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Abstract

We will identify sufficient and partly necessary conditions for a

family of copulas to be closed under the construction of generalized

linear mean values. These families of copulas generalize results

well-known from the literature for the Farlie-Gumbel-Morgenstern

(FGM), the Ali-Mikhai-Haq (AMH) and the Barnett-Gumbel

(BG) families of copulas closed under weighted linear, harmonic

and geometric mean. For these generalizations we calculate the

range of Spearman’s ρ depending on the choice of weights α, the

copulas generating function ϕ and the exponent γ determining

what kind of mean value will be considered. It seems that FGM

and AMH generating function ϕ(u) = 1 − u maximizes the range

of Spearman’s ρ. Furthermore, it will be shown that the considered

families of copulas closed under the construction of generalized li-

near means have no tail dependence in the sense of Ledford & Tawn.
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1 Stating the problem

Generalized linear means play an important role in statistics, probability and de-

cision theory as special aggregation functions (see Grabisch et al. (2009)). Let us

assume n observations x1, . . . , xn, non-negative weights g1, . . . , gn ∈ R that sum up

to 1 and a strictly monotone and continuous function u : [a, b] → R with inverse

u−1. Then

u−1

(
n∑
i=1

u(xi)gi

)
, gi ≥ 0,

n∑
i=1

gi = 1 (1)

is called generalized linear mean (GLM) of x1, . . . , xn. u is said to be the generator

of the GLM.

Choosing u(x) = xγ, γ 6= 0 as generator provides the weighted power mean. For

γ = −1, 0, 1 we obtain the well-known weighted harmonic, geometric and arithmetic

mean.

These means can not only aggregate data but also (multivariate) distribution functi-

ons and in particular copulas, which can be viewed as distribution functions limited

to the unit square [0, 1]2.

If C1(u, v) and C2(u, v), u, v ∈ [0, 1] are copulas, the weighted power mean

(αC1(u, v)γ + (1− α)C2(u, v)γ)1/γ (2)

is a function on [0, 1]× [0, 1] for all γ 6= 0 and α ∈ (0, 1). Letting γ → 0, the weighted

power mean reduces to the weighted geometric mean

C1(u, v)αC2(u, v)1−α (3)

of the two copulas. If (2) and (3) are copulas, they allow more flexibility for depen-

dence modelling, due to their two additional parameters α and γ.

A systematic proof that (2) and (3) are copulas can only be found for the mean

of the maximum and independence copula (see Fischer & Hinzmann (2007)). On

the other hand, it is easy to construct counterexamples where the weighted mean

of two copulas fails to be a copula (see f.e. Fischer et al. (2011)). For this reason, it

is a non-trivial problem to identify criteria for the copulas C1 and C2 such that the

weighted means (2) and (3) are copulas again.

This problem becomes considerably easier if we study families of copulas that are

closed under the construction of means. Therefore, we know that with the two
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copulas C1 and C2 the weighted power mean of C1 und C2 belongs to the same

family and is a copula, too.

In literature such closure properties are indeed discussed for special copula families

and special means (see e.g. Nelson (1999), S. 84), but there was always a restriction

to arithmetic, harmonic and geometric means. Now the question arises how copula

families should be constructed so that they are closed with respect to weighted power

means.

The paper is organized as follows. After a short primer on the terminology of copulas

we introduce families that are closed under the construction of GLM’s. Afterwards,

we investigate which assumptions are necessary to assure that these potential copula

functions are actually copulas and if there are additional constraints for the depen-

dence parameter θ and the power mean parameter γ, respectively. In conclusion,

some suggestions for the construction of new copula families are made based on this

construction principle.

2 Copulas: An overview

For a general introduction to copulas we refer to Joe (1997), Nelsen (1999) or Drouet-

Mari & Kotz (2001). In the following we just outline the most important facts on

copulas that are needed throughout the paper.

We restrict ourselves to the bivariate case. If U and V have uniform distribution

over [0, 1], we will call the restriction of the bivariate distribution function to the

unit square

C(u, v) = P (U ≤ u, V ≤ v) for u, v ∈ [0, 1]

a (bivariate) copula. A Copula is mostly defined as a function [0, 1]2 → [0, 1] that

satisfies the boundary conditions

C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = v, u, v ∈ [0, 1] (4)

and the 2-increasing condition

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0 (5)

for 0 ≤ u1 < u2 ≤ 1, 0 ≤ v1 < v2 ≤ 1.

3



If C is twice differentiable, one can obtain further conditions for C. The conditional

probabilities

P (V ≤ v|U ≤ u) =
C(u, v)

u
and P (U ≤ u|V ≤ v) =

C(u, v)

v
(6)

and

∂C(u, v)

∂u
= P (V ≤ v|U = u) ≥ 0 and

∂C(u, v)

∂u
= P (V ≤ v|U = u) ≥ 0. (7)

for u, v ∈ [0, 1] are dependent on C and take values in the interval [0, 1], which also

determines the shape of C. Eventually for twice differentiable C the 2-increasing

property (5) can be replaced by the condition

c(u, v) =
∂2C(u, v)

∂u∂v
≥ 0 für u, v ∈ [0, 1], (8)

At this, c(u, v) is the so-called copula density.

3 Closure properties

Nelsen (1999) investigates whether for two copulas from the same family the mean

belongs again to this family.

Considering the weighted arithmetic mean of two Farlie-Gumbel Morgenstern copu-

las (briefly: FGM copulas)

Ci(u, v) = uv + θiuv(1− u)(1− v), θi ∈ [−1, 1], i = 1, 2, (9)

we obtain that

αC1(u, v) + (1− α)C2(u, v) = uv + (αθ1 + (1− α)θ2)uv(1− u)(1− v).

is again a Farlie-Gumbel-Morgenstern copula.

For two so-called Gumbel-Barnett copulas (briefly: GB copulas)

Ci(u, v) = uv exp(−θi lnu ln v), θi ∈ (0, 1], i = 1, 2 (10)

the weighted geometric mean

C1(u, v)αC2(u, v)1−α = uv exp(−(αθ1 + (1− α)θ2) lnu ln v).
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is again a Gumbel-Barnett copula.

The weighted harmonic mean can be used to construct copulas as well:

Regarding two Ali-Mikhail-Haq (briefly: AMH copula) copulas

Ci(u, v) =
uv

1− θi(1− u)(1− v)
, θi ∈ [−1, 1], i = 1, 2, (11)

the weighted harmonic mean(
α

1

C1(u, v)
+ (1− α)

1

C2(u, v)

)−1
=

uv

1− (αθ1 + (1− α)θ2)(1− u)(1− v)

is again a Ali-Mikhail-Haq copula (see Nelsen (1999), p. 82).

The previous examples are special cases of a more general class of copulas which is

closed under the construction of means.

Let ϕ : [0, 1] → R be a given function. Based on ϕ we regard functions C on

[0, 1]× [0, 1] defined as

C(u, v; γ, θ) = uv(1 + θϕ(u)ϕ(v))1/γ for u, v ∈ [0, 1], (12)

for γ 6= 0. If γ = 0, we set

C(u, v; θ) = uv exp(θϕ(u)ϕ(v)) for u, v ∈ [0, 1]. (13)

Moreover, for fixed ϕ we let

Cϕ,γ = {C(., .; γ, θ)|θ ∈ Θ = [−1, 1]} (14)

and

Cϕ = {C(., .; θ)|θ ∈ Θ ⊆ [−1, 1]}, (15)

be the families of potential copula functions parametrized by the depence parameter

θ. 2

Apparently, the choice of ϕ(u) = 1 − u, u ∈ [0, 1] leads to the Farlie-Gumbel-

Morgenstern family of copulas (for γ = 1) and to the Ali-Mikhail-Haq family (for

γ = −1). If we let ϕ(u) = lnu, u ∈ [0, 1] and γ = 0, the copula (13) leads to the

Gumbel-Barnett copula with the restricted parameter space Θ = [−1, 0). Cuadras

(2009) also discusses the case ϕ(u) = 1− u, u ∈ [0, 1] and γ = 0.

2For (13) one can also allow unbounded functions ϕ if the parameter space Θ is restricted to

[−1, 0).
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If ϕ and γ are chosen such that (14) and (15) are parametric families of copulas,

it can be shown that they are closed under the construction of generalized power

means.

Propostion 1 1. Consider ϕ : [0, 1]→ R and γ 6= 0 with

Ci(u, v; γ) = uv(1 + θiϕ(u)ϕ(v))1/γ für u, v ∈ [0, 1]

being a copula for θi ∈ [−1, 1] and i = 1, 2. Then the weighted power mean of

C1 and C2

(αC1(u, v; γ)γ + (1− α)C2(u, v; γ)γ)1/γ for u, v ∈ [0, 1]

for α ∈ [0, 1] has the same form with parameter αθ1 + (1− α)θ2, i.e.

C(u, v; γ, αθ1+(1−α)θ2) = uv(1+(αθ1+(1−α)θ2)ϕ(u)ϕ(v))1/γ for u, v ∈ [0, 1].

2. Consider ϕ : [0, 1]→ R with

Ci(u, v; θi) = uv exp(θiϕ(u)ϕ(v)) für u, v ∈ [0, 1]

being a copula for θi ∈ [−1, 1] and i = 1, 2. Then the weighted geometric mean

of C1 and C2

exp (α lnC1(u, v) + (1− α) lnC2(u, v))

for α ∈ [0, 1] has the same form with parameter αθ1 + (1− α)θ2, i.e.

C(u, v;αθ1 + (1− α)θ2) = uv exp((αθ + (1− α)θ2)ϕ(u)ϕ(v)) u, v ∈ [0, 1].

Proof:

1. We have

α
(
uv(1 + θ1ϕ(u)ϕ(v))1/γ

)γ
+ (1− α)

(
uv(1 + θ2ϕ(u)ϕ(v))1/γ

)γ
= uvγ(1 + (αθ1 + (1− α)θ2)ϕ(u)ϕ(v))

for u, v ∈ [0, 1], α ∈ [0, 1], θ ∈ [−1, 1].

2. Similar to the previous proof. �
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Now we have to find sufficient and preferably necessary conditions for ϕ and γ such

that (12) and (13) are copulas for all θ ∈ [−1, 1] or θ ∈ [−1, 0]. Then, due to

preposition 1, the weighted power means are copulas as well.

Amblard & Girard (2002, 2003) discuss such properties for the special case γ = 1.

They regard copulas of the form

C(u, v; γ = 1, θ) = uv + θφ(u)φ(v) u, v ∈ [0, 1] (16)

and derive sufficient and necessary conditions for φ, such that (16) exhibits the

properties of a copula. In this case the 2-increasing property (5) can even be proved

without assuming any differentiability of φ. The functions ϕ and φ are related via

φ(u) = uϕ(u) u ∈ [0, 1].

The conditions derived by Amblard & Girard (2002, 2003) for differentiable φ are

mainly:

1. φ(u) ≤ min(u, 1− u), i.e. ϕ(u) ≤ 1 and

2. |φ′(u)| = |ϕ(u) + uϕ′(u)| ≤ 1

for u ∈ [0, 1]. These conditions will re-appear in a modified manner, when we deduce

conditions to assure that (12) and (13) are copulas.

Prior to that, we study how the parameter γ and θ influence the positive and negative

dependence properties of the copula in the sense of Lehmann (1966). In addition,

the restriction to copulas of the form (12) and (13) which admit positive or negative

dependence, will also limit the choice of ϕ.

4 Dependence properties

A copula C(u, v) is called positive (negative) dependent (see Lehmann (1966)) if

C(u, v)− uv ≥ (≤)0 u, v ∈ [0, 1].

For functions of the form (12) and (13) the parameter θ specifies the type of de-

pendence according the choice of γ and ϕ, as long as ϕ doesn’t change its sign on

[0, 1].

7



Propostion 2 Let ϕ : [0, 1]→ R be either non-negative or non-positive on [0, 1].

1. Let C(u, v; γ, θ) according to (12) be a copula for appropriate chosen γ 6= 0

and for all θ ∈ [−1, 1]. Then C(u, v; γ, θ) is positive (negative) dependent if

γθ > 0 (γθ < 0).

2. Let C(u, v; θ) according to (13) be a copula for all θ ∈ [−1, 0]. Then C(u, v; θ)

is positive (negative) dependent if γθ > 0 (γθ < 0).

Proof:

1. Consider γ > 0. For θ > 0 we have 1 + θϕ(u)ϕ(v) ≥ 1 for u, v ∈ [0, 1]. Hence,

C(u, v; γ, θ) = uv(1 + θϕ(u)ϕ(v))1/γ ≥ uv u, v ∈ [0, 1],

which is precisely the positive dependence property in the sense of Lehmann.

According to this, we have negative dependence for θ < 0.

For γ < 0 the situation is reversed. Then

(1 + θϕ(u)ϕ(v))|1/γ| ≤ 1

for θ < 0, which means positive dependence due to

C(u, v; γ) =
uv

(1 + θϕ(u)ϕ(v))|1/γ|
≥ uv u, v ∈ [0, 1],

for θ < 0 and vice versa.

2. Analogous. �

On the other hand, it is easy to prove that the non-positivity or non-negativity of

ϕ is a necessary condition for the positive or negative dependence property.

Under the reasonable assumption that the copulas (12) and (13) exhibit an unique

dependence property, we have to restrict ourselves to the cases where the function

ϕ is either non-negative or non-positive on [0, 1].

5 Copula conditions for γ 6= 0

Firstly, we only discuss functions of the form (12).
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5.1 Boundary conditions

Because every copula satisfies C(u, 1) = u and C(1, v) = v, we obtain the condition

ϕ(1) = 0 (17)

for (12).

Moreover, C(u, 0) = C(0, v) = 0 for all u, v ∈ [0, 1]. Hence,

lim
u→0

uv(1 + θϕ(u)ϕ(v))1/γ = 0.

For γ ≥ 0, the condition

lim
u→0

uγϕ(u) = 0

assures that C(0, v; γ, θ) = 0. As an example regard the function ϕ(u) = lnu.

For γ < 0, the boundedness of ϕ is a sufficient condition, so that C(0, v; γ, θ) = 0.

Also admitting negative γ we have to ensure that

1 + θϕ(u)ϕ(v) ≥ 0 u, v ∈ [0, 1]. (18)

Hence,

(1 + θϕ(u)ϕ(v))1/γ u, v ∈ [0, 1]

is real-valued. In the setting θ = −1 and u = v this results in the condition

ϕ(u)2 ≤ 1 or |ϕ(u)| ≤ 1 u ∈ [0, 1]. (19)

For integer-valued 1/γ, we can also allow unbounded functions ϕ such as the function

ϕ(u) = lnu.

Example 1 A widely-used choice is ϕ(u) = 1 − u. Other specifications are e.g.

ϕ(u) = 1− uk, k > 0.

5.2 Conditions resulting from conditional probabilities

Note first that every differentiable copula C satisfies

∂ lnC(u, v)

∂u
=
∂C(u, v)/∂u

C(u, v)
=
P (V ≤ v|U = u)

C(u, v)
≥ 0 u, v ∈ [0, 1]
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(see Nelsen (1999), p. 11). We can use the non-negativity of this partial derivative

to deduce further necessary conditions.

In the case γ 6= 0 we obtain for C(u, v; γ, θ), γ 6= 0

lnC(u, v; γ, θ) = lnu+ ln v + 1/γ ln(1 + θϕ(u)ϕ(v))

and

∂ lnC(u, v; γ, θ)

∂u
=

1

u
+

1

γ

θϕ′(u)ϕ(v)

1 + θϕ(u)ϕ(v)
(20)

=
1 + θϕ(v)(ϕ(u) + 1/γuϕ′(u))

u(1 + θϕ(u)ϕ(v))
(21)

for u, v ∈ [0, 1].

With (18) and (19) the denominator is non-negative and bounded, so we have to

make sure that the nominator is non-negative, too.

Due to the condition |ϕ(v)| ≤ 1 for v ∈ [0, 1], we have to assure that

|ϕ(u) + 1/γuϕ′(u)| ≤ 1 u ∈ [0, 1], (22)

and therefore, the nominator is non-negative. Hence, uϕ′(u) has to be an bounded

function on [0, 1], which additionally restricts the set of admissible ϕ.

Example 2 Consider

ϕ(u) =
√

1− u2 u ∈ [0, 1].

This function is decreasing and concave on [0, 1] with ϕ(1) = 0. But

uϕ′(u) = − 2u2√
1− u2

is unbounded for u → 1. The same also applies for the decreasing and concave

function

ϕ(u) = 1−
√

1− (1− u)2 u ∈ [0, 1].

for u→ 0.

Condition (22) limits the allowed choices of γ, as the following lemma points out.
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Lemma 1 For u ∈ [0, 1] with ϕ′(u) > 0 we obtain

|ϕ(u) + 1/γuϕ′(u)| ≤ 1 ⇐⇒ −1 + ϕ(u)

uϕ′(u)
≤ 1

γ
≤ 1− ϕ(u)

uϕ′(u)
. (23)

Conversely, for u ∈ [0, 1] with ϕ′(u) < 0 we have

|ϕ(u) + 1/γuϕ′(u)| ≤ 1 ⇐⇒ 1− ϕ(u)

uϕ′(u)
≤ 1

γ
≤ −1 + ϕ(u)

uϕ′(u)
. (24)

Proof: Simple rearrangement. �

For given ϕ, we designate with Gϕ the set of all potential γ, that satisfy the bounds

(23) and (24). I.e

Gϕ = {γ 6= 0||ϕ(u) + 1/γuϕ′(u)| ≤ 1 u ∈ [0, 1]}. (25)

It is not at all guaranteed that Gϕ 6= ∅ as can be seen in example 2.

Note that the terms

− uϕ′(u)

1− ϕ(u)
and

uϕ′(u)

−1 + ϕ(u)

can be interpreted as elasticity measures for the functions 1 − ϕ and −1 + ϕ in

u ∈ [0, 1]. In the following example we study functions that exhibit constant elasticity

and therefore allow a very simple determination of the bounds (23) and (24) for 1/γ.

Example 3 We focus on

ϕ(u) = 1− uk, u ∈ [0, 1], k > 0 (26)

again. With ϕ′(u) = −kuk−1 ≤ 0 and

1− ϕ(u)

uϕ′(u)
= −1

k
u ∈ [0, 1],

we have

−1

k
≤ 1

γ
≤ 1

k
. (27)

For k = 1 we obtain the bounds γ = 1 and γ = −1 which lead to the FGM and

AMH copula, respectively. Apparently, copulas of the form (12) with ϕ(u) = 1− u,

u ∈ [0, 1] can only be found within these bounds.
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Example 4 We can also prove constant elasticity for the function

ϕ(u) = min

(
1,

1

uk
− 1

)
, u ∈ [0, 1], k > 0.

We have

uϕ′(u) =

{
0 für u < (1/2)1/k

−ku−k für u < (1/2)1/k.

For u < (1/2)1/k the condition

|ϕ(u) +
1

γ
uϕ′(u)| = 1 ≤ 1

trivially holds. Thus, the domain of 1/γ is resticted by

1− ϕ(u)

uϕ′(u)
= −1

k
≤ 1

γ
≤ −1 + ϕ(u)

uϕ′(u)
=

1

k

for u > (1/2)1/k.

Example 5 With

ϕ(u) = e−u − e−1 u ∈ [0, 1] (28)

we regard another function of constant elasticity. As the lower bound of 1/γ we

obtain the function

1− ϕ(u)

uϕ′(u)
=

1− e−u + e−1

−ue−u
=

1

u
+

1 + e−1

−ue−u
,

attaining its maximum in amount of −2.487390 in the point u = 0.5979717, as can

be shown via numerical optimization.

Furthermore,

−1 + ϕ(u)

uϕ′(u)
=
−1 + e−u − e−1

−ue−u
= −1

u
+
−1− e−1

−ue−u

is decreasing on [0, 1]. We obtain that u = 1 minimizes the upper bound for 1/γ and

hence,

−2.48739 ≤ 1

γ
≤ 2.718282 = e (29)

must hold.
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Example 6 We can also admit non-monotone function ϕ(u) on [0, 1] such as

ϕ(u) = u(1− u) u ∈ [0, 1].

The first derivative ϕ′(u) = 1− 2u is negative for u > 1/2 and positive for u < 1/2.

It is easy to prove that condition (23) reads as

−1 + u(1− u)

u(1− 2u)
≤ −6.464 ≤ 1

γ
≤ 6.464 ≤ 1− u(1− u)

u(1− 2u)

for u < 1/2 and that (24) reads as

−1 + u(1− u)

u(1− 2u)
≤ 0 ≤ 1

γ
≤ 1 ≤ 1− u(1− u)

u(1− 2u)

for u > 1/2. Combining these expressions

0 ≤ 1

γ
≤ 1

must hold.

5.3 2-increasing condition

5.3.1 Case: ϕ monotone and θγ > 0

Up to now we derived the necessary conditions

1. ϕ(1) = 0,

2. |ϕ(u)| ≤ 1, u ∈ [0, 1] and

3. |ϕ(u) + 1/γuϕ′(u)| ≤ 1, u ∈ [0, 1].

Now it is to be checked, which further conditions are needed to assure that the second

mixed derivative c(., ., γ, θ) of the potential copula is non-negative and therefore a

copula density. There is a close relation between this an the second mixed derivative

of the logarithmized potential copula function:

c(u, v; γ, θ)

C(u, v; γ, θ)
=
∂2 lnC(u, v; γ, θ)

∂u∂v
+
∂ lnC(u, v; γ, θ)

∂u

∂ lnC(u, v; γ, θ)

∂v
, u, v ∈ [0, 1].

(30)
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Assumption (22) makes sure that

∂ lnC(u, v; γ, θ)

∂u
≥ 0 and

∂ lnC(u, v; γ, θ)

∂v
≥ 0 u, v ∈ [0, 1].

If additionally
∂2 lnC(u, v; γ, θ)

∂u∂v
≥ 0 u, v ∈ [0, 1] (31)

holds, then c(u, v; γ, θ) ≥ 0 for u, v ∈ [0, 1] and C(., .; γ, θ) is a copula 3

Hence, for monotone functions ϕ the sufficient condition γθ > 0 assures that C(., .; γ, θ)

is a copula, as we state in the following proposition.

Propostion 3 Let ϕ : [0, 1] → R be a differentiable and monotone function on

[0, 1], fulfilling the conditions

1. ϕ(1) = 0,

2. |ϕ(u)| ≤ 1 for u ∈ [0, 1],

3. Gϕ 6= ∅ with

Gϕ = {g 6= 0||ϕ(u) + 1/γuϕ′(u)| ≤ 1, u ∈ [0, 1]}.

Then

C(u, v; γ, θ) = uv(1 + θϕ(u)ϕ(v))1/γ u, v ∈ [0, 1], g ∈ Gϕ, θ ∈ [−1, 1]

is a copula if for all g ∈ Gϕ and θ ∈ [−1, 1] the condition

γθ > 0 (32)

holds.

Proof: After some algebra we have

∂ lnC(u, v; γ, θ)

∂u∂v
=

1

γ

θϕ′(u)ϕ′(v)

(1 + θϕ(u)ϕ(v))2
. (33)

3With property (31), the potential copula (12) is maximum infinitely divisible (briefly: max-id),

i.e. C(., .; γ))r is a proper distribution function for all r > 0 (see Joe (1997), p. 32f.).
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If ϕ is monotone and ϕ′ does not change its sign on [0, 1], we obtain

∂ lnC(u, v; γ, θ)

∂u∂v
≥ 0 u, v ∈ [0, 1],

for γθ ≥ 0. �

To induce positive dependence for γ > 0, the parameter θ has to be non-negative.

In the reversed case, θ has to be non-positive for positive dependence. Hence, in this

case, the question whether (12) is a copula, can be answered very easily.

Example 7 The function

C(u, v; γ, θ) = uv(1 + θ(1− uk)(1− vk))1/γ u, v ∈ [0, 1]

is a copula for k > 0, if

1. 0 < θ ≤ 1 and 0 < 1/γ ≤ 1/k or

2. −1 ≤ θ ≤ 0 and −1/k ≤ 1/γ < 0.

In the case k = 1 we have the combinations 0 < θ ≤ 1 and 0 < γ ≤ 1 or −1 ≤ θ < 0

and −1 ≤ γ < 0 that include the FGM copula for γ = 1 and the AMH copula for

γ = −1 as limiting cases. The same result also holds for ϕ(u) = uk − 1, u ∈ [0, 1].

Example 8 The function

C(u, v; γ, θ) = uv(1 + θ(e−u − e−1)(e−v − e−1))1/γ u, v ∈ [0, 1]

is a copula for

1. 0 < θ ≤ 1 and 0 < 1/γ ≤ 2.718282 or

2. −1 ≤ θ ≤ 0 and −2.487390 ≤ 1/γ < 0.

5.3.2 Case: ϕ monotone and γθ < 0

Inserting expressions (21) and (33) for derivatives of the logarithmized copula we

get
c(u, v; γ, θ)

C(u, v; γ, θ)
=

Z

uv(1 + θϕ(u)ϕ(v))2
u, v ∈ [0, 1]
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with

Z =
θ

γ
uvϕ′(u)ϕ′(v)

+(1 + θϕ(v)(ϕ(u) + 1/γuϕ′(u)))(1 + θϕ(u)(ϕ(v) + 1/γvϕ′(v))) (34)

for u, v ∈ [0, 1]. Obviously, for given γ and θ ∈ [−1, 1] the expression c(., .; γ, θ) is a

copula density if and only if Z ≥ 0 for all u, v ∈ [0, 1].

We have to suppose the monotonicity of ϕ in order that (12) is a copula for θ ∈
[−1, 1]. Hence, ϕ(1) = 0 implies that the function ϕ is either non-negative and

monotonly decreasing on [0, 1] or non-positive and monotonely increasing. In the

case of a non-monotone ϕ no general result can be achieved and every function ϕ

has to be checked separately, whether it provides a copula or not.

The following proposition states necessary conditions on that C(., .; γ, θ) is a copula

for an arbitrary γ 6= 0.

Propostion 4 Let ϕ : [0, 1]→ R be a monotone and differentiable function fulfilling

the conditions

1. ϕ(1) = 0,

2. |ϕ(u)| ≤ 1 for u ∈ [0, 1],

3. Gϕ 6= ∅ with

Gϕ = {γ 6= 0||ϕ(u) + 1/γuϕ′(u)| ≤ 1, u ∈ [0, 1]},

4. ϕ non-negative and monotonely decreasing or non-positive and monotonely

increasing on [0, 1].

Then

C(u, v; γ, θ) = uv(1 + θϕ(u)ϕ(v))1/γ u, v ∈ [0, 1], g ∈ Gϕ, θ ∈ [−1, 1]

is a copula, if either

γ ∈ Gϕ ∩ (0, 1] and θ ∈ [−1, 0) (35)

or

γ ∈ Gϕ ∩ (−∞,−1] and θ ∈ (0, 1] (36)

holds.
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Proof: Note first, that we can restrict ourselves in the following to functions ϕ that

are non-negative and monotonely decreasing on [0, 1]. In the complementary case

ϕ(u) ≤ 0 and ϕ′(u) ≥ 0 we can re-write the copula function as

uv(1 + θϕ(u)ϕ(v))1/γ = uv(1 + θ(−ϕ(u))(−ϕ(v)))1/γ

where −ϕ(u) ≥ 0 and d(−ϕ(u))/du ≤ 0.

We check the two-increasing property under the condition (35). For the second mixed

derivative of the log-density we obtain

c(u, v, θ, γ)

C(u, v; θ, γ)
=

1

uv(1 + θϕ(u)ϕ(v))
(1 + θϕ(v)(ϕ(u) + 1/γuϕ′(u))

+θ/γvϕ′(v)

(
ϕ(u) +

1 + θ/γϕ(u)ϕ(v)

1 + θϕ(u)ϕ(v)
uϕ′(u)

))
(37)

where c(u, v; θ, γ) is the mixed second derivative of C(u, v; θ, γ).

With the conditions ϕ(u) ≥ 0, ϕ′(u) ≤ 0, |ϕ(u) + 1/γuϕ′(u)| ≤ 1 and γ ∈ (0, 1] we

get
1 + θ/γϕ(u)ϕ(v)

1 + θϕ(u)ϕ(v)
=

1

γ

γ + θϕ(u)ϕ(v)

1 + θϕ(u)ϕ(v)
≤ 1

γ
.

Due to ϕ′(u) ≤ 0

ϕ(u) + 1/γuϕ′(u) ≤ ϕ(u) +
1 + θ/γϕ(u)ϕ(v)

1 + θϕ(u)ϕ(v)
uϕ′(u).

Multiplication with θϕ′(v) ≥ 0 leads to

θϕ′(v)(ϕ(u) + 1/γuϕ′(u)) ≤ θϕ′(v)

(
ϕ(u) +

1 + θ/γϕ(u)ϕ(v)

1 + θϕ(u)ϕ(v)
uϕ′(u)

)
and therefore we obtain with (37) and |ϕ(u) + 1/γuϕ′(u)| ≤ 1

c(u, v, θ, γ)

C(u, v; θ, γ)
≥ 1

uv(1 + θϕ(u)ϕ(v))
(1 + ϕ(v)θ (ϕ(u) + 1/γuϕ′(u))

+1/γvϕ′(v)θ (ϕ(u) + 1/γuϕ′(u)))

=
1

uv(1 + θϕ(u)ϕ(v))
(1 + θ (ϕ(u) + 1/γuϕ′(u)) (ϕ(v) + 1/γvϕ′(v))) ≥ 0.

Now prove the two-increasing property under the condition (35).

As mentioned above the second mixed derivative of the log-density can be written

as
c(u, v; θ)

C(u, v; θ)
=

Z

uv
u, v ∈ [0, 1]
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with

Z =
θ

γ
uϕ′(u)vϕ′(v)+(1+θϕ(v)(ϕ(u)+1/γϕ′(u))(1+θϕ(u)(ϕ(v)+1/γvϕ′(v)) u, v ∈ [0, 1].

We suppose again ϕ(u) ≥ 0, ϕ′(u) ≤ 0, |ϕ(u) + 1/γuϕ′(u)| ≤ 1.

With γ < 0

ϕ(u) + 1/γuϕ′(u) ≥ 0

and with θ > 0

(1 + θϕ(v)(ϕ(u) + 1/γuϕ′(u)))(1 + θϕ(u)(ϕ(v) + 1/γvϕ′(v))) ≥ 1.

Apparently if ∣∣∣∣∣uϕ′(u)√
|γ|

∣∣∣∣∣ ≤ 1 or |uϕ′(u)| ≤
√
|γ| (38)

can be guaranteed, then Z ≥ 0 and the two-increasing property holds.

Indeed, (38) is valid for |γ| > 1 since

ϕ(u) ≤ 1 and ϕ(u) + 1/γuϕ′(u) ≤ 1

leads to 1/|γ||u′ϕ(u)| ≤ 1. With |γ| > 1 we obtain

|uϕ′(u)| ≤
√
|γ| ≤ |γ|

and therefore C represents a copula. �

Example 9 We consider the function ϕ(u) = 1−uk, k > 0. The Condition |ϕ(u)+

1/γuϕ′(u)| < 1 leads to

ϕ(u) + 1/γuϕ′(u) = 1− (1− k/γ)uk ≥ −1

⇐⇒ k/γ ≥ −1 ⇐⇒ k ≤ −γ = |γ|.

Furthermore
|uϕ′(u)|√
|γ|

=
kuk√
|γ|
≤ 1 ⇐⇒ k ≤

√
|γ|.

In summary,

k ≤

|γ| for − 1 ≤ γ < 0√
|γ| for γ < −1
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must hold. Hence, for 0 ≤ θ ≤ 1 we obtain the copulas

C(u, v) = uv(1 + θ(1−
√
u)(1−

√
v))−2

with k = 1/2 and γ = −1/2 and

C(u, v) = uv(1 + θ(1− u2)(1− v2))−1/4

with k = 2 and γ = −4.

Example 10 The choice ϕ(u) = min
(
1, 1

uk
− 1
)
, u ∈ [0, 1], k > 0 leads to

C(u, v; γ, θ) = uv

(
1 + θmin

(
1,

1

uk
− 1

)
min

(
1,

1

vk
− 1

))1/γ

u, v ∈ [0, 1].

This is a copula for θ ∈ [−1, 1] and for

−1 ≤ −1

k
≤ 1

γ
≤ 1

k
≤ 1,

i.e. for k ≥ 1. For γ = 1 we must choose k = 1 and hence

uϕ(u) = min

(
1,

1

u
− 1

)
= min(u, 1− u) u ∈ [0, 1].

The setting k = 1 represents the upper bound for uϕ(u), u ∈ [0, 1] according to Am-

blard & Girard (2002) which maximizes the area below the graph of min
(
1, 1

u
− 1
)
,

u ∈ [0, 1] for all admissible k.

Example 11 For ϕ(u) = e−u − e−1, u ∈ [0, 1] the expression

C(u, v; γ, θ) = uv(1 + θ(e−u − e−1)(e−v − e−1))1/γ u, v ∈ [0, 1]

represents a copula for θ ∈ [−1, 1] and

−2.48739 ≤ −1 ≤ 1

γ
≤ 1 ≤ 2.718282.

6 Copula conditions for γ = 0

For γ = 0 we have defined

C(u, v; θ) = uveθϕ(u)ϕ(v) u, v ∈ [0, 1]

19



for θ ∈ Θ ⊆ [−1, 1]. The concrete amount of the parameter space Θ is dependent on

the properties of the function ϕ. We assume again that ϕ does not change its sign

on [0, 1] in order to obtain an uniquely determined dependence structure. Note, that

a copula is limited to the range [0, 1] and therefore, eθϕ(u)ϕ(v) has to be bounded on

[0, 1].

Hence, we obtain:

1. For unbounded ϕ on [0, 1], the function

eθϕ(u)ϕ(v) u, v ∈ [0, 1]

is only bounded if θ ∈ [−1, 0]. I.e. Θ = [−1, 0].

As an example consider the function ϕ(u) = lnu, u ∈ [0, 1], which leads to the

BG copula.

2. If ϕ is bounded on [0, 1], we can allow the parameter space Θ = [−1, 1]. W.l.o.g.

we can assume that for bounded functions ϕ

|ϕ(u)| ≤ 1, u ∈ [0, 1]

holds. If necessary, this can be achieved via appropriate scaling.

An example for such a bounded function ϕ is given by ϕ(u) = 1 − u for

u ∈ [0, 1] leading to the ,,New Copula” suggested by Cuadras (2009).

In the following we have to distinguish the cases of bounded and unbounded func-

tions ϕ.

Conditions resulting from conditional probabilities The first partial deri-

vative of lnC(u, v; θ) is

∂ lnC(u, v; θ)

∂u
=

1

u
+ θϕ′(u)ϕ(v) =

1 + θuϕ′(u)ϕ(v)

u
u, v ∈ [0, 1].

This is non-negative if

1 + θuϕ′(u)ϕ(v) ≥ 0 u, v ∈ [0, 1]. (39)

1. If ϕ is non-negative and monotonly decreasing or non-positive and monotonly

increasing on [0, 1], this condition is satisfied for θ < 0.
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2. For θ > 0 the function ϕ has to be bounded, i.e. |ϕ(v)| ≤ 1, v ∈ [0, 1]. For

θ = 1

1 + uϕ′(u) ≥ 0 ⇐⇒ uϕ′(u) ≥ −1 u ∈ [0, 1] (40)

holds.

2-increasing condition The second mixed partial derivative of lnC(u, v; θ) is

given by
∂2 lnC(u, v; θ)

∂u∂v
= θϕ′(u)ϕ′(v) u, v ∈ [0, 1] (41)

for θ ∈ Θ, at which we have as parameter space either Θ = [−1, 1] or Θ = [0, 1]

depending on whether ϕ is bounded or not.

For θ > 0 and for a monotone function ϕ, this second derivative is non-negative

on[0, 1].

As a consequence we obtain the following proposition.

Propostion 5 Let ϕ : [0, 1] → R be differentiable and monotone on [0, 1] fulfilling

the conditions

1. ϕ(1) = 0,

2. |ϕ(u)| ≤ 1, u ∈ [0, 1].

Then

C(u, v; θ) = uveθϕ(u)ϕ(v) u, v ∈ [0, 1]

is a copula for θ ∈ [0, 1].

Proof: With (40) the condition |ϕ(u)| ≤ 1 ensures that

∂ lnC(u, v; θ)

∂u
≥ 0 and

∂ lnC(u, v; θ)

∂v
≥ 0

for u, v ∈ [0, 1]. Hence,

c(u, v; θ)

C(u, v; θ)
=
∂2 lnC(u, v; θ)

∂u∂v
+
∂ lnC(u, v; θ)

∂u

∂ lnC(u, v; θ)

∂v
≥ 0

for u, v ∈ [0, 1] if
∂2 lnC(u, v; θ)

∂u∂v
≥ 0 u, v ∈ [0, 1].
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This holds for θ > 0 as (41) shows. �

Hence, for monotone functions ϕ the case θ < 0 is of interest. For this, the second

mixed partial derivative c(., .; θ) of C(., .; θ) is required. We obtain

c(u, v; θ)

C(u, v; θ)
=

Z

uv
u, v ∈ [0, 1]

with

Z = θuϕ′(u)vϕ′(v) + (1 + θuϕ′(u)ϕ(v))(1 + θϕ(u)vϕ′(v)) u, v ∈ [0, 1].

In the following proposition we derive sufficient conditions for Z ≥ 0.

Propostion 6 Let ϕ be differentiable and non-negative and monotonly decreasing

or non-positive and monotonly increasing on [0, 1].

If

1. ϕ(1) = 0 and

2. |uϕ′(u)| ≤ 1, u ∈ [0, 1],

then

C(u, v; θ) = uveθϕ(u)ϕ(v) u, v ∈ [0, 1]

is a copula for θ ∈ [−1, 0].

Proof: We only consider cases of non-negative and monotonely decreasing ϕ. The

complementary case can be shown analogously.

Let θ < 0. We have

1 + θuϕ′(u)ϕ(v) ≥ 1 u, v ∈ [0, 1]

and

1 + θvϕ′(v)ϕ(u) ≥ 1 u, v ∈ [0, 1].

With the condition uϕ′(u) ≥ −1, u ∈ [0, 1] we obtain

−1 ≤ θuϕ′(u)vϕ′(v) ≤ 0 u, v ∈ [0, 1]

and therefore,

Z = θuϕ′(u)vϕ′(v) + (1 + θuϕ′(u)ϕ(v))(1 + θvϕ′(v)ϕ(u)) ≥ 0

for u, v ∈ [0, 1]. �
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Example 12 For ϕ(u) = 1− uk, u ∈ [0, 1], 0 ≤ k ≤ 1 we have

uϕ′(u) = −kuk ≥ −1 u ∈ [0, 1],

Hence,

C(u, v; θ) = uveθ(1−u
k)(1−vk) u, v ∈ [0, 1]

is a copula for θ ∈ [−1, 1] and 0 < k ≤ 1. For k = 1 this familiy includes the new

copula introduced by Cuadras (2009).

Example 13 Consider ϕ(u) = e−u−e−1, u ∈ [0, 1]. Then |ϕ(u)| ≤ 1, u ∈ [0, 1] and

uϕ′(u) = −ue−u ≥ −1 u ∈ [0, 1].

Therefore,

C(u, v; θ) = uv exp
(
θ(e−u − e−1)(e−v − e−1)

)
u, v ∈ [0, 1]

is a copula for θ ∈ [−1, 1].

Example 14 The function ϕ(u) = lnu, u ∈ [0, 1] is indeed non-positive and incre-

asing on [0, 1] but unbounded. He have

uϕ′(u) = 1 u ∈ [0, 1],

such that

C(u, v; θ) = uveθ lnu ln v u, v ∈ [0, 1]

is a copula for θ ∈ [−1, 0]. This is the so called Gumbel-Barnett copula which has

been studied amongst others by Cuadras (2009).

Example 15 For ϕ(u) = min
(
1, 1

uk
− 1
)
, u ∈ [0, 1], k > 0 we obtain

−1 ≤ uϕ′(u) =

{
0 für u < (1/2)1/k

−ku−k für u < (1/2)1/k

for θ ∈ [−1, 1], if k ≤ 1. This includes the limiting case uϕ(u) ≤ min(u, 1 − u),

u ∈ [0, 1] discussed by Amblard & Girard (2002). In this case

C(u, v; θ) = uv exp

(
θmin

(
1,

1

uk
− 1

)
min

(
1,

1

vk
− 1

))
u, v ∈ [0, 1]

is a copula for θ ∈ [−1, 1].
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7 Summary for selected ϕ(u) = 1− uk

In summary we proved for ϕ(u) = 1− uk, u ∈ [0, 1] that

C(u, v; γ, θ) = uv(1 + θϕ(u)ϕ(v))1/γ u, v ∈ [0, 1]

is a copula, if

1. θ ∈ [−1, 0) and 1/γ ∈ [−1/k,min(1/k, 1)] or

2. θ ∈ [0, 1] and 1/γ ∈ [max(−1/k,−1), 1/k].

1. For k = 1 this copula family comprises the FGM and AMH copula for θ ∈
[−1, 1]. Additionally,

C(u, v; γ, θ) = uv(1 + θ(1− u)(1− v))1/γ u, v ∈ [0, 1]

represents a copula for θ ∈ [−1, 1] and −1 ≤ 1/γ ≤ 1. This holds e.g. for

1/γ = −1/2 which produces the new copula

C(u, v; γ = −2, θ) =
uv√

(1 + θ(1− u)(1− v))
u, v ∈ [0, 1].

2. For k > 1 the condition −1/k ≤ 1/γ ≤ 1/k is binding for all θ ∈ [−1, 1]. Hence

C(u, v; γ = −2, θ) =
uv√

(1 + θ(1− u2)(1− v2))
u, v ∈ [0, 1]

is a copula for all θ ∈ [−1, 1].

3. For k < 1 we have to choose −1 ≤ 1/γ ≤ 1. Taking k = 1/2 and γ = −2

C(u, v; γ = −2, θ) =
uv√

(1 + θ(1−
√
u)(1−

√
v))

u, v ∈ [0, 1]

is a copula for all θ ∈ [−1, 1].

4. A corresponding result that for k = 1/2 and γ = −1/2 the function

C(u, v; γ = −1/2, θ) =
uv

(1 + θ(1−
√
u)(1−

√
v))2

u, v ∈ [0, 1]

is a copula, cannot be achieved using the conditions proved here, because we

only have derived necessary conditions.
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Finally,

C(u, v; θ) = uv exp
(
1 + θ(1− uk)(1− vk)

)
u, v ∈ [0, 1]

is a copula for θ ∈ [−1, 1] and 0 < k ≤ 1.

Moreover, these copula families are closed under the construction of weighted power

means:

1. In the case k = 1(
αC(u, v; γ = −2, θ1)

−2 + (1− α)C(u, v; γ = −2, θ2)
−2)−1/2

=
uv√

1 + α(θ1 + (1− α)θ2)(1− u)(1− v)

for u, v ∈ [0, 1] and θi ∈ [−1, 1], i = 1, 2 is a copula with dependence parameter

αθ1 + (1− α)θ2.

2. Using the weighted geometric mean for k = 1

C(u, v; θ1)
αC(u, v; θ2)

1−α = exp ((αθ1 + (1− α)θ2)(1− u)(1− v))

for u, v ∈ [0, 1] and θi ∈ [−1, 1], i = 1, 2 is a copula with dependence parameter

αθ1 + (1− α)θ2 as well.

8 Dependence measures

We restrict ourselves to the discussion of Spearman’s rank correlation coefficient ρ

that takes the form

ρ = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3

for a copula C(u, v) (see e.g. Nelsen (1999)).

For certain settings of γ 6= 0, such that

C(u, v; θ, γ) = uv(1 + θϕ(u)ϕ(v))1/γ (42)

is a copula for θ ∈ [−1, 1], Spearman’s ρ can be stated explicitely.

Thus, for γ = 1 and the copula suggested by Amblard & Girard (2002,2003)

C(u, v; γ = 1, θ) = uv + θuϕ(u)vϕ(v) u, v ∈ [0, 1] (43)
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for θ ∈ [−1, 1] we obtain for the rank correlation coefficient

ρ = 12θ

(∫ 1

0

uϕ(u)du

)2

.

Apparently, the dependence parameter θ and the choice of ϕ particularly affect the

amount of ρ. For a strictly positive or strictly negative ϕ Spearman’s ρ is the larger,

the larger the area between ϕ and the x-axis is.

Example 16 Regarding ϕ(u) = 1− uk, u ∈ [0, 1], k > 0 we have

ρ = 12θ

(
1

2
− 1

k + 2

)2

= 12θ
k2

4(k + 2)2

for θ ∈ [−1, 1].

We observe that the area between the graph of ϕ(u) and the x-axis decreases for

large k. Therefore, for a given θ ∈ [−1, 1], the absolute value of Spearman’s ρ also

decreases. In dependence of k Spearman’s ρ probably can only take values in a very

small range of [−1, 1] as the following tables shows:

k [min(ρ),max(ρ)]

0.1 [−0.00680, 0.00680]

0.2 [−0.0248, 0.0248]

0.3 [−0.0510, 0.0510]

0.4 [−0.0833, 0.0833]

0.5 [−0.120, 0.120]

0.6 [−0.160, 0.160]

0.7 [−0.202, 0.202]

0.8 [−0.245, 0.245]

0.9 [−0.289, 0.289]

1.0 [−0.333, 0.333]

Table 1: Range of Spearman’s ρ for ϕ(u) = 1− uk, γ = 1.

and various values of k.

Example 17 For ϕ(u) = e−u − e−1, u ∈ (0, 1] Spearman’s ρ rewrites as

ρ = 12θ

(∫ 1

0

(ue−u − ue−1)du
)2

= 12θ

(
1− 5

2
e−1
)2

.

For θ ∈ [−1, 1], Spearman’s ρ can only take values in [−0.0774, 0.0774] so that the

ability of modelling monotone dependencies is very limited in this setting.
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In contrast, for γ 6= 1 Spearman’s ρ can only be determined numerically. We have

ρ = 12

∫ 1

0

∫ 1

0

C(u, v; θ, γ)dudv − 3

for C(., .; θ, γ) according to (42).

Example 18 Regarding again ϕ(u) = 1 − uk, u ∈ [0, 1], k > 0, we obtain with

1/γ = −1 the following ranges for ρ subject to various k > 0:

k [min(ρ),max(ρ)]

0.1 [−0.00675, 0.00687]

0.2 [−0.0242, 0.0255]

0.3 [−0.0486, 0.0541]

0.4 [−0.0774, 0.0914]

0.5 [−0.109, 0.137]

0.6 [−0.141, 0.190]

0.7 [−0.174, 0.251]

0.8 [−0.207, 0.319]

0.9 [−0.240, 0.395]

1.0 [−0.271, 0.479]

Table 2: Range of Spearman’s ρ for ϕ(u) = 1− uk, γ = −1.

and various values of k.

The AMH copula for k = 1 admits the largest range for Spearman’s ρ. Futhermore

this copula family can rather capture positive than negative dependence.

In order to study the influence of γ on the range of Spearman’s ρ, we choose ϕ(u) =

1− u, u ∈ [0, 1] and vary 1/γ in the admissible interval [−1, 1].

Example 19 We learn from table 3, that ρ can only capture a very small range of

possible dependencies if the absolute value of γ is large.
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γ [min(ρ),max(ρ)]

-10 [−0.0297, 0.0399]

-8 [−0.0370, 0.0501]

-6 [−0.0491, 0.0673]

-4 [−0.0730, 0.102]

-2 [−0.142, 0.215]

-1 [−0.271, 0.479]

1 [−0.333, 0.333]

2 [−0.180, 0.158]

4 [−0.0938, 0.0769]

6 [−0.0634, 0.0508]

8 [−0.0479, 0.0379]

10 [−0.0385, 0.0303]

Tabelle 3: Range of Spearman’s ρ for ϕ(u) = 1− u
and various values of γ.

9 Tail dependence

9.1 Definitions

According to Ledford & Tawn (1996) we consider the following four asymptotic

tail indices, which quantify the relation between U and V in the extreme cases

(U > u, V > u) for large u ∈ [0, 1] and (U < u, V < u) for small u ∈ [0, 1],

respectively. These indices are only dependent on the copula function C(., .):

1. Upper (strong) tail coefficient:

λU = lim
u→1−

P (U > u|V > u) = lim
u→1−

1− 2u+ C(u, u)

1− u
. (44)

2. Lower (strong) tail coefficient:

λL = lim
u→0+

P (U < u|V < u) = lim
u→0

C(u, u)

u
. (45)

3. Upper (weak) tail coefficient:

χU ≡ lim
u→1

P (U > u)P (V > u)

P (U > u, V > u)
− 1 = lim

u→1

(1− u)2

1− 2u+ C(u, u)
− 1 ∈ [−1, 1] (46)
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4. Lower (weak) tail coefficient:

χL = lim
u→0

P (U < u)P (V < u)

P (U < u, V < u)
− 1 = lim

u→0

u2

C(u, u)
− 1 ∈ [−1, 1] (47)

For differentiable C(u, v) the upper (strong) tail coefficient is given by

λU = 2− lim
u→1−

dC(u, u)

du

and the weak by

λL = lim
u→0+

dC(u, u)

du
.

To obtain formulas for the weak tail coefficients we transform U and V to the so-

called uniform Fréchet marginal distribution via the transformation

S = −1/ logU and T = −1/ log V,

such that

P (S > s) = P (T > s) = P (U > e−1/s) = 1− e−1/s

holds for s ≥ 0.

A function L is said to be slowly varying at infinity, if for all c > 0

L(ct)

L(t)
→ 1 for t→∞.

If

FU(t, t) := P (S > t, T > t) = P
(
U > e−1/t, V > e−1/t

)
= 1− 2e−1/t + C(e−1/t, e−1/t)

≈ L(t)

(
1

t

)1/η

for large t

holds for η ∈ [0, 1] and a slowly varying function L(t) with limit c for t → ∞, the

upper (weak) tail coefficient can be written as

χU = 2η − 1. (48)

If on the other hand

FL(t, t) = P (S < t, T < t) = P
(
U < 1− e−1/t, V < 1− e−1/t

)
= C

(
1− e−1/t, e−1/t

)
≈ L(t)

(
1

t

)1/η

for large t,
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the lower (weak) tail coefficient is

χL = 2η − 1. (49)

Note that λU = 0 (λL = 0) if χU < 1 (χL < 1). Only for χU = 1 (χL = 1), the

strong tail coefficients λU (λL) can take values c 6= 0, where c = limt→∞ L(t).

9.2 Tail dependence for γ > 0

Propostion 7 Let ϕ be differentiable with ϕ(1) = 0 and let

C(u, v; γ, θ) = uv (1 + θϕ(u)ϕ(v))1/γ u, v ∈ [0, 1]

be a copula for appropriate γ > 0 and θ ∈ [−1, 1].

Then:

1. λL = λU = 0.

2. χL = 0 with

FL(t, t) = C
(
1− e−1/t, e−1/t, γ, θ

)
≈
(

1 +
θ

γ
ϕ′(1)2

)
1

t2
for large t.

3. χU = 0 with

FU(t, t) = 1− 2e−1/t + C(e−1/t, e−1/t)

≈
(

1 +
θ

γ
ϕ′(1)2

)
1

t2
for large t.

Proof:

1. Due to ϕ(1) = 0,

λU = lim
u→1−

(
2− dC(u, u; γ, θ)

du

)
= lim

u→1−

(
2− 2u(1 + θϕ(u)2)1/γ − u22θ

γ
(1 + θϕ(u)2)1/γ−1ϕ(u)ϕ′(u)

)
= 2− 2 = 0.
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ϕ(u) and ϕ′(u) are bounded on [0, 1]. Hence,

λL = lim
u→0+

dC(u, u; γ, θ)

du
= 0

can be shown analogously.

2. The Taylor expansion x1/γ ≈ 1 + 1/γ(x− 1) provides

FL(t, t) = C
(
1− e−1/t, 1− e−1/t, γ, θ

)
≈
(
1− e−1/t

)2(
1 +

θ

γ
ϕ
(
1− e−1/t

)2)
for large t.

Using the approximations ϕ(u) ≈ ϕ(1) + ϕ′(1)(u − 1) and 1 − e−1/t ≈ −1/t,

e−2/t ≈ 1− 2/t we finally obtain

FL(t, t) ≈
(
1− e−1/t

)2(
1 +

1

γ

(
1 + θϕ′(1)2e−2/t − 1

))
≈ 1

t2

(
1 +

θ

γ
ϕ′(1)2

(
1− 2

t

))
≈
(

1 +
θ

γ
ϕ′(1)2

)
1

t2
for large t.

Hence, η = 1/2, χL = 0 and

L(t) =

(
1 +

θ

γ
ϕ′(1)2

)
.

3. With x1/γ ≈ 1 + 1/γ(x− 1) we have

FU(t, t) = 1− 2e−1/t + C(e−1/t, e−1/t)

≈ 1− 2e−1/t + e−2/t
(

1 +
1

γ

(
1 + θϕ

(
e−1/t

)2 − 1
))

≈ 1− 2e−1/t + e−2/t
(

1 +
θ

γ
ϕ′(1)2

(
1− e−1/t

)2)
≈
(
1− e−1/t

)2(
1 +

θ

γ
ϕ′(1)2e−2/t

)
≈
(

1 +
θ

γ
ϕ′(1)2

(
1− 2

t

))
1

t2

≈
(

1 +
θ

γ
ϕ′(1)2

)
1

t2
for large t.

Thus, η = 1/2, χU = 0 and

L(t) =

(
1 +

θ

γ
ϕ′(1)2

)
. �
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Example 20 If C is a FGM copula, then γ = 1 and ϕ(u) = 1 − u for u ∈ [0, 1].

Using ϕ′(1) = −1 we get

FL(t, t) ≈ (1 + θ)
1

t2
.

This corresponds to the result obtained by Currie (1999), p. 11. In addition,

FU(t, t) ≈ (1 + θ)
1

t2

also agrees with Currie (1999), p. 10.

9.3 Tail dependence for γ < 0

Propostion 8 Let ϕ be differentiable with ϕ(1) = 0 and let

C(u, v; γ, θ) = uv (1 + θϕ(u)ϕ(v)) u, v ∈ [0, 1]

be a copula for appropriate γ < 0 and θ ∈ [−1, 1].

Then

1. λL = λU = 0.

2. χL = 0 with

FL(t, t) = C
(
1− e−1/t, 1− e−1/t, γ, θ

)
≈
(

1− θ

|γ|
ϕ′(1)2

)−1
1

t2
for large t.

3. χU = 0 with

FU(t, t) = 1− 2e−1/t + C(e−1/t, e−1/t)

≈
(

1 +
θ

|γ|
ϕ′(1)2

)
1

t2
for large t.

Proof: We consider

C(u, v; γ, θ) =
uv

(1 + θϕ(u)ϕ(v))1/|γ|
u, v ∈ [0, 1].

1. This is an immediate conclusion of part 2 and 3, because χL = χU = 0 < 1

implies λU = λL = 0.
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2. Using x1/|γ| ≈ 1 + 1/|γ|(x− 1) we get

FL(t, t) = C
(
1− e−1/t, 1− e−1/t, γ, θ

)
≈
(
1− e−1/t

)2 1(
1 + θ

|γ|ϕ
′(1)2 (e−1/t)

2
) .

The expansions

(1− e−1/t)2 = 1− 2e−1/t + e−2/t ≈ 1− 2

(
1− 1

t
+

1

2t2
− 1

6t3
+

1

24t2

)
+1− 2

t
+

4

2t2
− 8

t3
+

16

24t4
=

1

t2
− 1

t3
+

14

24t4

and (
e−1/t

)2
= e−2/t = 1− 2

t
+

4

2t2

lead to

FL(t, t) ≈ 1

t2
1− 1/t+ 14/(24t2)

1 + θ
|γ|ϕ

′(1)2 (1− 2/t+ 2/t2)

≈ 1

1 + θ
|γ|ϕ

′(1)2
1

t2
for large t.

Hence, η = 1/2, χL = 0 and

L(t) =

(
1 +

θ

|γ|
ϕ′(1)2

)−1
.

3. The Taylor expansion x−1/|γ| ≈ 1− 1
γ
x leads to

FU(t, t) = 1− 2e−1/t + C(e−1/t, e−1/t)

≈ 1− 2e−1/t + e−2/t
(

1− θ

|γ|
ϕ(e−1/t)2

)
≈ (1− e−1/t)2 − e−2/t θ

|γ|
ϕ′(1)2

(
e−1/t − 1

)2
≈ (1− e−1/t)2 − e−2/t θ

|γ|
ϕ′(1)2

(
1− e−1/t

)2
≈
(

1− θ

|γ|
ϕ′(1)2(1− 2/t)

)(
1− e−1/t

)2
≈
(

1− θ

|γ|
ϕ′(1)2

)
1

t2
for large t.

Therefore, η = 1/2, χU = 0 and

L(t) =

(
1− θ

|γ|
ϕ′(1)2

)
.�
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Example 21 Let C be the AMH copula, then γ = −1 and ϕ(u) = 1− u, u ∈ [0, 1].

With ϕ′(1) = −1 and

FL(t, t) ≈ 1

1 + θ

1

t2

we obtain the result of Currie (1999), p. 5. Furthermore,

FU(t, t) ≈ (1− θ) 1

t2

also agrees with Currie (1999).

9.4 Tail dependence for γ = 0

Propostion 9 Let ϕ be differentiable with ϕ(1) = 0 and let

C(u, v; θ) = uv exp(θϕ(u)ϕ(v)) u, v ∈ [0, 1]

be a copula for θ ∈ Θ ⊆ [−1, 1].

Then

1. λL = λU = 0.

2. χL = 0 with

FL(t, t) = C
(
1− e−1/t, 1− e−1/t, γ, θ

)
≈
(
1− θϕ′(1)2

) 1

t2
for large t.

3. χU = 0 with

FU(t, t) = 1− 2e−1/t + C(e−1/t, e−1/t)

≈
(
1− θ)ϕ′(1)2

) 1

t2
for large t.

Proof:

1. Again, λU = λL = 0 results from χL = χU = 0 < 1 proved in the second and

third part.
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2. Due to

FL(t, t) = C
(
1− e−1/t, 1− e−1/t, θ

)
=
(
1− e−1/t

)2
exp

(
θϕ
(
1− e−1/t

)2)
≈
(
1− e−1/t

)2 (
1 + θϕ

(
1− e−1/t

)2)
≈
(
1− e−1/t

)2 (
1 + θϕ′(1)2

(
e−1/t

)2)
≈ 1

t2

(
1 + θϕ′(1)2

(
1− 2

t

))
≈
(
1 + θϕ′(1)2

) 1

t2
for large t,

we obtain η = 1/2, χL = 0 and

L(t) = 1 + θϕ′(1)2.

3. From

FU(t, t) = 1− 2e−1/t + C
(
e−1/t, e−1/t, θ

)
= 1− 2e−1/t + e−2/t exp

(
θϕ
(
e−1/t

)2)
≈ 1− 2e−1/t + e−2/t

(
1 + θϕ

(
e−1/t

)2)
≈ 1− 2e−1/t + e−2/t

(
1 + θϕ′(1)2

(
e−1/t − 1

)2)
≈ (1− e−1/t)2

(
1 + θϕ′(1)2e−2/t

)
≈
(
1 + θϕ′(1)2

) 1

t2
for large t

we get η = 1/2, χU = 0 and

L(t) = 1 + θϕ′(1)2.

Example 22 The BG copula for θ ∈ [−1, 0] takes the form

C(u, v; θ) = uveθ lnu ln v u, v ∈ [0, 1].

with ϕ(u) = lnu, u ∈ [0, 1] and ϕ′(1) = 1. Hence,

L(t) = 1 + θ.

Example 23 Cuadras (2009) investigates the function ϕ(u) = 1 − u, u ∈ [0, 1],

which leads to

L(t) = 1 + θ.
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10 Conclusion

We have identified sufficient and partly necessary conditions for a family of ag-

gregation functions that is closed under the construction of weighted power means

to be a copula. These copula families generalize results given in literature for the

FGM, AMH and BG copula. Furthermore we have nvestigated for theses families

the amount of Spearman’s ρ as an widely-used dependence measure. Thereby it has

arisen that the ranges are often considerably smaller than those for the FGM and

AMH copula. These two copula families and our generalizations have in common

that they can’t capture tail dependence. This holds both for the strong and for the

weak tail coefficient.
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