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Abstract
In this article, consistency and asymptotic normality of the quasi-maximum likelihood es-

timator (QMLE) in the class of polynomial augmented generalized autoregressive conditional
heteroscedasticity models (GARCH) is proven. The result extends the results of the standard
GARCH model to the class of polynomial augmented GARCH models which contains many
commonly employed GARCH models as special cases. The results are obtained under mild
conditions.

Keywords: Asymptotic normality; consistency; polynomial augmented GARCH models; quasi-
maximum likelihood estimation.

1. Introduction

Since the introduction of the autoregressive conditional heteroscedastic model (ARCH)
and its successful application to the variance of the UK’s inflation rate by Engle [11],
there has been a growing interest in these models. Especially, the extension to the linear
GARCH (LGARCH) model of Bollerslev [5] has made it possible to capture many char-
acteristics of financial data with one single model. One of these characteristics is that the
conditional standard deviation of stock returns, usually referred to as volatility, seems
to vary over time. Second, the variation of volatility shows some clustering behavior,
meaning the existence of periods in which volatility is high and periods in which it is
low, cf. McNeil et al. [31]. Bollerslev et al. [6] considers not only stock returns but also
interest rates or exchange rates as possible fields of application.

This article focuses on parameter estimation of general GARCH models. Typically, the
Gaussian maximum-likelihood estimator, also called quasi-maximum likelihood estimator
(QMLE) is employed to adapt a GARCH process to data. Starting with Weiss [44],
consistency and asymptotic normality have been derived for the QMLE under different
assumptions by various authors, cf. Lee and Hansen [29], Lumsdaine [30], Jeantheau
[25], Berkes et al. [3] or Francq and Zaköıan [15] among others. Nevertheless, these
results are only applicable to the QMLE in the LGARCH model. The first reference to
derive general asymptotic results of the QMLE in a broader class of GARCH models,
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2 Fabian Tinkl

including the LGARCH, a general class of asymmetric GARCH (AGARCH) models as
well as the exponential GARCH (EGARCH) model of Nelson [34] is given by Straumann
and Mikosch [42]. However, they only show consistency and asymptotic normality of
the QMLE for the LGARCH and AGARCH setting. The consistency of the QMLE
for the EGARCH model is shown under strict assumptions and the necessary moment
conditions on the process are hard to verify. The asymptotic normality of the QMLE
remains an open question. Recently, Pan et al. [35] and Hamadeh and Zaköıan [17]
have shown consistency and asymptotic normality of the QMLE within the framework
of power transformed threshold GARCH models that generalize the threshold GARCH
model (TGARCH) of Zaköıan [46]. It can be concluded from Pan et al. [35, Theorem 1]
that the assumptions needed to ensure consistency and asymptotic normality are quite
similar for the TGARCH and the LGARCH model. The aim of this article is to generalize
these results to augmented GARCH models that contain all the models mentioned above
as special cases. The conditions are easily verified as soon as a specific GARCH model is
considered.

As an illustration of this approach, consistency and asymptotic normality of the QMLE
in the LGARCH and TGARCH setting is shown. It can be seen that the assumptions co-
incide with the ones in Francq and Zaköıan [15] and Hamadeh and Zaköıan [17]. Moreover,
consistency and asymptotic normality of the QMLE for all the members of the polyno-
mial GARCH and of the power transformed GARCH family discussed in Hentschel [20]
can be derived. Additionally, an estimator for the variance-covariance matrix is proposed.

This article is structured as follows. In Section 2 the probabilistic structure of the
augmented GARCH(1,1) model is briefly discussed and some results that are needed in
the subsequent discussions are provided. Consistency and asymptotic normality of the
QMLE in augmented GARCH models is shown in Section 3. To illustrate the results,
Section 4 shows asymptotic properties of the QMLE in the LGARCH and TGARCH
setting. Finally, Section 5 contains proofs.

2. Probabilistic structure of augmented GARCH
models

Throughout this article, the gradient of a function f : θ → R is written as ∇θf(θ) which
is a column-vector of dimension d when θ ∈ Rd and the Hessian matrix as

∇2
θf(θ) =


∂2f(θ)
∂θ21

... ∂2f(θ)
∂θ1∂θd

...
. . .

...
∂2f(θ)
∂θd∂θ1

... ∂2f(θ)
∂θ2d


which is of dimension d× d. The notation ∇3

θf(θ) denotes the third partial derivative of
f w.r.t θ. The third partial derivative can be calculated as in Rao and Rao [37, p. 225
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Maximum likelihood estimation in augmented GARCH models 3

ff.]. Define H := ∇2
θf(θ) then, the derivative

∂H

∂θ
= ∇θH

is understood as the following matrix derivative:

∇θH =
∂vec(H)

∂(vec(θ))′
,

where vec(H) is the vec-operator formed by writing the columns of the matrix H one
below the other. Therefore, vec(H) is of dimension d2 and ∇θH is a d2 × d matrix. The
notation ‖A‖ <∞ means that maxi,j |ai,j | <∞. The expected value of a matrix is taken

componentwise and An
a.s.→ 0 indicates that every component of the matrix An converges

a.s. to 0 as n→∞. A sequence of random elements (fn)n∈Z with values in some normed
vector (B, ‖‖) converges a.s. towards 0 if limn→∞ P (supm≥n ‖fm‖ ≥ ε) = 0 for all ε > 0.
The abbreviation e.a.s. is employed for indicating that

ρn‖fn‖
a.s.→ 0

for n → ∞ and some ρ > 1, similar to Straumann and Mikosch [42]. Thus, if ‖fn‖ ≤
Zρ−n a.s. for some positive random variable Z, it follows that ‖fn‖

e.a.s→ 0. Finally, let
log+ x := log(max(x, 1)). In this section, the probabilistic structure of the augmented
GARCH model introduced by Duan [10] is discussed. Based on the work of e.g. Duan
[10], Carrasco and Chen [8], Aue et al. [1] and Hörmann [23] many useful results on
stationarity, ergodicity, and the existence of moments are available. First, some results
of Hörmann [23] on strict stationarity and the existence of moments of these models are
reviewed. To keep notation simple, only the case p = q = 1 is considered. The general-
ization to arbitrary order models is straightforward with minor changes in the proofs,
because all results on stationarity and ergodicity carry over to GARCH models of arbi-
trary order, cf. Lee and Shin [28]. Apart from that, Hansen and Lunde [18] demonstrated
that a simple LGARCH(1,1) specification fits financial data reasonable well. The follow-
ing definition of an augmented GARCH(1,1) model is similar to the definition given by
Francq and Zaköıan [16] and Hörmann [23].

Definition 2.1. Let g(x) and c(x) be real-valued and measurable functions and assume
that εt is an i.i.d. sequence. Assume that the stochastic recurrence equation

ht := h(σ2
t ) = c(εt−1)ht−1 + g(εt−1), (2.1)

has a strictly stationary solution and assume ht : R+ → R+ is an invertible function.
Then, an augmented GARCH(1,1) process (Xt)t∈Z is defined by the equations

Xt = σtεt

σ2
t = h−1t . (2.2)
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4 Fabian Tinkl

For the functions c(x), g(x) and h(x) some assumptions have to be made in order to
get a solution to the stochastic equations in (2.1). A solution is called non-anticipative
if ht is independent from σ(εs : s ≥ t) and irreducible if ht 6= x ∈ R, such that g(ε0) =
x(1− c(ε0)). In the latter case g(ε0) and c(ε0) are linear combinations of each other and
ht reduces to a constant value x. For instance, let g(ε0) ≡ 1, c(ε0) ≡ β with 0 < β < 1
then, it holds that

ht =

∞∑
i=1

βi−1 = 1/(1− β)

which is constant. Hence, x = 1/(1 − β) ∈ R+ and instead of an augmented GARCH
process a simple white noise process with E[X0] = 0 and E[X2

0 ] = (1−β)−1 is considered.
Using the notation of non-anticipativity and irreducibility, the following theorem can be
derived from Hörmann [23, Theorem 1] and Hörmann [23, Theorem 2]

Theorem 2.1. Assume that εt is i.i.d. and that

E[log |c(ε0)|] < 0, (2.3)

E[log+ |c(ε0)|] and E[log+ |g(ε0)|] are finite. Then, for every t ∈ Z the series

ht =

∞∑
i=1

g(εt−i)
∏

1≤j<i

c(εt−j), (2.4)

is a.s. convergent and ht is the unique and strictly stationary solution of the equation
(2.1). Conversely, if εt is i.i.d. and ht is irreducible, the equation (2.2) has a strictly
stationary non-anticipative solution. The series in (2.4) converges a.s. and is the unique
stationary solution of equation (2.2).

Let h(σ2
t ) = σ2

t , c(εt) = β + αε2t and g(εt) = ω, then, the LGARCH(1,1) model of
Bollerslev [5] is obtained. To ensure that ht : R+ → R+ is bijective and increasing it is
required to have ω > 0, α, β ≥ 0. Since c(x) and g(x) are continuous functions of x, they
are measurable. The conditions for strict stationarity becomes

−∞ < E[log(β + αε20)] < 0 (2.5)

. Hence, the unique and strictly stationary solution ht is of the form

σ2
t = ω

∞∑
i=1

i−1∏
j=1

(β + αε2t−j). (2.6)

It is shown in Nelson [33, Theorem 2] that, if ω > 0, α > 0 and β ≥ 0, the LGARCH(1,1)
model admits a strictly stationary solution if and only if−∞ < E[log(β+αε20)] < 0. More-
over, he proves the uniqueness of this solution. A generalization to arbitrary GARCH(p,q)
process is given by Bougerol and Picard [7]. Conclude from Jensen’s inequality that

E[log(β + αε20)] ≤ log(β + αE[ε20]) < 0.
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Maximum likelihood estimation in augmented GARCH models 5

Therefore, if E[ε20] = 1 is assumed, a sufficient criterion for the existence of a strictly
stationary solution is given by α+β < 1. Yet, this is also the condition for weak station-
arity of the LGARCH(1,1) process, cf. Bollerslev [5, Theorem 1]. Thus, the existence of a
weakly stationary solution implies the existence of a strictly stationary solution provided
εt is an i.i.d. sequence and both solutions must coincide. In particular, if α + β = 1 the
LGARCH(1,1) is sometimes called an integrated GARCH(1,1) (IGARCH(1,1)) model.
This process is strictly stationary but not weakly stationary as V ar(X0) =∞. Note that
ergodicity is obtained because h is a measurable function of the i.i.d. sequence εt. The
next theorem gives conditions for the existence of E[h(σ2

0)s] and E[Xs
0 ] for some s > 0.

This result can be found in Aue et al. [1, Theorem 2.2] and Hörmann [23, Theorem 3].

Theorem 2.2. Let (Xt, ht)t∈Z be strictly stationary, εt an i.i.d. sequence and E[|g(ε0)|s] <
∞ for some s > 0.

1. If E[|c(ε0)|s] < 1, then E[|h(σ2
0)|s] <∞ holds.

2. If c(ε0) ≥ 0, g(ε0) ≥ 0 a.s. and E[|h(σ2
0)|s] <∞, then E[|c(ε0)|s] < 1 follows.

If E[ε20] = 1 is assumed, then in the LGARCH case it is well-known that E[|c(ε0)|] =
E[αε20 +β] = α+β < 1 is necessary and sufficient for E[σ2

0 ] <∞ and, thus, E[X2
0 ] <∞.

3. Main results

Suppose, the volatility function ht depends on an unknown parameter-vector θ ∈ Rd; i.e.

ht(θ) := cθ(εt−1)ht−1(θ) + gθ(εt−1). (3.1)

The parameter may appear in the function c(x) or g(x). For instance, consider the
LGARCH(1,1) model. Then, the parameter of interest is given by θ = (ω, α, β) and
cθ(x) = αx+β and gθ = ω. In order to guarantee that the process Xt is strictly station-
ary and ergodic it is assumed that the conditions of Theorem 2.1 are met. The conditional
variance process has the following unique a.s. representation:

σ2
t (θ) = h−1

 ∞∑
i=1

gθ(εt−1−i)
∏

1≤j<i

cθ(εt−i)

 . (3.2)

In this section strong consistency and asymptotic normality of the QMLE in augmented
GARCH(1,1) models is derived. The true, but unknown parameter is denoted by θ0.
When working with real data, only finitely many data points are observed. Therefore, it
is common to consider the finite sample version to (3.2), that is,

σ̃2
t = h−1

 t∑
i=1

gθ(εt−1−i)
∏

1≤j<i

cθ(εt−i)

 , (3.3)
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6 Fabian Tinkl

cf. Berkes et al. [3], Francq and Zaköıan [15], Straumann and Mikosch [42] and Hörmann
[23]. The logarithm of the Gaussian likelihood is given by

L̃n(θ) =

n∑
t=1

l̃t := −1/2

n∑
t=1

log σ̃2
t (θ) +

X2
t

σ̃2
t (θ)

(3.4)

modulo a constant. A QMLE is obtained as the measurable solution θ̂n of

θ̂n = arg max
θ∈K

n−1L̃n(θ) = arg max
θ∈K

n−1
n∑
t=1

log σ̃2
t +

X2
t

σ̃2
t

, (3.5)

where K is some compact set of Rd. Note that Xt = σt(θ0)εt. However, since σ̃2
t is neither

stationary nor ergodic, cf. Straumann and Mikosch [42], it is necessary to work with the
ergodic and stationary approximation σ2

t from equation (3.2) instead of σ̃t. Denote

Ln(θ) =

n∑
t=1

lt := −1/2

n∑
t=1

log σ2
t (θ) +

X2
t

σ2
t (θ)

the Gaussian likelihood if σ2
t is employed instead of σ̃2

t and, similarly,

L(θ) = Eθ0
[l0(θ)].

The results of this section are derived using the following two steps. First, assuming σ2
t is

observable, consistency of an estimator θ̂
∗
n is established that is obtained by replacing σ̃2

t

in equation (3.5) with σ2
t . Second, it is proven that the estimator θ̂n of (3.5) converges

a.s. to θ̂
∗
n. This procedure is standard in the literature, cf. Berkes et al. [3], Francq and

Zaköıan [15] or Straumann and Mikosch [42]. To ensure that the conditions of Theorem
2.1 hold, it is necessary to restrict the feasible values of the parameter θ0. Let θ0 ∈ K,
such that (Xt)t∈Z is strictly stationary and ergodic and let K be some compact subset
of Rd. Moreover, let h(σ2

t ) = (σ2
t )δ, for some δ > 0. In order to derive strong consistency

the following restrictions on cθ(x) and gθ(x) are imposed.

(C1) It holds that a.s. cθ0
(ε0) ≥ 0, gθ0

(ε0) ≥ 0 and σ2
0(θ) ≥ h̄ > 0 for all θ ∈ K.

(C2) Additionally, it holds that Eθ0
[|cθ0

(ε0)|s] < 1 and Eθ0
[|gθ0

(ε0)|s] < ∞ for some
s > 0.

(C3) The function h(σ2
t (θ)) = σ2δ

t (θ) is continuous in θ ∈ K for all t.

(C4) For every θ ∈ K the following identifier condition holds: σ2
0(θ)

a.s.
= σ2

0(θ0) if and
only if θ = θ0.

The next theorem establishes consistency of the QMLE for augmented GARCH models
with the choice h(x) = xδ. Observe that Eθ0

[|gθ0
(ε0)|s] <∞ implies Eθ0

[log+ |gθ0
(ε0)|] <

∞.

Theorem 3.1. Let 0 < δ and let θ0 ∈ K for some compact set K ⊂ Rd. Assume that
the process (Xt)t∈Z is strictly stationary and (C1)-(C4). Let E[ε0] = 0 and E[ε20] = 1.

Then, it follows that θ̂n
a.s.→ θ0.
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Maximum likelihood estimation in augmented GARCH models 7

Remark 3.1. To the best of the author’s knowledge, consistency of the QMLE for the
class of augmented GARCH(1,1) models has not been studied before. Straumann and
Mikosch [42] considered a general class of GARCH models including the LGARCH model
and asymmetric GARCH model using a stochastic version of Banach’s fixed point theo-
rem, cf. Straumann and Mikosch [42, Theorem 2.8]. However, their conditions are hard to
verify and detailed discussions are necessary for every specific model, cf. Straumann and
Mikosch [42, Section 5]. In contrast to their assumptions, the conditions (C1)-(C4) are
verified by straightforward calculations as soon as a specific augmented GARCH model
is considered.

Remark 3.2. The assumption E[ε0] = 0 is only made for convenience as it corresponds
to the efficient market hypothesis E[Xt|Ft−1] = 0 a.s., cf. White [45]. In Francq and
Zaköıan [15] the assumption E[ε0] = 0 is dropped, cf. their Remark 2.5. The assumption
E[ε2t ] = 1 is not restrictive as long as E[ε2t ] <∞, cf. Berkes and Horváth [2].

To establish asymptotic normality, it is convenient to make a first order Taylor series
expansion of ∇θLn(θ∗n), cf. Straumann and Mikosch [42] to obtain for n large enough:

∇θLn(θ∗n) = ∇θLn(θ0) +∇2
θLn(ξ)(θ∗n − θ0), (3.6)

here ξ is between θ∗n and θ0. Since θ∗n is the unique maximum of Ln(θ), it follows that
∇θLn(θ∗n) = 0. If

n−1∇2
θLn(ξ)

a.s.→ B−10 := Eθ0 [∇2
θ0
l0(θ0)] (3.7)

rearranging equation (3.6), yields

n−1∇2
θL
−1
n (ξ)(θ∗n − θ0) = −n−1∇θLn(θ0)
√
n(θ∗n − θ0) = −B−10 (1 + oP (1))n−1/2∇θLn(θ0). (3.8)

Applying a central limit theorem for martingale differences, cf. Billingsley [4, Theorem
18.3] or Heyde [22, Theorem 2] to the sum n−1/2∇θLn(θ0) yields

−B−10 (1 + oP (1))n−1/2∇θLn(θ0)
d→ N(0,B−10 SB−10 ),

where
S = Eθ0

[
∇θl0(θ0)∇

′

θl0(θ0)
]
.

To ensure that the variance-covariance matrix is well defined, it is assumed that

Eθ0
[‖∇θl0(θ0)‖] <∞. (3.9)

In addition, the condition

Eθ0 [‖∇2
θl0(θ0)‖K̃ ] <∞ (3.10)
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8 Fabian Tinkl

for some compact K̃ containing the true parameter θ0 is employed to show that (3.7)
holds. These assumptions are along the lines of Straumann and Mikosch [42] or Ferguson
[14, Theorem 18]. However, Lumsdaine [30], Berkes et al. [3], Francq and Zaköıan [15]
and Jensen and Rahbek [26] work with finite expectation of the third derivatives of l0
in a neighborhood of the true parameter in order to bound the second derivatives. This
may lead to some cumbersome calculations and is not necessary. In order to establish
asymptotic normality, the derivatives of the likelihood function

lt(θ) = −1/2

(
log σ2

t (θ) +
X2
t

σ2
t (θ)

)
(3.11)

are needed. Recall that for the augmented GARCH(1,1) model σ2
t is uniquely determined

by the relationship

σ2
t = h−1

 ∞∑
i=1

gθ(εt−i)

i−1∏
j=1

cθ(εt−j)

 =

 ∞∑
i=1

gθ(εt−i)

i−1∏
j=1

cθ(εt−j)

1/δ

.

Therefore, the partial derivative is obtained

∇θσ
2
t = 1/δ

 ∞∑
i=1

gθ(εt−i)

i−1∏
j=1

cθ(εt−j)

1/δ−1

∇θ

 ∞∑
i=1

gθ(εt−i)

i−1∏
j=1

cθ(εt−j)



= 1/δ


 ∞∑
i=1

gθ(εt−i)

i−1∏
j=1

cθ(εt−j)

1/δ


1−δ

∇θh(σ2
t )

= 1/δ(σ2
t )1−δ∇θ(σ2

t )δ. (3.12)

For instance, assuming δ = 1/2, yields ∇θσ
2
t = 2σt∇θσt and for δ = 1 the above

expression simplifies to ∇θσ
2
t = ∇θσ

2
t . Thus, the first derivative of lt(θ) is given by

∇θlt(θ) = −1/2

(
1− X2

t

σ2
t (θ)

)
∇θσ

2
t (θ)

σ2
t (θ)

(3.13)

and its second derivative by

∇2
θlt(θ) = −1/2

(
1− X2

t

σ2
t (θ)

)(
1

σ2
t (θ)
∇2

θσ
2
t (θ)

)
− 1/2

(
2
X2
t

σ2
t (θ)

− 1

)(
1

σ4
t (θ)
∇θσ

2
t (θ)∇

′

θσ
2
t (θ)

)
. (3.14)

The existence of both derivatives is an immediate consequence of the differentiability of
σ2
t (θ). The following assumptions are needed to ensure the asymptotic normality of the

QMLE.
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Maximum likelihood estimation in augmented GARCH models 9

(N1) The true parameter θ0 lies in the interior of K, denoted with K̊.
(N2) The distribution of εt is such that E[ε20] = 1 and E[ε40] <∞.
(N3) There exists a convex set K̃ ⊂ K, containing θ0, such that σ2

t (θ) is three times
continuously differentiable in θ with measurable derivatives such that

(i) Eθ0 [log+ ‖∇θσ
2
t (θ)‖K̃ ] <∞,

(ii) Eθ0
[log+ ‖∇2

θσ
2
t (θ)‖K̃ ] <∞,

(iii) Eθ0
[log+ ‖∇3

θσ
2
t (θ)‖K̃ ] <∞.

In addition, the following moment conditions hold:

(iv) Eθ0 [‖∇2
θl0(θ)‖K̃ ] <∞,

(v) Eθ0

[∥∥∥ 1
σ2
0(θ0)

∇θσ
2
0(θ0)

∥∥∥] <∞,

(vi) Eθ0

[∥∥∥ 1
σ2
0(θ0)

∇2
θσ

2
0(θ0)

∥∥∥] <∞,

(vii) Eθ0

[∥∥∥ 1
σ4
0(θ0)

∇θσ
2
0(θ0)∇′θσ2

0(θ0)
∥∥∥] <∞.

(N4) The components of ∇θσ
2
t (θ) are linearly independent random variables.

Assumption (N3) may easily fail to hold. For instance, in the TGARCH model of Zaköıan
[46], σ2

t (θ) is not continuous differentiable. Thus, the moment conditions (N3) have to
be verified directly. For simplicity, it is assumed without loss of generality that K̃ = K,
similar to Straumann [41, p. 116]. The next theorem establishes the asymptotic normality
of the QMLE.

Theorem 3.2. Let δ > 0 and let θ0 ∈ K̊ for some compact set K ⊂ Rd. Assume the
conditions of Theorem 3.1 and (N1)-(N4). Then, it follows that

√
n(θ̂n − θ0)

d→ N(0,Σ),

where

Σ = E[(ε40 − 1)]Eθ0

[
1

σ4
0(θ)
∇θσ

2
0(θ)∇

′

θσ
2
0(θ)

]−1
.

Remark 3.3. Assumption (N1) and (N2) are standard assumption, cf. Berkes et al. [3],
Francq and Zaköıan [15] or Straumann and Mikosch [42] and are necessary to ensure that

Σ is well defined and that the support of
√
n(θ̂n − θ0) is (−∞,∞)d. The assumptions

(N3) and (N4) are similar to assumptions (N3) and (N4) in Straumann and Mikosch [42].

They are needed to demonstrate that Σ is well defined and that θ̂n is asymptotic equiv-

alent to θ̂
∗
n. The moment conditions (N3i)-(N3iv) are similar to conditions (D1)-(D3) in

Straumann and Mikosch [42] and they may be easily verified as soon as a special GARCH
model is considered. Therefore, it suffices to show that for some s > 0 E[‖Y ‖sK ] < ∞
because E[‖Y ‖sK ] <∞ implies E[log+ ‖Y ‖K ] <∞ and Y stands for one the derivatives
of σ2

t .
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Model Specification

LGARCH(1,1) of Bollerslev [5] σ2
t = ω + αX2

t−1 + βσ2
t−1

AGARCH(1,1) of Ding et al. [9] σ2
t = ω + α(|Xt−1| − γXt−1)2 + βσ2

t−1

APGARCH(1,1) of Ding et al. [9] σd
t = ω + α((|Xt−1| − γXt−1)d + βσd

t−1

NGARCH(1,1) of Engle and Ng [12] σ2
t = ω + α(εt−1 − c)2σ2

t−1 + βσ2
t−1

VGARCH(1,1) of Engle and Ng [12] σt = ω + α(εt−1 − c)2 + βσ2
t−1

TSGARCH(1,1) of Schwert [40] σt = ω + α|Xt−1|+ βσt−1

Table 1. GARCH specification

Remark 3.4. To the author’s knowledge asymptotic normality of augmented GARCH
models has not been considered before. Table 1 shows some examples of GARCH speci-
fication for which the result applies.

The TGARCH model of Zaköıan [46], however, does not fulfill assumption (N3) be-
cause it is not continuously differentiable. The same holds true for the more general class
of power transformed TGARCH models as discussed among others in Hwang and Ba-
sawa [24], Pan et al. [35] and Hamadeh and Zaköıan [17]. However, the continuity of the
derivatives is only needed to apply a multivariate mean value theorem in Lemma 5.5.
When applied to the LGARCH(1,1) model, the assumptions actually coincide with the
findings in Francq and Zaköıan [15] and applied to the AGARCH model the assumptions
coincide with the ones given in Straumann and Mikosch [42]. In addition, asymptotic
normality of the QMLE for the NGARCH, VGARCH, the TSGARCH model and other
polynomial GARCH models may be derived which seemingly has not been established
before.

From Theorem 3.2 standard errors may be calculated using the variance-covariance
matrix Σ. However, Σ can not be calculated explicitly as the common distribution of an
augmented GARCH(1,1) model is not known. Thus, it seems reasonable to estimate Σ
via a matrix Ṽ n defined by:

Ṽ n(θ̂n) =

(
1

n

n∑
t=1

(ε̃t
4 − 1)

)(
1

n

n∑
t=1

1

σ̃4
t (θ̂n)

∇θσ̃
2
t (θ̂n)∇

′

θσ̃
2
t (θ̂n)

)−1
, (3.15)

where ε̃t = Xt/σ̃t(θ̂n). One can show, cf. Straumann and Mikosch [42, Remark 7.5] that

Ṽ n(θ) is a strongly consistent estimator. Therefore, let V n(θ̂n) be as Ṽ n(θ̂n) with σ̃t
replaced by σt. In a first step it can be shown that V n(θ̂n) is strongly consistent for Σ.
In a second step, it is proven that

‖Ṽ n(θ)− V n(θ)‖K
a.s.→ 0.

The following result is mentioned in Straumann and Mikosch [42, Remark 7.5] and im-
plicitly in Mukherjee [32, Proposition 3.11]. A proof is therefore omitted.

Proposition 3.3. Assume the conditions of Theorem 3.2. Then, the estimator defined
in (3.15) is strongly consistent for Σ.
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Maximum likelihood estimation in augmented GARCH models 11

4. Applications

4.1. The QMLE in the LGARCH model

Let Kc = [c, 1/c]2 × [0, 1− c] for some arbitrary small c > 0 such that (Xt)t∈Z is strictly
stationary and ergodic for θ0 ∈ Kc. Recall that the LGARCH(1,1) is obtained by setting
in model (2.1) g(εt) = ω, h(σ2

t ) = σ2
t and c(εt) = α + βε2t . The next corollary shows

consistency of the QMLE.

Corollary 4.1. Let εt be an i.i.d. sequence, not concentrated at two points with E[ε0] =
0 and E[ε20] = 1. Suppose the true parameter θ0 = (ω0, α0, β0) is in Kc such that 2.5

holds. Then θ̂n
a.s.→ θ0 if σ0(θ)

a.s.
= σ0(θ0).

Remark 4.1. Some cases are ruled out from consistency considerations. For example
assume α = 0, then σ2

t = ω + βσ2
t−1 and σ2

t is purely deterministic and independent of
(Xt)t∈Z. Thus, ω and β are not identifiable. Nevertheless, β = 0 is allowed and essentially
an ARCH(1) model is estimated. This result carries over to the GARCH(p,q) case as it
is shown for instance in Francq and Zaköıan [15] under additional assumptions.

Proof of corollary 4.1. One has to show that (C1)-(C4) of Theorem 3.1 hold under
the assumptions of Corollary 4.1. Since gθ(εt) = ω > 0 and cθ(εt) = αε2t + β > 0,
for α > 0, β ≥ 0 (C1) follows immediately. (C3) is obvious because h(σt(θ)) = σ2

t (θ) =

ω+αX2
t−1+βσ2

t−1 is a continuous function in θ = (ω, α, β). Under the condition σ0(θ)
a.s.
=

σ0(θ0) it follows that θ = θ0 by the proof of Francq and Zaköıan [15, Theorem 2.1] and
(C4) is fulfilled. It is left to show that (C2) holds. The second part of (C2) namely
E[|gθ(εt)|s] = E[ωs] < ∞ holds trivially for all ω > 0 and s > 0. Additionally, deduce
from Berkes et al. [3, Lemma 2.3] that if the LGARCH process is strictly stationary and
ergodic there exists some s > 0 such that E[σ2s

t ] <∞. Since (C1) holds an application of
the second part of Theorem 2.2 yields that E[|cθ(εt)|s] < 1. This completes the proof.

The next corollary shows the asymptotic normality of the QMLE. The assumptions
are the same as in Francq and Zaköıan [15, Theorem 2.2].

Corollary 4.2. Assume the conditions of Corollary 4.1, E[ε40] < ∞ and, in addition,
θ0 ∈ K̊c. Then, it follows that

√
n(θ̂n − θ0)

d→ N(0,Σ),

where

Σ = E[(ε40 − 1)]Eθ0

[
1

σ4
0(θ)
∇θσ

2
0(θ)∇

′

θσ
2
0(θ)

]−1
.

Proof. The conditions (N1)-(N4) of Theorem 3.2 have to be verified. (N1) and (N2)
are immediate. (N3iv)-(N3vii) are demonstrated in the proof of Francq and Zaköıan [15,
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12 Fabian Tinkl

Theorem 2.2] and (N4) is proven in Berkes et al. [3, Lemma 5.7] and Francq and Zaköıan
[15, Theorem 2.2], respectively. It is left to verify conditions (N3i)-(N3iii). It is merely
demonstrated that (N3i) holds since the remaining conditions are verified analogously.
Since the process is assumed to be strictly stationary, it follows from Berkes et al. [3,
Lemma 2.3] that there exists some s > 0 such that E[σ2s

t ] <∞ and, thus, E[X2s
t ] <∞.

In order to establish (N3i), it may fruitful to discuss the almost sure representation of
∇θσ

2
t (θ) which is obtained from the ARCH(∞) representation of σ2

t similar to Berkes
et al. [3] and Francq and Zaköıan [15, equation (4.4)]. Hence, the first partial derivative
of σ2

t is given by

∇θσ
2
t (θ) =

 1
1−β∑∞

i=1 β
i−1X2

t−i
ω

(1−β)2 + α
∑∞
i=1(i− 1)βi−2X2

t−i

 .

Observe that
Eθ0 [log+ ‖(1− β)−1‖Kc ] ≤ − log+ c <∞.

Turning to
∂σ2

t

∂α , it follows that
∂σ2

t

∂α ≤ σ2
t /α. Using Berkes et al. [3, Lemma 2.3], there

exists a s > 0 such that E[σ2s
t ] <∞. Therefore, it holds with Jensen’s inequality that

Eθ0

[
log+

∥∥∥∥∂σ2
t

∂α

∥∥∥∥
Kc

]
≤ Eθ0

[
log+ σ2

t − log+ ‖α‖Kc

]
≤ 1/s log+Eθ0 [σ2s

t ]− log+ c <∞.

From Hardy et al. [19, p. 24], it can be deduced that (a + b)s ≤ as + bs for 0 < s < 1
and, thus, together with Straumann and Mikosch [42, Lemma 2.2.] it follows that

Eθ0

[
log+

∥∥∥∥∂σ2
t

∂β

∥∥∥∥
Kc

]
≤ s−1 log+Eθ0

[(∥∥∥∥ ω

(1− β)2

∥∥∥∥
Kc

+ α

∞∑
i=1

(i− 1)‖βi−2X2
t−i‖Kc

)s]

≤ C1 + log+
∞∑
i=1

(i− 1)(1− c)(i−2)E[X2s
t−i] <∞,

where C1 := s−1 log+
(

ω
(1−β)2

)s
+ log+ α + 2 log 2 < ∞ and the series converges by an

application of Lemma 5.1. Thus, Theorem 3.2 applies and the assertion follows.

It is possible to derive consistency and asymptotic normality under weaker assump-
tions on the innovation process εt. Especially, the i.i.d. assumption may be dropped, cf.
Lee and Hansen [29] or Escanciano [13]. An alternative is to employ a martingale differ-
ence structure for the stationary and ergodic sequence εt together with stronger moment
assumptions as in Lee and Hansen [29] and Escanciano [13]. However, it seems question-
able whether weak dependence assumptions on εt are indeed that important as asserted
by Escanciano [13]. The main argument is that the i.i.d. assumption does not allow for
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time-varying skewness and kurtosis. Though Rockinger and Jondeau [38] and Jondeau
and Rockinger [27] among others claim this empirical finding, it is not an established
stylized fact and empirical studies are contradictory, cf. Herrmann [21] for an overview.
Therefore, the classical framework is considered and the i.i.d. assumption for εt is upheld.

4.2. The QMLE in the TGARCH model

Zaköıan [46] proposed an asymmetric GARCH model allowing for modeling the leverage
effect, i.e. that negative stock returns have a stronger influence on the volatility than
positive ones. A phenomenon often observed for financial market data, cf. McNeil et al.
[31]. Consistency and asymptotic normality of the QMLE are derived under similar con-
ditions as in the LGARCH(1,1) case. However, some problems arise because σt(θ) is not
continuous differentiable at least in the third component. The TGARCH(1,1) model is
obtained by setting gθ(εt) = ω, cθ(εt) = α+|εt| + α−max(0,−εt) + β and δ = 1/2 with
ω > 0, α+

1 , α
−
1 , β ≥ 0 for positivity of σt. Consistency and asymptotic normality of the

QMLE of this type of model was proven by Pan et al. [35] in a more general setting,
namely the power transformed TGARCH model and more recently it was proven again
using slightly different arguments by Hamadeh and Zaköıan [17]. Since the TGARCH
model is not continuous differentiability of σt, the results of the previous section do not
directly apply. Its first derivative w.r.t. θ is given by:

∇θσt(θ) = (1, |Xt−1|,max(0,−Xt−1), σt−1)
′

which is not continuous in its third component. Hence, assumption (N3) no longer holds.
Defining X−t−1 := max(0,−Xt−1), σt may be written as:

σt = ω + α+|Xt−1|+ α−X−t−1 + β(ω + α+X+
t−2 + α−X−t−2 + βσt−2)

= ω(1 + β + β2 + ...) + α+(|Xt−1|+ β|Xt−2|+ β2|Xt−3|+ ...)

+ α−(X−t−1 + βX−t−2 + β2X−t−3 + ...)

=
ω

1− β
+ α+

∞∑
i=1

βi−1|Xt−i|+ α−
∞∑
i=1

βi−1X−t−i. (4.1)

Thus, a strictly stationary TGARCH process (Xt)t∈Z can be represented as TARCH(∞)
process. Again, as in the LGARCH setting it is worked with the approximation σ̃t for
σt, based on a finite sample X1, ..., Xn of (Xt)t∈Z. Let

Kd = [d, 1/d]3 × [0, 1− d]

denote the compact parameter space for some d > 0. From Theorem 2.1 it can be deduced
that the TGARCH(1,1) model is strictly stationary and ergodic with an a.s. convergent
solution for σt if the condition

Eθ0
[log(β0 + α+

0 |εt|+ α−0 max(0,−εt))] < 0 (4.2)

holds. The next corollary states the consistency of the QMLE.
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14 Fabian Tinkl

Corollary 4.3. Let εt be an i.i.d. process, not concentrated at two points with E[ε0] =
0 and E[ε20] = 1. Suppose the true parameter θ0 = (ω0, α

+
0 , α

−
0 , β0) is in Kd such that

(4.2) holds. Then, θ̂n
a.s.→ θ0 if σ0(θ)

a.s.
= σ0(θ0).

Remark 4.2. Recently, Hamadeh and Zaköıan [17] proved this result for the power

transformed TGARCH model of the form Xt = σ
1/δ
t εt. The present result is a very

special case for δ = 1. The case α+ +α− = 0 is excluded from the considerations because
in that case σt is not irreducible.

Proof of corollary 4.3. The assumptions (C1) and (C3) are obviously fulfilled. (C4)

is shown in Hamadeh and Zaköıan [17] because σ0(θ)
a.s.
= σ0(θ0) implies θ = θ0, provided

εt is an i.i.d. sequence, not concentrated at two points. Finally, (C2) holds because there
exists a s > 0 such that E[ωs] <∞ for all ω and E[|β+α+|εt|+α−max(0,−εt)|s] < 1, cf.
Pan et al. [35, Theorem 6]. Thus, the conclusion follows from the second part of Theorem
2.2.

The next theorem states the asymptotic normality of the QMLE for the parameters
of the TGARCH(1,1) model. The same result was recently established by Hamadeh and
Zaköıan [17] under the same conditions. However, some different arguments in the proof
are used.

Theorem 4.4. Assume the conditions of Corollary 4.3, E[ε40] < ∞ and, in addition,
θ0 ∈ K̊d. Then, it follows that

√
n(θ̂n − θ0)

d→ N(0,Σ), (4.3)

where

Σ = E[(ε40 − 1)]Eθ0

[
4

σ2
0(θ0)

∇θσ0(θ0)∇
′

θσ0(θ0)

]−1
.

5. Proofs

The following lemma from Straumann and Mikosch [42] will be applied abundantly in
the following proofs.

Lemma 5.1. Let (ft)t∈Z be a sequence of real random variables with ft
e.a.s.→ 0 and

let (Xt)t∈Z be a sequence of identically distributed random variables in a separable
Banach space (B, ‖ · ‖). If E[log+ ‖X0‖] < ∞, then

∑∞
t=0 ftXt converges a.s., and one

has fn
∑n
t=0Xt

e.a.s.→ 0 and fnXn
e.a.s.→ 0 as n→∞.
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5.1. Proof of Theorem 3.1

Before proving Theorem 3.1, two lemmas are needed. The next lemma shows consistency

of the estimator θ̂
∗
n.

Lemma 5.2. Under the conditions of Theorem 3.1 it follows for n→∞ that

θ̂
∗
n
a.s.→ θ0.

Proof. The proof consists of the following steps. First, it is proven that

1/2Eθ0

[∣∣∣∣log σ2
0(θ0) +

X2
0

σ2
0(θ0)

∣∣∣∣] = Eθ0 [|l0(θ0)|] <∞. (5.1)

Second, it is shown that for every θ 6= θ0 L(θ) < L(θ0) holds. Third, using an argu-
ment as in Pfanzagl [36] and Ferguson [14, Theorem 16b] the strong consistency fol-
lows. To demonstrate (5.1) observe that the conclusion follows if Eθ0 [l−0 (θ0)] < ∞ and
Eθ0

[l+0 (θ0)] < ∞, where l+0 = max(0, l0) and l−0 = max(−l0, 0). Under assumption (C1)
it holds that

Eθ0
[l+0 (θ0)] < Eθ0

[log(max(σ2
0(θ0), 1))] < logEθ0

[max(σ2
0(θ0), 1)]

≤ max(0,− log h̄) <∞.

Additionally, under the conditions (C1) and (C2) there exists a s > 0 such that

Eθ0
[log σ2

0(θ0)] = Eθ0

[
1/s log(σ2

0(θ0))s
]
< 1/s logEθ0

[
(
σ2
0(θ)

)s
].

It is left to show that

Eθ0
[
(
σ2
0(θ)

)s
] = Eθ0


 ∞∑
i=1

gθ0
(ε−i)

i−1∏
j=1

cθ0
(ε−j)

s/δ
 <∞. (5.2)

Under assumption (C2) it follows from Hörmann [23, Theorem 3] that Eθ0
[h(σ2

0)s] <∞
and for δ ≥ 1 an application of Jensen’s inequality yields:

(Eθ0
[(σ2

0)s])δ ≤ Eθ0
[h(σ2

0)s] <∞

and equation (5.2) follows. For the case 0 < δ < 1 note that

Eθ0 [X2δ
0 ] = Eθ0 [σ2δ

0 ]E[ε2δ0 ] = Eθ0 [h(σ2
0)]E[ε2δ0 ] <∞

and (5.2) follows setting s = δ and an application of Hörmann [23, Theorem 3]. Hence,
it follows that Eθ0

[l−0 (θ0)] <∞ and (5.1) is proven. Next, it is shown that

−1/2Eθ0

[
log σ2

0(θ0) +
X2

0

σ2
0(θ0)

]
≥ −1/2Eθ0

[
log σ2

0(θ) +
X2

0

σ2
0(θ)

]
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16 Fabian Tinkl

holds with equality if and only if σ2
0(θ)

a.s.
= σ2

0(θ0). Rearranging the equation, leads to

−1/2Eθ0

[
log σ2

0(θ0)− log σ2
0(θ) +

X2
0

σ2
0(θ0)

− X2
0

σ2
0(θ)

]
≥ 0. (5.3)

Recall that X2
0 = σ2

0(θ0)ε20 and E[ε20] = 1. Therefore, the estimate in (5.3) is equivalent
to

Eθ0

[
log

σ2
0(θ0)

σ2
0(θ)

− σ2
0(θ0)

σ2
0(θ)

]
≤ −1.

For x > 0 the estimate
log(x) ≤ x− 1

is strict, with equality if and only if x = 1. Set x =
σ2
0(θ0)

σ2
0(θ)

, then, it holds that

Eθ0

[
log

σ2
0(θ0)

σ2
0(θ)

− σ2
0(θ0)

σ2
0(θ)

]
= −1,

if and only if σ2
0(θ0) = σ2

0(θ). Since condition (C4) ensures that σ2
0(θ0)

a.s.
= σ2

0(θ) if and
only if θ = θ0 and θ0 is the maximizer of L(θ), L(θ) < L(θ0) follows for all θ 6= θ0.
Following Ferguson [14, Theorem 16b] it is left to show that

P (lim sup
n→∞

sup
θ∈C

n−1Ln(θ) ≤ sup
θ∈C

L(θ)) = 1 (5.4)

for any compact set C ⊂ K. The same argument is employed in Pfanzagl [36, Lemma
3.11] and Straumann [41, Theorem 5.3.1]. Recall that

Eθ0

[∣∣∣∣log σ2
0(θ0) +

X2
0

σ2
0(θ0)

∣∣∣∣] <∞.
Hence, by the ergodic theorem it holds for every fixed θ that

n−1Ln(θ)
a.s.→ Eθ0

[l0(θ)].

Since (5.1) holds, 5.4 follows from Ferguson [14, Theorem 16b]. Consistency follows by
compactness arguments analogue to Wald [43, Theorem 2].

In order to demonstrate n−1‖L̃n(θ) − Ln(θ)‖K , the following intermediate result is
proven first.

Lemma 5.3. Under the assumption of Theorem 3.1 it follows that

‖ log σ2
t − log σ̃2

t ‖K
e.a.s.→ 0

and
‖(σ2

t )−1 − (σ̃2
t )−1‖K

e.a.s.→ 0.
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Proof. Suppress the dependence of σ2
t on θ for easier notation. Since h(x) = xδ is a

continuous function for every δ > 0, x ∈ (0,∞), and y = h(x) > 0 under assumption
c(ε0), g(ε0) ≥ 0 the inverse function h−1(y) = y1/δ is uniquely defined for every y > 0.
Denote h̃t = h(σ̃2

t ). Then, applying Hörmann [23, Lemma 5] yields

P (|ht − h̃t| > exp(−αt)) ≤ C2 exp(−ρt)→ 0,

for t → ∞ and some constants C2 > 0 and ρ > 0. Denote ft := |ht − h̃t|, then, a.s.

ft ≥ ft+1. In addition, ft is continuous on K by assumption (C3) and ft
e.a.s→ 0 for fixed

θ ∈ K. Applying Rudin [39, Theorem 7.13], it may be concluded that ‖ht− h̃t‖K
e.a.s.→ 0.

Recall that h(x) is differentiable w.r.t. x and so is h−1(x). Thus, applying the mean value
theorem, yields

‖σ2
t − σ̃2

t ‖K = ‖h−1(ht)− h−1(h̃t)‖K

≤
∥∥∥∥ 1

δ(σ̂2
t )δ−1

∥∥∥∥
K

‖ht − h̃t‖K

≤ 1

δ(h̄)δ−1
‖ht − h̃t‖K

e.a.s.→ 0.

Here, σ̂2
t ≥ h̄ is between σ2

t and σ̃2
t . This shows that ‖σ2

t − σ̃2
t ‖K

e.a.s.→ 0 for t → ∞.
Applying the mean value theorem to the sequence log σ2

t , it follows that

‖ log σ2
t − log σ̃2

t ‖K ≤
∥∥∥∥ 1

σ̂t
2

∥∥∥∥
K

‖σ2
t − σ̃2

t ‖K ≤
1

h̄
‖σ2

t − σ̃2
t ‖K

e.a.s.→ 0

by assumption (C1). Proceeding essentially the same way, it follows that

‖(σ2
t )−1 − (σ̃2

t )−1‖K =

∥∥∥∥ σ̃2
t − σ2

t

σ̃2
t σ

2
t

∥∥∥∥
K

≤
∥∥∥∥ σ̃2

t − σ2
t

h̄2

∥∥∥∥
K

e.a.s.→ 0.

Proof of Theorem 3.1. First, recall that the augmented GARCH process is assumed

to be strictly stationary and ergodic. An application of Lemma 5.2 shows that θ̂
∗
n
a.s.→ θ0.

It is left to show that

1

n
‖Ln(θ)− L̃n(θ)‖K

a.s.→ 0. (5.5)

From Lemma 5.3 there exist constants C2, C3 > 0, such that

‖ log σ2
t (θ)− log σ̃2

t (θ)‖K ≤ C2‖σ2
t (θ)− σ̃2

t (θ)‖K

and ∥∥(σ2
t (θ))−1 − (σ̃2

t (θ))−1
∥∥
K
≤ C3‖σ2

t (θ)− σ̃2
t (θ)‖K .
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Hence, using the triangle inequality, yields

‖Ln(θ)− L̃n(θ)‖K =

∥∥∥∥∥
n∑
t=1

log σ2
t (θ) +

X2
t

σ2
t (θ)

− log σ̃2
t (θ)− X2

t

σ̃2
t (θ)

∥∥∥∥∥
K

≤
n∑
t=1

∥∥log σ2
t (θ)− log σ̃2

t (θ)
∥∥
K

+X2
t

∥∥(σ2
t (θ))−1 − (σ̃2

t (θ))−1
∥∥
K

≤
∞∑
t=1

(1 + C4X
2
t )C2‖σ2

t (θ)− σ̃2
t (θ)‖K ,

where C4 = C3/C2. Since ‖σ2
t (θ) − σ̃2

t (θ)‖K
e.a.s.→ 0, apply Lemma 5.1 to conclude that

the series
∞∑
t=1

X2
t ‖σ2

t (θ)− σ̃2
t (θ)‖K

converges a.s. if E[log+X2
0 ] <∞. Since (Xt)t∈Z is strictly stationary and ergodic together

with (C1) and (C2), it holds that E[X2s
0 ] < ∞ for some s > 0, which in turn implies

E[log+X2
0 ] <∞ by Jensen’s inequality. Hence, the conditions of Lemma 5.1 are fulfilled

and equation (5.5) follows for n → ∞ because ‖Ln(θ) − L̃n(θ)‖K is a.s. bounded. This
completes the proof of Theorem 3.1.

5.2. Proof of Theorem 3.2

First, it is shown for the estimator θ̂
∗
n. Second, the asymptotic equivalence of θ̂n and θ̂

∗
n

is proven. This is established by showing that
√
n‖θ̂n − θ̂

∗
n‖

a.s.→ 0 for n→∞.

Lemma 5.4. Assume the conditions of Theorem 3.2. Then, it follows that

√
n(θ̂
∗
n − θ0)

d→ N(0,Σ),

and Σ as in Theorem 3.2.

Proof. Since ∇θlt(θ) and ∇2
θlt(θ) are measurable functions of the strictly stationary

and ergodic process (Xt)t∈Z, conclude that n−1/2
∑n
t=1(∇θlt) is a strictly stationary and

ergodic zero-mean martingale difference. It is left to show that Σ is well defined. First,
observe that

Eθ0

[
∇2

θl0(θ0)
]

= −1/2Eθ0

[(
1− X2

t

σ2
t (θ0)

)(
1

σ2
t (θ0)

∇2
θσ

2
t (θ0)

)]
− 1/2Eθ0

[(
2

X2
t

σ2
t (θ0)

− 1

)(
1

σ4
t (θ0)

∇θσ
2
t (θ0)∇

′

θσ
2
t (θ0)

)]
.
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Recall, that
X2

t

σ2
t (θ0)

= ε2t and E[ε2t ] = 1. Together with the independence of εt from σ2
t (θ)

and ∇2
θσ

2
t (θ0) and assumption (N3) it follows that

Eθ0

[
−1/2

(
1− X2

t

σ2
t (θ0)

)(
1

σ2
t (θ0)

∇2
θσ

2
t (θ0)

)]
= 0.

It is left to show that the matrix

Eθ0

[(
1

σ4
0(θ0)

∇θσ
2
0(θ0)∇

′

θσ
2
0(θ0)

)]−1
is positive definite. This follows directly by an application of Straumann and Mikosch
[42, Lemma 7.2] together with (N4). Using ε0 = X0/σ0(θ0), E[ε20] = 1, the independence
of ε0 and ∇θσ

2
0 and assumption (N3) again, it holds that

Σ = Eθ0

[
1

σ4
0(θ0)

∇θσ
2
0(θ0)∇

′

θσ
2
0(θ0)

]−1
Eθ0

[(
1− ε20

)2 1

σ4
0(θ0)

∇θσ
2
0(θ0)∇

′

θσ
2
0(θ0)

]
× Eθ0

[
1

σ4
0(θ0)

∇θσ
2
0(θ0)∇

′

θσ
2
0(θ0)

]−1
= Eθ0

[(ε40 − 1)]Eθ0

[
1

σ4
0(θ0)

∇θσ
2
0(θ0)∇

′

θσ
2
0(θ0)

]−1

The next lemma shows that θ̂
∗
n is asymptotically equivalent to θ̂n meaning that both

have the same limiting distribution. This follows if
√
n‖θ̂

∗
n − θ̂n‖

a.s.→ 0 holds as n→∞.
First, one has to show that ∥∥∥n−1∇2

θL̃n −B0

∥∥∥
K

a.s.→ 0 (5.6)

as n→∞. Since

‖n−1∇2
θL̃n −B0‖K ≤ ‖n−1∇2

θL̃n − n−1∇2
θLn‖K + ‖n−1∇2

θLn −B0‖K

it suffices to prove that
‖n−1∇2

θL̃n − n−1∇2
θLn‖K

a.s.→ 0

as n→∞ and (5.6) follows. Next, observe that

√
n(θ̂
∗
n − θ̂n) =

√
n(θ̂
∗
n − θ0)−

√
n(θ̂n − θ0)

= −(B−10 + oP (1))

(
1√
n

n∑
t=1

∇θlt −
1√
n

n∑
t=1

∇θ l̃t

)
.
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Hence, θ̂
∗
n and θ̂n are asymptotically equivalent if

1√
n

∥∥∥∥∥
n∑
t=1

∇θlt −∇θ l̃t

∥∥∥∥∥
K

a.s.→ 0 (5.7)

and

1

n

∥∥∥∥∥
n∑
t=1

∇2
θlt −∇2

θ l̃t

∥∥∥∥∥
K

a.s.→ 0. (5.8)

The next lemma entails all the ingredients being necessary to prove (5.7) and (5.8).

Lemma 5.5. Under the condition of Theorem 3.2 it holds that

‖σ−2t ∇θσ
2
t − σ̃−2t ∇θσ̃

2
t ‖K

e.a.s.→ 0, (5.9)

‖σ−2t ∇2
θσ

2
t − σ̃−2t ∇2

θσ̃
2
t ‖K

e.a.s.→ 0, (5.10)

and

‖σ−4t ∇θσ
2
t∇
′

θσ
2
t − σ̃−4t ∇θσ̃

2
t∇
′

θσ̃
2
t ‖K

e.a.s.→ 0 (5.11)

as n→∞.

Proof. Write σ2
t instead of σ2

t (θ) for easier notation. To prove equation (5.9) note that
σ2
t (θ) ≥ h̄ > 0 for all θ ∈ K by condition (C1). Since σ2

t (θ) is three times differentiable
w.r.t. θ, the mean value theorem for vector valued functions applies, cf. Rudin [39,
Theorem 9.19]. Therefore, the additional assumption that K is convex is needed.

‖σ−2t ∇θσ
2
t − σ̃−2t ∇θσ̃

2
t ‖K ≤

∥∥∥∥σ̃−2t ∂

∂θ

(
σ2
t − σ̃2

t

)∥∥∥∥
K

+

∥∥∥∥∇θσ
2
t

(
1

σ2
t

− 1

σ̃2
t

)∥∥∥∥
K

≤ 1

h̄

∥∥∇2
θσ

2
t

∥∥
K

∥∥(σ2
t − σ̃2

t )
∥∥
K︸ ︷︷ ︸

:=At

+

∥∥∥∥∇θσ
2
t

(
1

σ2
t

− 1

σ̃2
t

)∥∥∥∥
K︸ ︷︷ ︸

:= Bt

.

Since ‖σ2
t − σ̃2

t ‖K
e.a.s.→ 0 by virtue of Lemma 5.3 and, additionally, Eθ0

[log+
∥∥∇2

θσ
2
t

∥∥
K

] <

∞ by assumption (N3i)-(N3iii) for every θ ∈ K it follows that At
e.a.s.→ 0 by virtue of

Lemma 5.1. Similarly, Bt
e.a.s.→ 0 because by Lemma 5.3 ‖(σ2

t )−1 − (σ̃2
t )−1‖ e.a.s.→ 0 and

assumption (N3i)-(N3iii). Hence equation (5.9) follows. Applying the mean value theorem
again, yields

‖σ−2t ∇2
θσ

2
t − σ̃−2t ∇2

θσ̃
2
t (θ)‖K ≤ ‖σ̃−2t ‖K‖∇2

θ(σ2
t − σ̃t)‖K

+ ‖∇2
θσ

2
t ‖K

∥∥∥∥ 1

σ2
t

− 1

σ̃2
t

∥∥∥∥
K

≤ ‖∇3
θσ

2
t ‖K

∥∥(σ2
t − σ̃2

t )
∥∥
K

+ ‖∇2
θσ

2
t ‖K

∥∥∥∥ 1

σ2
t

− 1

σ̃2
t

∥∥∥∥
K

.
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An application of Lemma 5.3 together with the assumption (N3i)-(N3iv) and Lemma 5.1
finalizes the proof of equation (5.10). Finally, the validity of equation (5.11) is checked
proceeding essentially the same way.

‖σ−4t ∇θσ
2
t∇
′

θσ
2
t − σ̃−4t ∇θσ̃

2
t∇
′

θσ̃
2
t ‖K ≤ ‖σ̃−4t ‖K‖∇θσ

2
t∇
′

θσ
2
t −∇θσ̃

2
t∇
′

θσ̃
2
t ‖K

+ ‖∇θσ
2
t∇
′

θσ
2
t ‖K‖σ−4t − σ̃−4t ‖K

≤ h̄−2‖(∇θσ
2
t −∇θσ̃

2
t )(∇θσ

2
t +∇θσ̃

2
t )
′
‖K

+ ‖∇θσ
2
t∇
′

θσ
2
t ‖K‖σ−4t − σ̃−4t ‖K .

Write ci,j =
∂σ2

t

∂θi

∂σ2
t

∂θj
. Since the sup-norm is sub-multiplicative it holds

Eθ0
[log+ ‖ci,j‖K ] ≤ Eθ0

[
log+

∥∥∥∥∂σ2
t

∂θi

∥∥∥∥
K

]
+ Eθ0

[
log+

∥∥∥∥∂σ2
t

∂θj

∥∥∥∥
K

]
<∞

for all i, j ∈ {1, ..., d}. Thus, it holds that

E[log+ ‖∇θσ
2
t∇
′

θσ
2
t ‖K ] <∞. (5.12)

In addition, applying the mean value theorem to ‖σ−4t − σ̃−4t ‖K , it one can deduce that

‖σ−4t − σ̃−4t ‖K ≤ 2‖σ−2t ‖‖σ−2t − σ̃−2t ‖K
≤ 2h̄−1‖σ−2t − σ̃−2t ‖K

e.a.s→ 0.

Therefore, an application of Lemma 5.1 shows that

‖∇θσ
2
t∇
′

θσ
2
t ‖K‖σ−4t − σ̃−4t ‖K

e.a.s.→ 0.

Finally, observe that

‖(∇θσ
2
t −∇θσ̃

2
t )(∇θσ

2
t +∇θσ̃

2
t )
′
‖K ≤ 2‖∇θσ

2
t ‖K‖∇θσ

2
t −∇θσ̃

2
t ‖K

e.a.s.→ 0 (5.13)

by condition (N3ii) and Lemma 5.1. Putting the estimates (5.12) and (5.13) together
equation (5.11) follows.

Lemma 5.6. Assume the conditions of Theorem 3.2. Then, (5.7) and (5.8) hold.

Proof. By virtue of (3.11) and the results of Lemma 5.5 deduce that∥∥∥∥∥
n∑
t=1

∇θlt −∇θ l̃t

∥∥∥∥∥
K

≤
n∑
t=1

‖∇θlt −∇θ l̃t‖K

≤
n∑
t=1

|1 + h̄−1X2
t |‖σ−2t ∇θσ

2
t − σ̃−2t ∇θσ̃

2
t ‖K

<∞, for n→∞
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by accounting for E[log+(1 +X2
0 )] <∞ and the results of Lemma 5.5. An application of

Lemma 5.1 proves (5.7). For the second hypothesis of Lemma 5.13, observe that∥∥∥∥∥
n∑
t=1

∇2
θlt −∇2

θ l̃t

∥∥∥∥∥
K

≤
n∑
t=1

∥∥∥∥(1− X2
t

σ2
t

)(
1

σ2
t

∇2
θσ

2
t

)
+

(
2
X2
t

σ2
t

− 1

)(
1

σ4
t

∇θσ
2
t∇
′

θσ
2
t

)
−
(

1− X2
t

σ̃2
t

)(
1

σ̃2
t

∇2
θσ̃

2
t

)
−
(

2
X2
t

σ̃2
t

− 1

)(
1

σ̃4
t

∇θσ̃
2
t∇
′

θσ̃
2
t

)∥∥∥∥
K

≤
n∑
t=1

|(1 + h̄−2X2
t )|
(∥∥∥∥ 1

σ2
t

∇θσ
2
t −

1

σ̃2
t

∇θσ̃
2
t

∥∥∥∥
K

+

∥∥∥∥ 1

σ4
t

∇θσ
2
t∇
′

θσ
2
t −

1

σ̃4
t

∇θσ̃
2
t∇
′

θσ̃
2
t

∥∥∥∥
K

)
.

Since E[log+ ‖1 +X2
0‖K ] <∞,∥∥∥∥∥

n∑
t=1

∇2
θlt −∇2

θ l̃t

∥∥∥∥∥
K

<∞

follows by an application of Lemma 5.6 and Lemma 5.1. This shows (5.8) and Lemma
5.6 is proven.

The proof of Theorem 3.2 follows by subsequent application of the Lemmas 5.4-5.6.

5.3. Proof of Theorem 4.4

Before proving Theorem 4.4, the following intermediate results are shown first.

Lemma 5.7. Assume the condition of Theorem 4.4. Then, it follows that

Eθ0

[
log+ ‖∇θσt(θ)‖Kd

]
<∞, (5.14)

Eθ0

[
log+

∥∥∇2
θσt(θ)

∥∥
Kd

]
<∞, (5.15)

Eθ0

[
log+

∥∥∇3
θσt(θ)

∥∥
Kd

]
<∞. (5.16)
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Proof. Starting with ∇σt(θ) yields

∇θσt(θ) =


1

1−β∑∞
i=1 β

i−1|Xt−i|∑∞
i=1 β

i−1X−t−i
ω

(1−β)2 + α+
∑∞
i=1(i− 1)βi−2|Xt−i|+ α−

∑∞
i=1(i− 1)βi−2X−t−i

 .

(5.17)

Since β ≤ 1− d it holds that − log(1− β) <∞ for all β ∈ Kd. Observe that a.s.

∂σt
∂α+

=

∞∑
i=1

βi−1|Xt−i| ≤ σt/α+.

Since (Xt)t∈Z is strictly stationary and β < 1 it follows from Hamadeh and Zaköıan
[17, Proposition A1] and Pan et al. [35, Theorem 6] that there exists a s > 0 such that
E[σst ] <∞, which yields for every θ ∈ Kd

Eθ0

[
log+

∥∥∥∥ ∂σt∂α+

∥∥∥∥
Kd

]
≤ s−1 log+Eθ0

[∥∥∥∥ σstα+s
0

∥∥∥∥
Kd

]
<∞.

A similar argument leads to Eθ0

[
log+

∥∥ ∂σt

∂α−

∥∥
Kd

]
< ∞. For every θ ∈ Kd, the fourth

component can be estimated by

Eθ0

[
log+

∥∥∥∥∂σt∂β

∥∥∥∥
Kd

]

= Eθ0

log+

∥∥∥∥∥ ω

(1− β)2
+

∞∑
i=1

(i− 1)βi−2(α+|Xt−i|+ α−X−t−i)

∥∥∥∥∥
Kd


≤ C5 + 1/s log+Eθ0

∥∥∥∥∥
∞∑
i=1

(i− 1)βi−2(α+|Xt−i|+ α−X−t−i)

∥∥∥∥∥
s

Kd

 ,
where C5 = log 2 + log+ ω − log(1− β) <∞. Using (a+ b)s ≤ as + bs for 0 < s < 1 and
a, b ≥ 0, observe that |Xt|s = σst |εt|s and, thus, E[|Xt|s] = E[σst ]E[|εt|s] < ∞ by Pan
et al. [35, Theorem 6]. Hence, it can be deduced that

Eθ0

∥∥∥∥∥
∞∑
i=1

(i− 1)βi−2(α+|Xt−i|+ α−X−t−i)

∥∥∥∥∥
s

Kd


≤
∞∑
i=1

(i− 1)sβs(i−2)Eθ0
[(α+ + α−)|Xt−i|)s]

<∞
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and (5.14) follows by an application of Lemma 5.1. To show (5.15) one proceeds essentially
the same way. Therefore, it suffices to discuss the following vector

∂

∂β
(∇θσt) =


1

(1−β)2∑∞
i=1(i− 1)βi−2|Xt−i|∑∞
i=1(i− 1)βi−2X−t−i

2ω
(1−β)3 +

∑∞
i=3(i− 1)(i− 2)βi−3(α+|Xt−i|+ α−X−t−i)


Following the steps to prove (5.14), it can be shown that

Eθ0

[
log+

∥∥∥∥ ∂∂β (∇θσt)

∥∥∥∥
Kd

]
<∞

which in turn implies (5.15). For the third derivative it is enough to regard ∂
∂β (∇2

θσt).
Since similar arguments are used as before, details are omitted.

It is left to verify the remaining moment conditions (N3iv)-(N3vii). The assertions of
the next lemma are shown in the proof of Hamadeh and Zaköıan [17, Theorem 2.2]. A
proof is therefore omitted.

Lemma 5.8. Assume the condition of Theorem 4.4. Then, it follows that

Eθ0

[∥∥∥∥∇θσt(θ0)

σt(θ0)

∥∥∥∥] <∞, (5.18)

Eθ0

[∥∥∥∥∇2
θσt(θ0)

σt(θ0)

∥∥∥∥] <∞, (5.19)

Eθ0

[∥∥∥∥∥∇θσt(θ0)∇′θσt(θ0)

σ2
t (θ0)

∥∥∥∥∥
]
<∞, (5.20)

Eθ0

[∥∥∇2
θlt(θ)

∥∥
K̃

]
<∞, (5.21)

for some neighborhood K̃ ⊂ Kd containing θ0.

Proof of Theorem 4.4. First, it is shown that
√
n(θ̂
∗
n − θ0)

d→ N(0,Σ). Using the
equations (3.12), (3.13) and (3.14) with δ = 1/2 it holds that

∇θlt(θ) = −1/2

(
1− X2

t

σ2
t (θ)

)
σ−1t ∇θσt(θ).

∇2
θlt(θ) = −1/2

((
1− X2

t

σ2
t (θ)

)(
1

σt
∇2

θσt

)
+

(
3
X2
t

σ2
t (θ)

− 1

)
1

σ2
t (θ)
∇θσt(θ)∇

′

θσt(θ)

)
.

Using the results of Lemma 5.8, it follows that Eθ0 [‖∇θlt(θ0)‖] <∞ and Eθ0 [‖∇2
θlt(θ0)‖] <

∞. Since ε0 and σ0 are independent, it may be shown that

Σ = E[(ε40 − 1)]Eθ0

[
4σ−20 (θ0)∇θσ0(θ0)∇

′

θσ0(θ0)
]−1

.
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From Hamadeh and Zaköıan [17, Theorem 2.2] it can be deduced that the matrix Σ

is well defined because Eθ0

[
4∇θσ0(θ0)∇′θσ0(θ0)

]
is invertible. It is left show that θ̂n

is asymptotically equivalent to θ̂
∗
n as in Lemma 5.6. Since σ2

t (θ) is not continuously
differentiable w.r.t. θ Lemma 5.5 is not directly applicable. Nevertheless, the following
equations can be demonstrated analogously to Lemma 5.5.∥∥∥∥ 1

σt
∇θσt −

1

σ̃t
∇θσ̃t

∥∥∥∥
Kd

e.a.s.→ 0, (5.22)

∥∥∥∥ 1

σt
∇2

θσt −
1

σ̃t
∇2

θσ̃t

∥∥∥∥
Kd

e.a.s.→ 0, (5.23)

and ∥∥∥∥ 1

σ2
t

∇θσt∇
′

θσt −
1

σ̃2
t

∇θσ̃t∇
′

θσ̃t

∥∥∥∥
Kd

e.a.s.→ 0. (5.24)

First, conclude that∥∥∥∥ 1

σt
∇θσt −

1

σ̃t
∇θσ̃t

∥∥∥∥
Kd

≤
∥∥∥∥ 1

σt
− 1

σ̃t

∥∥∥∥
Kd

‖∇θσt‖Kd︸ ︷︷ ︸
:= At

+

∥∥∥∥ 1

σ̃t

∥∥∥∥
Kd

‖∇θσt −∇θσ̃t‖Kd︸ ︷︷ ︸
:= Bt

.

Since ‖σt − σ̃t‖Kd

e.a.s.→ 0 and Eθ0 [log+ ‖∇θσt‖Kd
] < ∞ by virtue Lemma 5.7, an appli-

cation of Lemma 5.1 yields At
e.a.s.→ 0. Turning to Bt, observe that∥∥∥∥ ∂σt∂α+

− ∂σ̃t
∂α+

∥∥∥∥
Kd

≤
∥∥∥∥ 1

α+
(σt − σ̃t)

∥∥∥∥
Kd

e.a.s.→ 0.

The same conclusion holds for ∂σt

∂α− . For ∂σt

∂β it holds that∥∥∥∥∂σt∂β
− ∂σ̃t
∂β

∥∥∥∥
Kd

≤
∞∑

i=t+1

(i− 1)(1− d)i−2
∥∥α+|Xt−1|+ α−X−t−1

∥∥
Kd

≤ (1− d)t
∞∑
j=1

(j + t− 1)(1− d)j−2
∥∥α+|Xt−1|+ α−X−t−1

∥∥
Kd

≤ (1− d)tC6
e.a.s.→ 0,

by virtue of Lemma 5.7 and Lemma 5.1. Hence,

‖∇θσt −∇θσ̃t‖Kd

e.a.s.→ 0
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and Bt
e.a.s.→ 0 because under the stationarity condition σt ≥ ω > 0 for all θ ∈ Kd. This

proves (5.22). Note that (5.23) is shown if∥∥∇2
θσt −∇2

θσ̃t
∥∥
Kd

e.a.s.→ 0.

Since this follows from the same considerations as before, details are omitted. It is left
to show (5.24). Observe that∥∥∥∥ 1

σ2
t

∇θσt∇
′

θσt −
1

σ̃2
t

∇θσ̃t∇
′

θσ̃t

∥∥∥∥
Kd

≤ ω−2‖∇θσt −∇θσ̃t‖Kd
‖∇
′

θσt‖Kd

+ ‖∇θσt∇
′

θσt‖Kd
‖σ−2t − σ̃−2t ‖Kd

.

Recall that E[log+ ‖∇θσt‖Kd
] < ∞, E[log+ ‖∇θσt∇

′

θσt‖Kd
] < ∞ and, additionally,

‖σ−2t − σ̃−2t ‖Kd

e.a.s→ 0. This implies

‖∇θσt −∇θσ̃t‖Kd

e.a.s→ 0.

Now, (5.24) follows by the same arguments as in Lemma 5.6 by an application of Lemma
5.1. Thus, it may be deduced that

n−1/2
n∑
t=1

‖∇θlt −∇θ l̃t‖Kd

a.s.→ 0

and

n−1
n∑
t=1

‖∇2
θlt −∇2

θ l̃t‖Kd

a.s.→ 0

hold as n → ∞. This in turn implies the asymptotic equivalence of θ̂n and θ̂
∗
n. Hence,

the assertion of Theorem 4.4 follows.
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[3] Berkes, I., Horváth, L., and Kokoszka, P. (2003). GARCH processes: structure and
estimation. Bernoulli, 9(2):201–227.

[4] Billingsley, P. (1968). Convergence of probability measures. New York: John Wiley &
Sons.

[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J.
Econometrics, 31(3):307–327.

[6] Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modeling in finance:
A review of the theory and empirical evidence. J. Econometrics, 52:5–59.

imsart-bj ver. 2013/03/06 file: bernoulli_main.tex date: April 18, 2013



Maximum likelihood estimation in augmented GARCH models 27

[7] Bougerol, P. and Picard, N. (1992). Stationarity of GARCH processes and of some
nonnegative time series. J. Econometrics, 52(1-2):115–127.

[8] Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH
and stochastic volatility models. Econometric Theory, 18(1):17–39.

[9] Ding, Z., Granger, C. W., and Engle, R. F. (1993). A long memory property of stock
market returns and a new model. J. Emp. Finance, 1:83–106.

[10] Duan, J.-C. (1997). Augmented GARCH(p, q) process and its diffusion limit. J.
Econometrics, 79(1):97–127.

[11] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica, 50(4):987–1007.

[12] Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on
volatility. J. Finance, 48:1749–1778.

[13] Escanciano, J. C. (2009). Quasi-maximum likelihood estimation of semi-strong
GARCH models. Econometric Theory, 25(2):561–570.

[14] Ferguson, T. S. (1996). A course in large sample theory. Texts in Statistical Science
Series. London: Chapman & Hall.
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