well as nonnormally distributed parent populations, to evaluate confidence interval methods

in situations when assumptions are met as well as when assumptions are violated.

Findings showed that the finite relative efficiency of methods for computing confidence

intervals around effect sizes is strongly influenced by the length of the tails of the parent

population’s distribution. At normal distribution, thus symmetrically distributed parent

populations with rather short tails, the best finite relative efficiency was observable for the

exact confidence interval construction method based on the noncentral t-distribution using

Cohen’s d as effect size estimator. At violation of the assumption of normal distributed

parent populations the main result is that for some conditions no sample size could be found

for any method at which both criteria coverage probability and power are met. Moreover, the

confidence interval method based on the noncentral t-distribution showed high finite relative

efficiency compared to both bootstrapping methods considered when the robust effect size

estimator dR is used.

The overall structure of this study takes the form of six sections, including this introduc-

tion. The second section presents the theoretical framework on considered effect size esti-

mators, confidence interval methods and generated distributions. The third section further

discusses and defines the performance criteria. The fourth section describes the simulation

procedure, while the fifth one presents the results. The sixth section discusses the findings

and concludes.

2. Theoretical Framework

First the considered effect size estimators, then the compared confidence intervals meth-

ods and finally the distribution generating method will be presented.
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Effect Size Estimators

This paper focusses on standardized mean difference effect sizes

δ =
µ1 − µ2

σ
,

with µ1 being the population mean of the first group, µ2 being the population mean of

the second group and σ being the population standard deviation, which is assumed to be

identical for both groups.

Estimators of effect sizes considered in this study are the most commonly known and

used estimator Cohen’s d, its unbiased version Hedges’s g, as well as the robust estimator

AKP’s dR.

Cohen (1969) defined an effect size, called Cohen’s d as

d =
X1 −X2

S
,

with X1 being the first group’s mean, X2 being the second group’s mean and S being the

pooled standard deviation

√
S2 =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

(n1 + n2 − 2)
,

with n1 being the first group’s sample size, n2 being the second group’s sample size, S2
1 being

the first group’s variance, S2
2 being the second group’s variance (Cohen, 1969).

Hedges (1981) showed that this effect size is positively biased for small sample sizes and

proposed the unbiased effect size estimator Hedges’s g:

g = d

 Γ
(
n1+n2

2

)√
(n1+n2)

2
Γ
(
n1+n2−1

2

)
 ,

with Γ(·) referring to the gamma function (Hedges, 1981).

The bias correction term can as well be approximated:

g′ = d

(
1− 3

4(n1 + n2 − 2)− 1

)
.

However, effect size measures can be inaccurate when samples are drawn from nonnormal

distributions. Thus, both estimators, Cohen’s d and Hedges’s g are influenced by outliers
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due to the standard deviation’s sensitivity to the tails of a distribution. Therefore, Algina

et al. (2005) proposed a robust mean difference effect size for trimmed samples’ means,

standardized by Winzoried variances, which are less sensitive to the tails of a distribution:

δR = 0.642
µ1,trim − µ2,trim

σwin
,

with µ1,trim, and µ2,trim being the population trimmed mean of group one, respectively

group two, and σwin being the population Winsorized standard deviation. As by a trimming

percentage of 20% the estimated trimmed mean has a relatively small standard error among

commonly occuring situations while simultaneously little accuracy is lost when sampling

from a normal distribution, this percentage was proposed for general use by Wilcox (2005)

and accordingly implemented for the effect size estimator dR by Algina et al. (2005):

dR = 0.642
X1,trim −X2,trim

Swin
,

with X1,trim being the 20% trimmed mean of group one, X2,trim being the 20% trimmed

mean of group two, thus the mean calculated after dropping 20% of the data on each side

of the distribution. Swin is calculated as the square root of

S2
win =

(n1 − 1)S2
win,1 + (n2 − 1)S2

win,2

(n1 + n2 − 2)
,

where S2
win,1, and S2

win,2 denote the 20% Winsorized variances in group one, respectively

group two, thus the variance computed after replacing the 20% lowest (highest) values by

the one that remains as lowest (highest) value after 20% trimming (Dixon, 1960). This

way, δR measures the mean difference between the middle 60 percent of both groups in

units of the standard deviations of the groups’ middle 60 percent. By using the multiplier

0.642 =
√

0.4121 it is ensured that δR equals δ when samples are drawn from normally dis-

tributed parent populations.

Confidence Interval Methods

This study considered three different methods to calculate confidence intervals around the

previously mentioned effect sizes for performance analysis. The first one is an exact method

based on the assumption of normally distributed parent populations and homogeneity of
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variance (NCT), the second one is a bootstrapping method based on the assumption of

randomly drawn samples that are representatives for a larger population (Perc), as is the

third method (BCa), while the latter corrects for skewness as well as bias in the bootstrap

distribution. Moreover, only two-sided confidence intervals were considered, as one-sided

intervals would not add any indication of level of uncertainty in the effect size estimation.

For normally distributed parent populations and independently drawn samples, the exact

method to build a confidence interval around a standardized mean difference effect size is the

‘noncentrality interval estimation approach’, which is based on the noncentral t-distribution

with noncentrality parameter

λ =
µ2 − µ1

σ

√
n1n2

n1 + n2

.

The lower and upper confidence interval limits for this method, here called ‘NCT’, are cal-

culated by using the confidence interval transformation principle, the inversion confidence

interval principle and the connection between the effect size δ and the noncentrality parame-

ter λ as δ = λ
√

n1+n2

n1n2
(Steiger and Fouladi, 1997, Cumming, 2001). Thus, first it is to identify

the lower, respectively upper confidence interval limit for the noncentrality parameter λ by

calculating the samples’ two-group t-statistic :

t =
X1 −X2√(

1
n1

+ 1
n2

)(
(n1−1)S2

1+(n2−1)S2
2

n1+n2−2

)
, then to find those values of the noncentrality parameter λ that generate the noncentral

t-distributions with (n1 + n2 − 2) degrees of freedom, in which the observed value of the

samples’ t-statistic has cumulative probability of 1− α/2, respectively α/2.

Second, the confidence interval limits for the effect size δ have to be obtained by multi-

plying the confidence interval limits of λ by
√

n1+n2

n1n2
.

For constructing a confidence interval around the effect size δR, the NCT method has to

be modified by replacing the samples’ t-statistic by the ‘trimmed t-statistic’:

tR =
X1,trim −X2,trim√(

1
h1

+ 1
h2

)(
(n1+n2−2)S2

win

h1+h2−2

)
(Yuen and Dixon, 1973). This trimmed t-statistic’s distribution can satisfactorily be ap-

proximated up from a sample size of 7 by Student’s t distribution with (h1 +h2− 2) degrees
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of freedom, where hi = ni − 2gi with gi being the number of values that were replaced by

Winsorizing and i = 1, 2 referring to the sample of group 1 or group 2 respectively. At last,

the confidence interval limits for the noncentrality parameter have to be found and multplied

by 0.642
√

(h1h2)(n1+n2−2)
(h1h2)(h1+h2−2) (Algina et al., 2005).

No assumptions on the underlying parent distributions are necessary for using nonpara-

metric bootstrap methods to compute confidence intervals. These approaches only assume

data to be a random and representative sample from some larger population (Efron, 1979).

The percentile bootstrap method for calculating confidence intervals (Perc) around δ

proceeds in three steps. First, from both groups’ original samples random samples of a

prespecified size n are drawn with replacement, thus bootstrapped, B times. Second, the

effect size estimator (for Cohen’s d: d∗) is caluclated for each of the B sub-samples of

both groups. Third, the confidence interval’s lower and upper limits are found as being

the respective α
2

or 1-α
2

-quantiles of the ranked, B times calculated, estimators d∗. This

procedure can as well be applied using the bootstrapped effect size estimator Hedges’s g: g∗.

To use the Perc method for calculating confidence intervals around δR, the first step

has to be slightly modified such that after a sample size of n is randomly selected with

replacement from the first, respectively second group’s sample, the 20% trimmed mean

and the 20% Winsorized variances are calculated for both samples accordingly and d∗R is

computed using these subsamples’ trimmed means and Winsorized variances (Algina et al.,

2005). The bootstrap bias-corrected and accelerated method (BCa) accounts for the Perc

method’s substantial coverage error if the distribution of the estimated parameter is not

nearly symmetric by allowing for asymmetry and a change in skewness of the distribution

function of the estimated parameter, thus effect size. Moreover, the BCa method assumes

the existence of a monotonic increasing function g and constants z0 and a, such that φ̂ =

g(δ̂) and φ = g(δ) satisfy φ̂ = φ + σφ(Z − z0), with Z ∼ N(0, 1) and σφ = 1 + aφ

(Efron and Tibshirani, 1993). Here, a denotes the skewness of the score transformation

of δ̂, called the acceleration constant, whereas z0 is the bias-correction value. The BCa

method automatically selects a transformation g that transforms the regarded effect size

to normality, computes an exact confidence interval, and then transforms backwards to the

effect size’s original scale. Therefore, as for the Perc method, first, B random subsamples of
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size n each are drawn from both groups’ original samples with replacement. Then, the effect

size estimator d∗ (respectively g∗) is estimated for each of the B subsamples. Next, the bias-

correction value ẑ0 is obtained by calculating the proportion of the B bootstrapped effect

sizes d∗ that take on a smaller value than that of the original samples’ effect size estimator

d (respectively g), then finding the quantile of the normal distribution with the respective

cumulative probability:

ẑ0 = Φ−1
(

#(d∗ < d)

B

)
.

The acceleration value

â =

∑n1+n2

i=1 (d̃− d(−i))3

6

((∑n1+n2

i=1 (d̃− d(−i))2
)3/2)

is obtained by first performing a jack-knife procedure on the original sample, whereby d(−i) is

the value of the effect size estimator d calculated after the ith data point out of the combined

sample (n1 + n2) has been deleted and d̃ is the mean of the n1 + n2 times jack-knifed

d(−i) values. Once the bias correction value z0 and the acceleration parameter a have been

calculated, the limits of the confidence interval are determined by finding those values from

the bootstrap sample that correspond to the lower and upper confidence interval quantiles

of the ranked observed bootstrap distribution at

Φ

(
ẑ0 +

ẑ0 + Φ−1(α/2)

1− â(ẑ0 + Φ−1(α/2))

)
,

respectively

Φ

(
ẑ0 +

ẑ0 + Φ−1(1− α/2)

1− â(ẑ0 + Φ−1(1− α/2))

)
,

with Φ(·) referring to the standard normal distribution.

The advantage of this BCa method is its second order accuracy, thus the rate of 1
min(n1,n2)

with which its coverage error approaches zero, being faster then the Perc method’s rate of

1√
min(n1,n2)

(Efron and Tibshirani, 1993).

The BCa method is applied for constructing confidence intervals around δR the same way

as is done for the Perc method.
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The g-and-h Distributions

This paper’s analysis focusses on confidence interval methods’ performances around stan-

dardized mean differences of two independent and identically distributed samples. These

samples were drawn from normally distributed parent populations as well as from nonnor-

mally distributed parent populations, so that efficiency could be evaluated in case of meeting

as well as violation of the normality assumption.

In line with Algina et al. (2005), Algina et al. (2006b), and Keselman et al. (2005), four

distributions were considered that cover main types of nonnormality. Thus, parent popula-

tions were (1) normally, thus symmetrically distributed with short tails, (2) symmetrically

distributed with long tails, (3) asymmetrically distributed with short tails and (4) exponen-

tially distributed. All distributions were generated from the family of g-and-h distributions,

where the parameter h controls the elongation of the tails and the parameter g controls

the amount and direction of the skewness. Standard normally distributed random variables

(Zi) are transformed via Yi = Zi exp
(
hZ2

i

2

)
, when the parameter g is chosen to equal zero,

respectively via Yi = exp(gZi−1)
g

exp
(
hZ2

i

2

)
, when the parameter g is chosen to be non-zero

(Hoaglin et al., 1985).

Thus, to generate the considered distributions, the parameters were set the following

way:

(1) Symmetric distribution with short tails (normal) g=0 h=0

(2) Symmetric distribution with long tails (ltsym) g=0 h=0.225

(3) Asymmetric distribution with long tails (ltskew) g=0.225 h=0.225

(4) Exponential distribution (exp) g=0.76 h=-0.098

The normally distributed random variable Zi was drawn n1 times and transformed into Yi1

for forming the first group’s sample. As this analysis focuses on independently and identically

distributed samples that differ by a fixed population effect while having equal variance and

equal sample size, the sample for the second group was generated by Yi2 = Yi1 +δσdist, where

σdist is the standard deviation of the regarded parent population, which is defined by the

chosen parameter values.

10



At g = 0: σdist = (1− 2h)−
3
2 , whereas at g 6= 0:

σdist = 1
g2
√
1−2h

[
exp

(
2g2

1−2h

)
− 2 exp

(
g2

2(1−2h)

)
+ 1
]
− 1

g2(1−h)

[
exp

(
g2

2(1−h)

)
− 1
]2
.

δ is the fixed size of the standardized mean difference population effect, that was set to equal

0.2, 0.5 or 0.8 (see Cohen (1969)’s suggestions for interpreting an effect size as being a small,

medium, or large effect). Note that thus the distributions were designed to differ by 0.2, 0.5,

or 0.8 times the standard deviation, which is called the population effect.

Thus, overall 108 conditions (3 effect sizes, 3 confidence interval methods, 4 distributions,

3 sizes of population effects) were analyzed.

3. Performance Criteria and Finite Relative Efficiency

Performances of the methods to compute confidence intervals around an effect size are

compared regarding their minimum required sample size to simultaneously achieve a coverage

probability of at least 95% and a power of at least 80%, displayed as finite relative efficiency

(FRE).

Coverage probability is the percentage of confidence intervals whose limits correctly

bracketed the population value, hence the percentage of coverage. The nominal coverage

probability level was set to be 95%. Thus, as a benchmark level, in all but at most 5% of

all computed confidence intervals per condition the size of the population effect has to be

included to achieve this criterion’s benchmark. In this paper, the population effect size was

fixed to equal 0.2, 0.5, or 0.8 times the respective population’s standard deviation. Note

that this inclusion of the true population effect was not only chosen as coverage probability

criterion for confidence intervals around δ, but also around δR. This is due to the fact that

at the baseline situation with normally distributed parent populations δR is defined to equal

δ by being multiplied with the factor 0.642. This approach of inducing the same criteria on

coverage probability on all confidence intervals even at violation of the normality assumption

attempts to decrease the uncertainty in applying, interpreting, and contrasting the robust

effect size δR in comparison to the commonly known standardized mean difference effect size

δ.
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Power is defined as the percentage of confidence intervals whose limits correctly did not

bracket the value ’zero’. The nominal power level was set to be 80%. Thus, as a benchmark

level, in at least 80% of all computed confidence intervals per condition, ’zero’ has to be

excluded to achieve this criterion’s benchmark. All of this study’s considered conditions

were designed to obtain a non-zero population effect. By exluding the value ’zero’, in case

of an existing underlying population effect, power is in this manner the chance to find a real

effect if there is one (Maxwell et al., 2008, Cumming, 2001). Although this paper is the

first to explicitely take power into account when comparing the performances of confidence

interval methods that are built around effect sizes, Kelley (2005) and Algina et al. (2005)

displayed empirical power of different confidence interval methods at fixed sample sizes and

fixed population effect sizes. At different underlying nonnormal parent populations, they

found that the NCT method showed slightly higher power than the BCa method when built

around δ estimated by Cohen’s d (Kelley, 2005). Moreover, they foun that the NCT method

also shows higher power than the Perc method when built around δR, estimated by dR

(Algina et al., 2005). No conclusions on the confidence intervals’ performances were drawn

based on these findings.

In this paper, two confidence interval methods’ performances were compared regarding

the quotient of each one’s minimum sample size m0 required to simultaneously meet both

benchmarks (achieving a coverage probability of at least 95% and power of at least 80%).

This quotient is called finite relative efficiency (FRE) following Büning and Trenkler (1978).

Thus, FRE = m0;a

m0;b
, where m0;a and m0;b are those minimum sample sizes at which method a,

respectively method b meet the prespecified performance benchmarks, with a 6= b. Accord-

ingly, if FREa,b = 1, both confidence interval methods a and b require the same amount of

observations to meet both benchmarks and have the same relative efficiency. If FREa,b < 1,

method a requires a lower minimum sample size and is therefore more efficient than method

b. If FREa,b > 1, method a requires more observations and is therefore less efficient than

method b.
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4. Simulation Procedure

The minimum sample size (m0) at which the coverage probability was not smaller than

95%, while the power was not smaller than 80% was determined via simulation study using

an exponential search algorithm (Knuth, 1998, Bentley and Yao, 1976).

Thus, for each of the 108 conditions this iterative procedure consisted of two parts. The

first part determined a range in which the searched for minimum sample size resides in four

steps:

(1) A small sample size mi was specified, (2) 1000 confidence intervals were computed,

and (3) coverage probability and power were calculated. (4a) If performance benchmarks

were not met at sample size mi steps (1) to (3) were repeated, while sample size m(i+1)

was calculated by increasing mi by 2x with x = x + 1 with each repetition of steps (1) to

(3), i ∈ N. (4b) If performance benchmarks were met at mI , the interval [mI−1, mI ] was

identified as including the minimum sample size m0, with I being the number of repetitions

of steps (1) to (3). At this point, the second part of the simulation started.

Now, a binary search was conducted, thus, the meeting of the performance benchmarks

was tested at sample size ((mI −mI−1)/2 +mI−1) and the exponent x was reduced by 1. If

benchmarks were (not) met, the performance was tested at the middle of the lower (upper)

half of the interval [mI−1, mI ], while ((mI −mI−1)/2 +mI−1) was set to be the upper (lower)

limit of the interval that had to be tested. This second part of the procedure continuted until

x equalled ‘one’, whereas then the minimum sample size m0 was found being the smallest

value at which both criteria were met. Minimum required sample sizes presented in chapter

‘Results’ are averages of 1000 datasets generated by the simulation procedure per condition.

The number of bootstrap repetitions was set at B = 1000.1

1All simulations were conducted with the statistical software R with usage of the packages ’boot’ (Angelo

and Ripley, 2016, Davison and Hinkley, 1997), ’MBESS’ (Kelley, 2007b), ’bootES’ (Kirby and Gerlanc,

2013), and ’psych’ (Revelle, 2016).
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5. Results

The main finding was that not for all conditions a sample size was determinable at which

both performance criteria were met simultaneously (m0). Therefore, results are discribed in

two parts. First, the focus will be on findings of those conditions in which an m0 was deter-

minable. Second, the focus will be on those conditions, in which no m0 was determinable.

With focus on those conditions for which m0 was determinable, it is to say that for

some of these conditions m0 was not determinable for all of the 1000 datasets generated

by the simulation procedure. These conditions are highlighted by underlined values in the

following tables. Tables 1 to 3 present the finite relative efficiency of the regarded methods

per condition.2

Table 1: Finite Relative Efficiency of NCT to BCa

0.2 0.5 0.8

normal Cohen’s d 0.9458 0.9277 0.8718

Hedges’s g 0.9526 0.9759 1

AKP’s dR 0.9607 0.9255 0.8605

ltsym Cohen’s d 0.8882 0.767 0.7083

Hedges’s g 0.8942 0.8155 0.7917

AKP’s dR 0.9608 0.9074

ltskew Cohen’s d 0.8348

Hedges’s g 0.8498 0.7397

AKP’s dR 0.9388

exp Cohen’s d 0.9311 0.8451 0.7536

Hedges’s g 0.9369 0.8732 0.8261

AKP’s dR 0.9597 0.9346 0.8235

The noncentrality interval estimation approach NCT showed a higher relative efficiency

20.2, 0.5 and 0.8 define the population effect’s sizes; normal= normally distributed parent population,

ltsym= long tailed symmetrically distributed parent population, ltskew= long tailed asymmetrically dis-

tributed parent population; exp= exponentially distributed parent population.
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than the bootstrap bias-corrected and accelerated approach BCa, as can be seen in table 1,

which displays for all conditions FRENCT,BCa ≤ 1. Thus, over all conditions, NCT requires

at most the same amount of observations as BCa to as few as 70.83% of the BCa’s minimum

required sample size to meet the prespecivied benchmarks.

Table 2: Finite relative efficiency of Perc to BCa

0.2 0.5 0.8

normal Cohen’s d 0.9661 0.8916 0.7949

Hedges’s g 0.9661 0.8916 0.7949

AKP’s dR 0.9862 0.9574 0.8837

ltsym Cohen’s d 0.9002 0.7476 1.2708

Hedges’s g 0.9002 0.7476 1.0833

AKP’s dR 0.9961 0.9815 1.0357

ltskew Cohen’s d 0.8348

Hedges’s g 0.8348

AKP’s dR 1

exp Cohen’s d 0.9484 0.831 0.7101

Hedges’s g 0.9484 0.831 0.7101

AKP’s dR 0.9817 0.9533 0.9216

The percentile bootstrap method Perc showed a higher relative efficiency than the boot-

strap bias-corrected and accelerated approach BCa, as can be seen in table 2, which displays

for almost all conditions FREPerc,BCa ≤ 1. Thus, over almost all conditions, Perc requires

at most the same amount of observations as BCa to as few as 71.01% of the BCa’s m0. As

exception in the condition with symmetric, long tailed populations’ distributions and a large

population effect of δ = 0.8, Perc showed to require between 1.0357 to 1.2708 times the sam-

ple size than BCa to meet the benchmarks. The overall findings on the relative efficiency of

BCa show to be in contrast to results based on performance analysis by coverage probability

as the only criterion, which recommended the use of BCa around Hedges’s g when parent

populations are nonnormal (Kelley, 2005).
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Table 3: Finite relative efficiency of NCT to Perc

0.2 0.5 0.8

normal Cohen’s d 0.979 1.0405 1.0968

Hedges’s g 0.986 1.0946 1.2581

AKP’s dR 0.9741 0.9667 0.9737

ltsym Cohen’s d 0.9867 1.026 0.5574

Hedges’s g 0.9933 1.0909 0.7308

AKP’s dR 0.9646 0.9245

ltskew Cohen’s d 1

Hedges’s g 1.018

AKP’s dR 0.9388

exp Cohen’s d 0.9818 1.0169 1.0612

Hedges’s g 0.9879 1.0508 1.1633

AKP’s dR 0.9776 0.9804 0.8936

As can be seen in table 3, FRENCT,Perc does not tend to be either greater or smaller than

1, thus none of these two methods clearly requires overall more observations than another

to meet both criteria simultaneously. However it is worth highlighting that for the condition

with symmetric, long tailed populations’ distributions and a large population effect δ = 0.8,

Perc showed to require as extremely few as 0.5574 to 0.7308 times the sample size to meet

the benchmarks than does NCT, where determinable.

Tables 4 to 6 present one method’s finite relative efficiency contrasting its performance

at different used effect size estimators.2

Table 4: FRE of a confidence interval method using Cohen’s d to using Hedges’s g as effect size estimator

0.2 0.5 0.8

NCT BCa Perc NCT BCa Perc NCT BCa Perc

normal 0.9929 1 1 0.9506 1 1 0.8718 1 1

ltsym 0.9933 1 1 0.9405 1 1 0.8947 1 1.1731

ltskew 0.9823 1 1 0.9863

exp 0.9939 1 1 0.9677 1 1 0.9123 1 1
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Table 4 displays that the NCT method needs fewer observations to meet the criteria when

using Cohen’s d instead of Hedges’s g as effect size estimator, as FRENCT (d),NCT (g) < 1,

regardless of the underlying distribution. Moreover, BCa as well as Perc show that the

minimum required sample size to meet the benchmarks is similar at almost all conditions

for using Cohen’s d and using Hedges’s g, as finite relative efficiencies are 1 for almost every

condition.

Table 5: FRE of a confidence interval method using Cohen’s d to using AKP’s dR as effect size estimator

0.2 0.5 0.8

NCT BCa Perc NCT BCa Perc NCT BCa Perc

normal 0.8569 0.8703 0.8526 0.8851 0.883 0.8222 0.9189 0.907 0.8158

ltsym 1.8163 1.9647 1.7756 1.6122 1.9074 1.4528 1.7143 2.1034

ltskew 2.0145 2.2653 1.8912

exp 1.2385 1.2766 1.2332 1.2 1.3271 1.1569 1.2381 1.3529 1.0426

Table 6: FRE of a confidence interval method using Hedges’s g to using AKP’s dR as effect size estimator

0.2 0.5 0.8

NCT BCa Perc NCT BCa Perc NCT BCa Perc

normal 0.863 0.8703 0.8526 0.931 0.883 0.8222 1.0541 0.907 0.8158

ltsym 1.8286 1.9647 1.7756 1.7143 1.9074 1.4528 1.7143 1.7931

ltskew 2.0507 2.2653 1.8912

exp 1.2462 1.2766 1.2332 1.24 1.3271 1.1569 1.3571 1.3529 1.0426

Tables 5 and 6 display that the finite relative efficiency of one method using different

effect size estimators varies widely depending on the population’s distribution. At normally

distributed parent populations, all three analyzed confidence interval constructing methods

show higher relative efficiency when Cohen’s d or Hedges’s g were used as effect size estima-

tors instead of AKP’s dR, as at almost all conditions FRE < 1. However, at nonnormally

distributed parent populations all methods show to need a higher sample size to meet the

benchmarks when Cohen’s d or Hedges’s g were used as effect size estimators instead of

AKP’s dR. Here, extreme values of finite relative efficiencies are observable, such that for
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some conditions about twice the sample size was needed when using Cohen’s d or Hedges’s g.

As highlighted by underlined values in tables 1 to 6, at six conditions the search algorithm

did not find a sample size at which both criteria are met (m0) for all datasets generated by

the simulation procedure.

In case of symmetric distributed parent populations with long tails, when the size of the

effect was 0.5 for only 99.5% of the generated datasets for the NCT method using AKP’s

dR as effect size estimator and for 99.9% of generated datasets for the BCa method using

AKP’s dR, an m0 could be found. When the size of the effect was 0.8 for the latter at 12.7%

of the generated datasets an m0 was found by the search algorithm. At asymmetrically

distributed parent populations with long tails, when the effect size was δ = 0.5 for the NCT

method using Hedges’s g as effect size estimator, only for 23.1% of all generated datasets an

m0 was determinable. In this condition, for the BCa method an m0 was only determinable

in 1.4% of all generated datasets. By using Cohen’s d as effect size estimator only in 0.1%

of all generated datasets an m0 was determinable for this method in this condition. For

no method at all a sample size at which the benchmarks were met was found when the

parent population’s distribution was skewed with long tails with effect size δ = 0.8. For the

percentile bootstrap method, no m0 was determinable when the size of the effect was 0.5

regardless of the effect size estimator used.

In these cases, for certain conditions the computed confidence intervals achieved a cov-

erage probability of 0.95 at a very low sample size, at which however the intervals were too

wide to exclude the value zero with high probability, while at other conditions the computed

confidence intervals did not achieve a coverage probability of 0.95 at all. These findings on

confidence intervals methods’ performances on coverage probability are in line with those by

Algina et al. (2005) and Algina et al. (2006b), which are demonstrating coverage probabil-

ity’s rapidly increasing divergence from nominal levels as the population effect size increases.

6. Discussion

This paper is the first to compare the performance of methods to compute confidence

intervals around effect sizes based on finite relative efficiency as quotient of two methods’
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minimum sample sizes required to include the population effect with coverage probability

of at least 95% and simultaneously to exclude the value ’zero’ with power of at least 80%.

As the usage of effect sizes and corresponding confidence intervals is highly recommended

and increasingly demanded for reporting research’s findings, this study seeks to add to the

understanding of these methods, the reduction of uncertainty with their application and the

further dissemination of these methods.

The main finding was that for certain conditions no sample size could be found at which

coverage probability was at least 95% and power was at least 80% for any of the considered

methods. Hence, results showed that confidence interval methods’ performances are strongly

influenced by the parent populations’ distributions. The higher a population’s distribution’s

variance, the larger m0 as a high standard deviation inflates a confidence interval’s width,

whereas the broader a confidence interval, the more observations are needed to increase

estimation precision and thus reduce the interval’s width such that the value ’zero’ is not

included. These findings are even more intensivied the larger the size of the population effect

as the mean difference found for both samples has to be even larger at a large population

variance to detect a large effect size.

Moreover, this finding highlights the importance of not only analyzing coverage probabil-

ity, but also power when examining the performance of confidence intervals around effect

sizes. Overall, confidence interval methods showed to require more observations to meet the

benchmark of 80% of them not including the value ‘zero’, as they do for reaching a cover-

age probability of 95%. Exceptions are those cases in which at no sample size a coverage

probability of 95% could be found. This finding is in contrast to Algina et al. (2005)’s ar-

gumentation on the performance of confidence interval methods stating that ’it will often

require larger sample sizes to achieve adequate accuracy than it does to achieve adequate

power’ (Algina et al., 2005). In addition, this result suggests that Kelley (2005)’s consider-

ation on confidence intervals decreasing power in case its coverage probability is increasing

to meet the nominal level can be refused.

Another finding was that the BCa method showed the worst performance compared

to NCT and Perc over almost all considered conditions. This observation is due to the fact

that confidence intervals constructed using the BCa method are relatively broader than those
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built using the methods NCT or Perc, inducing a worse power at smaller sample sizes. This

weakness regarding the performance of confidence intervals around effect sizes built using

the BCa method was already detected by Kelley (2005), who nevertheless recommended it.

Mixed results were observable for the relative efficiency of NCT compared to Perc over

all conditions (see table 3). Considering that confidence intervals built using AKP’s dR as

effect size estimator provide high finite relative efficiency (see tables 5 and 6), the results of

this paper show that the NCT method performs better than the Perc method when AKP’s

dR is used as effect size estimator over all conditions (see table 3). This observation is in

contrast to findings from Algina et al. (2006b) that recommend to build confidence intervals

via the Perc method when their effect size estimator dR is used. This recommendation

however was not based on the power criterion but only on the coverage probability criterion.

This paper argues that the high relative efficiency of confidence intervals computed with the

NCT method using dR as effect size estimator justifies the recommendation of its usage even

at situations in which the assumption of normality is violated. As this recommendation is

based on a comparison of minimum required sample size, it could be especially useful for

the behavioral, educational or social sciences, which regularly face restrictions on available

observations.
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Büning, H. and Trenkler, G. (1978). Nichtparametrische Statistische Methoden. Walter de

Gruyter Verlag, Berlin.

Cohen, J. (1969). Statistical power analysis for the behavioral sciences. Psychology Press,

New York, USA.

Cumming, F. (2001). A primer on the understanding, use, and calculation of confidence

intervals that are based on central and noncentral distributions. Educational and Psycho-

logical Measurement, 61:385–391.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their applications. Cam-

bridge University Press, Cambridge.

Dixon, W. J. (1960). Simplified estimation from censored normal samples. Annals of Math-

ematical Statistics, 31(2):385–391.

21



Efron, B. (1979). Bootstrap methods: another look at the jacknife. Annals of Statistics,

7:1–26.

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapmen & Hall,

New York.

Hedges, L. V. (1981). Distribution theory for glass’s estimator of effect size and related

estimators. Journal of Educational Statistics, 6:107–128.

Hoaglin, D. C., Mosteller, F., and Tukey, J. W., editors (1985). Exploring data tables, trends,

and shapes. John Wiley & Sons, Inc., Hoboken, USA.

Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the

standardized mean difference: Bootstrap and parametric confidence intervals. Educational

and Psychological Measurement, 65(1):51–69.

Kelley, K. (2007a). Confidence intervals for standardized effect sizes: theory, application,

and implementation. Journal of Statistical Software, 20(8).

Kelley, K. (2007b). Methods for the behavioral, educational, and social sciences: An r

package. Behavior research methods, 39:979–984.

Keselman, H. J., Algina, J., and Fradette, K. (2005). Robust confidence intervals for effect

size in the two-group case. Journal of Modern Applied Statistical Methods, 4(2):353–371.

Kirby, K. N. and Gerlanc, D. (2013). Bootes: An r package for bootstrap confidence intervals

on effect sizes. Behavior research methods, 45(4):905–927.

Knuth, D. E. (1998). The art of computer programming: 3: Sorting and Searching. Addison-

Wesley Professional, Mass.

Maxwell, S. E., Kelley, K., and Rausch, J. R. (2008). Sample size planning for statistical

power and accuracy in parameter estimation. Annual review of psychology, 59:537–563.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psy-

chological Bulletin, 105:156–166.

22



Peng, C.-Y., J., Chen, L.-T., Chiang, H.-M., and Chiang, Y.-C. (2013). The impact of apa

and aera guidelines on effect size reporting. Educational Psychology Review, 25(2):157–209.

Revelle, W. (2016). psych: Procedures for personality and psychological research: Version

1.6.12. Northwestern University, Evanston.

Steiger, J. H. and Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation

of statistical models. In Harlow, L., Mulaik, S., and Steiger, J. H., editors, What if there

were no significance tests? Erlbaum, Hillsdale, USA.

Thompson, B. (2002). What future quantitative social science research could look like: con-

fidence intervals for effect sizes. Educational Researcher, 31:25–32.

Trafimow, D. and Marks, M. (2014). Editorial. Basic and Applied Social Psychology, 37(1):1–

2.

Viechtbauer, W. (2007). Approximate confidence intervals for standardized effect sizes in the

two-independent and two-dependent samples design. The Annals of Statistics, 32(1):39–60.

Wasserstein, R. and Lazar, N. (2016). The asas statement on p-values: context, process, and

purpose. The American Statistician, 70(2).

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing. Elsevier

Acad. Press, Amsterdam.

Yuen, K. K. and Dixon, W. J. (1973). The approximate behaviour and performance of the

two-sample trimmed t. Biometrika, 60:369–374.

23


	Introduction
	Theoretical Framework
	Performance Criteria and Finite Relative Efficiency
	Simulation Procedure
	Results
	Discussion

