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EFFECTS OF MARKET SPLITTING AND NETWORK FEE REGIMES
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MARCH 24, 2014

ABSTRACT. In this paper we propose a three–level computational equilibrium model that allows
to analyze the impact of the regulatory environment on transmission line expansion (by the
regulator) and investment in generation capacity (by private firms) in liberalized electricity
markets. The basic model analyzes investment decisions of the transmission operator (TO) and
private firms in expectation of an energy only market and cost-based redispatch. In different
specifications we consider the cases of one versus two price zones (market splitting) and analyze
different approaches to recover network cost, in particular lump sum, capacity based, and energy
based fees. In order to compare the outcomes of our multi–stage market model with the first
best benchmark, we also solve the corresponding integrated planer problem. In two simple test
networks we illustrate that energy only markets can lead to suboptimal locational decisions
for generation capacity and thus, imply excessive network expansion. Market splitting heals
those problems only partially. Those results obtain for both, capacity and energy based network
tariffs, although investment slightly differs across those regimes.
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1. INTRODUCTION

Following the British privatization in the 1980s, various countries around the world liberal-
ized their electricity sectors. Today, in most industrialized countries only network facilities
remain regulated while private firms decide on investment in generation capacities, and trade
electricity on markets. This structure challenges the planning of transmission and generation
capacity expansion. While an entirely regulated electricity sector allows for simultaneous
transmission and generation expansion planning, in a liberalized market, investment decisions
in transmission and generation capacities are taken by different agents. Investment in genera-
tion capacities is typically made by firms and private investors, based on their expectations
concerning the future regulatory environment and taking into account available network facil-
ities. Network expansion, however, is decided on by regulated firms (or even the regulator),
in anticipation of capacity investments by private firms. Traditional optimization approaches,
while they reveal the optimal expansion plan for transmission and generation, do not offer
valuable information on how to achieve those goals in a market environment. In a liberalized
market, incentives induced by the interplay of market environment and regulation determine
whether firms indeed make the appropriate investment choices. Liberalized electricity markets
thus call for new tools to inform the various agents involved — regulators, electricity firms,
investors, and other stakeholders.

In this paper we propose a model that allows to analyze investment in transmission expansion
(by the transmission operator) and generation expansion (by firms) in liberalized electricity
markets. We model environments with energy only markets and a regulated transmission
operator who uses redispatch to deal with transmission constraints. In a multistage analysis we
study transmission expansion decisions by the regulated transmission operator in anticipation
of capacity expansion by private firms. In different specifications of our model we analyze the
effects of market splitting (one versus multiple price zones) as well as different approaches to
recover network cost, in particular lump sum, capacity based, and generation based fees. In
order to compare the outcomes to the First Best we also solve the integrated planer problem.
In this paper we restrict ourselves to solving stylized test cases to illustrate the applicability of
our framework. Our results demonstrate that investment choices in a market environment can
substantially differ from First Best solution. In our numerical examples, the absence of proper
locational investment incentives for firms clearly affects investment choices of generators,
which, in turn, leads to excessive line investment. Our results demonstrate that our model
allows to compare different network management regimes and assess their effects on long
run investment decisions. Our approach is, thus, an important extension of various studies
that have mainly considered the short run properties of different transmission management
regimes (see the literature review). As we show, transmission management has also important
implications in the long run when generation and transmission expansion are taken into
account.

Let us emphasize that our approach allows to assess the impact of different regulatory
regimes on investment under conditions that obtain in various industrialized countries around
the world. Especially in Europe, spot market trading does not fully account for transmission
constraints, but capacities are shut down and called for by the transmission operator in
case the spot market solution is not feasible. Under cost based redispatch (as it is used in
Austria, Switzerland, or Germany) firms called into operation are just compensated for their
variable production cost. Consequently, redispatch operations cannot contribute to the recovery
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of investment costs.1 Several countries thus try to induce adequate locational investment
incentives via market splitting, i.e the establishment of predefined zones where different
spot market prices obtain in case of transmission constraints. As it is well known, various
countries outside Europe go even further and introduced variants of nodal pricing (Australia,
New Zealand, Russia or the United States, see Joskow, 2008), where electricity prices reflect
transmission constraints and induce adequate locational investment incentives for generation
capacities run by private firms. Since in our framework the first best solution coincides with
the outcome under nodal pricing, our approach also allows to assess the long run benefits
from a change to a nodal pricing system.

Let us briefly illustrate the relevance of our model for important policy considerations by
example. In 2011, after the Fukushima nuclear accident, the German government decided to
shut down all nuclear power plants by 2020. At the same time, renewable production was
heavily promoted. Those developments caused an increasing concentration of generation
capacities in the northern part of the country, since cheap wind power and coal plants have
locational advantages there. In the south, increasing photovoltaic capacities require a backup
to compensate for fluctuations in production. Alternative solutions to these problems are
e.g. investment in gas plants located in the south or transmission line expansion to provide
the south with power from the north. While global optimization suggests that gas plants solve
arising problems at lower cost, the current German regulation does not provide sufficient
investment incentives. As a consequence a substantial expansion of transmission capacities
is planned, implying investment cost of over 30 bn. Euro. Power market models as the one
suggested in this paper enable us to (i) identify those problems and their causes, and (ii) to
analyse and compare different regulatory regimes that might be capable to induce adequate
investment incentives. In the case of the German market sketched above, interesting scenarios
include market splitting (so that producers in the south are rewarded for their locational
choice) and changes in the redispatch system (to a system that rewards the right locational
choices). Both measures would make production in the south more profitable and could
contribute to increased investment incentives in the relevant locations.

We finally review the related literature. Prior to the liberalization of electricity sectors
around the world, vertically integrated monopolists (either regulated or directly state owned)
were responsible for generation and transmission expansion. To achieve their goals they
needed insights on the cost minimal system configuration. As a consequence, traditionally,
most of the contributions thus proposed frameworks and techniques to determine overall
optimal expansion for generation and transmission facilities. Compare for example Gallego et
al. (1997), Binato et al. (2001), Alguacil et al. (2003), or de Oliveira et al. (2005).

In liberalized electricity markets, however, we observe vertical unbundling of transmission
and generation facilities. In addition to insights on the global optimum we thus need research
on how the market environment affects decisions of the different stakeholders. By now a large
literature has developed which explicitly analyzes incentives of private, potentially strategic
firms to invest in generation facilities, completely disregarding limited transmission networks,
however. Examples are Gabszewicz Poddar (1997), Joskow and Tirole (2007), Fabra et al.
(2011), Fabra and Frutos (2011), Murphy and Smeers (2005), Zöttl (2011), or Grimm and
Zoettl (2013).

Another recent strand of literature explicitly models both, generation and transmission
investment, typically by making use of bi-level programs. Sauma and Oren (2006, 2009) are

1Market based redispatch (used, e.g., in Belgium, Finnland, France, or Sweden) yields rents for firms that
are called for at the redispatch stage and thus, induces incentives to build plants at locations with systematic
underprovision.
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among the first ones to explicitly model investment incentives of generators and transmission
network expansion in a such a way. In their contribution they quantify the impact of whether
transmission investment anticipates resulting investment of strategic generation companies or
not. Rho et al. (2007) propose a simulation framework to analyze investment of competitive
generation companies and competitive merchant transmission companies. Rho et al. (2008)
generalize this framework to also include a transmission system operator as a further agent.

Ryan et al. (2010) and in an extension Jin and Ryan (2011) analyze expansion of electricity
generation and transmission capacities together with the expansion of a fuel transportation
network. For electricity markets, Jenabi et al. (2013) propose a clear cut bi-level framework
which considers optimal network expansion by the transmission company, anticipating invest-
ment of competitive of competitive generation companies. The resulting problem is solved
based on recently developed complementarity theory techniques. Most interestingly, also
based on a bi-level approach, O’Neill et al. (2013) propose an auction mechanism to imple-
ment optimal investment incentives by transmission companies. Those approaches, however,
do not explicitly take into account the specific structure of the transmission management
regime, but implicitly assume optimal management of the transmission network which is
implemented by a regime of LMPs. While this nicely models incentives in markets where
indeed a system of LMPs is implemented (as for example in the US or Canada), it limits insights
with respect to other markets, which might rely on a system of market splitting/coupling and
redispatch/countertrading which is not captured by the above modelling approaches. It is
the purpose of our article to explicitly analyze the impact of specific design features of load
management regimes as market splitting and redispatch on the generation and transmission
investment incentives.

Let us note at this point that in recent years an extensive literature has developed that
analyzes the impact of the specific rules of the load management regime on short run market
outcomes, i.e. for fixed generation and transmission facilities. Prominent articles include
Hogan (1999), Ehrenmann and Smeers (2005), Neuhoff et al. (2005), or Green (2007) who
explicitly compare the short run implications of zonal systems with redispatch to the system of
nodal pricing. Several articles explicitly analyze the incentives of different agents that are able
to exercise market power under different load management regimes. Compare, for example,
Oren (1997), Wei and Smeers (1999), Borenstein et al. (2000), Metzler et al (2003), Gilbert
et al. (2004), or Hu and Ralph (2007). Recently Holmberg and Lazarczyk (2012), Oggoni
and Smeers (2013), Oggoni et al. (2012) and Perigne and Söder (2013) explicitly compared
different load management regimes based on market coupling/splitting with redispatch or
countertrading. All those articles consider only the short run perspective, however, while it is
our purpose to consider the long run effects on investment incentives.

This paper is organized as follows. Section 2 will present our theoretical framework. In
section 3 we introduce the integrated planer approach, while section 4 presents the tri–level
model with a cost-based redispatch system and market splitting. The tri–level model is
reformulated using new decomposition ideas in section 5. The last part of our paper, in section
6, presents numerical results for test networks that illustrate applicability of our model. Section
7 concludes.

2. THE FRAMEWORK

2.1. Overview. In this section we present the basic framework for our tri-level power market
model and the corresponding integrated planning approach that serves as a first best benchmark.
Both approaches explicitly account for the network structure and generalize work by Jenabi
et al. (2013). The integrated planning approach, which we present in Section 3, replicates a
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stylized nodal price system with transmission and generation investment. The tri-level model
analyzes investment decisions (in network expansion) by the transmission operator (TO) and
in generation capacity (by firms), in expectation of an energy only market and cost-based
redispatch. The model allows to analyze different regulatory environments. In different
specifications red we consider the cases of one versus two price zones (market splitting) and
analyze different approaches to recover network cost, in particular capacity based versus
generation based fees. For the sake of completeness, we present all sets, parameters and
variables used in our model in the appendix.

2.2. Network. Consider a network G = (N , Lex) with a set N of nodes and a set Lex of edges.
By L we will denote different line types that are characterized by their thermal capacity
z̄ f low and their susceptance b. Given different line types l ∈ L, the network operator decides
on an optimal network expansion plan, i.e., on the construction of candidate power lines
l ∈ Lnew =

⋃

l∈L Lnew
l and on the deconstruction of existing lines l ∈ Lex =

⋃

l∈L Lex
l .

In our tri-level power market model, if we account for multiple price zones, we will consider
a partition Z =

�

Z1, . . . , Z|Z |
	

of the node set N . Its elements Z1, . . . , Z|Z | refer to different price
zones in the electricity market. By L inter

l we will denote lines connecting nodes that belong to
different zones (inter-zone links). The following network example illustrates this concept:

Example 2.1. Figure 1 depicts an electricity network with nine nodes, three price zones
Z = {(1, 2), (3,4, 5,6), (7, 8,9)} (grey areas) and eleven existing transmission lines of two
different line types L= {1, 2}. Line type l= 1 is characterized by a thermal capacity of 1000
and a susceptance of 1 (solid arrows). Analogous, line type l = 2 has a thermal capacity of
500 and a susceptance of 0.5 (dashed arrows). This transmission network yields the following
subsets of network links

Lex
1 = {(1,2), (3, 4), (3,6), (4, 5), (5,6), (6, 8), (7,8), (7,9)}

Lex
2 = {(1,4), (2, 7), (8,9)}

with L inter
1 = {(6, 8)}, L inter

2 = {(1, 4), (2,7)}, Lnew
1 = ;, and Lnew

2 = ;.

When making line investment decisions, the transmission operator faces physical network
constraints known as First and Second Kirchhoff’s Laws. Note that we will use a linear
approximation of real power flows known as the lossless direct current optimal power flow
(DC) approximation (see also Kirschen and Strbac, 2004).

2.3. Demand. We denote demand nodes in the network by D ⊂ N . Consumers are located
exclusively at those demand nodes, i.e., by assumption demand is zero at any other node
n ∈ N \ D in the network. We model elastic demand at a given demand node d ∈ D, in any
given period t ∈ T , by continuous, strictly monotonic decreasing functions

Z price
d,t (z

dem
d,t ) : [0, z̄dem

d,t ]→ [0,∞[ ,

with zdem
d,t denoting demand in period t ∈ T at demand node d ∈ D and Z price

d,t being the

resulting market price. z̄dem
d,t denotes the saturation point. We will further assume that the

integral of each demand function up to zdem
d,t , to which we will refer to as the gross consumer

surplus at node d in period t, is always convex, which is for instance the case for linear
non-increasing demand functions.
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FIGURE 1. Nine–Node Network Economy with Market Coupling

2.4. Investment. Let Gall
n denote the set of technologies that firms can potentially dispose of

in at a given network node n ∈ N . We will use the notations Gex
n for already existing generation

technologies at node n ∈ N . Gnew
n will be used for candidate generation technologies that can

be build at node n ∈ N , with Gall
n = Gnew

n ∪ Gex
n . To account for the characteristics of different

production technologies, we allow for technology specific efficiency parameters egen
g . Unit

investment cost of building a new generation capacity is denoted by igen
g ∈ R+.

2.5. Production/Supply. We assume that all firms act in a competitive environment without
any type of maket power and act as price takers. Variable production cost is denoted by
vgen

g ∈ R+. We assume that the variable costs vgen
g are pairwise disjoint.

2.6. Network Fees. In the power market model the transmission operator has to collect
network fees in order to cover expenses arising from i) line investment and ii) redispatch. We
denote the revenue from fee collection by R. We consider three different types of network fee
regimes (see also Section 4.2).

• Lump Sum: We denote by λ a lump sum fee paid by the consumers:

Rλ = λ

• Transmission Based Fee: We denote by ρ a per unit fee charged for each unit of
electricity actually transmitted through the network. The corresponding revenue Rρ
is given by

Rρ =
∑

d∈D

∑

t∈T

ρ · xdem
d,t

• Capacity Based Fee: We denote by κ a per unit fee charged for each unit of (genera-
tion) capacity connected to the network. Revenues Rκ generated under this regime
is

Rκ =
∑

n∈N

∑

g∈Gnew
n

κ · x gncp
g
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3. THE INTEGRATED PLANNING APPROACH AS A FIRST BEST BENCHMARK

As the first best benchmark we consider the integrated planning approach where an Inte-
grated Generation and Transmission Company (IGTC) decides simultaneously on transmission
and generation capacity expansion and chooses welfare maximizing production at the spot
markets. The IGTC maximizes total social welfare which is defined as the difference of gross
consumer surplus (aggregate over all demand scenarios) and (i) generation investment cost,
(ii) line investment cost as well as (iii) variable production cost (see (3.1)). Note that our
approach yields the same investment and production outcomes as an idealized nodal pricing
system.2 Figure 2 visualizes the general structure of the model that is described in detail in
(3.1) to (3.15).

FIGURE 2. Integrated Planning Approach

 MAX  Social Welfare 
 

  s.t.  A) generation investment constraints 
  B) production constraints 
  C) market clearing condition 
  D) power flow constraints 
  E) line investment constraints 
   

 

Idealized Market (IGTC) 

X,y,z,pfee 

x,pfee 

Considering different economic and physical constraints, the IGTC faces the following
inter-temporal optimization problem:

max
∑

d∈D

∑

t∈T

 

∫ zdem
d,t

0

Z price
d,t (ad,t)dad,t

!

−
∑

l∈L





∑

l∈Lnew
l

i l ine
l · z l ine

l +
∑

l∈Lex
l

i l ine
l · z l ine

l



(3.1)

−
∑

n∈N





∑

g∈Gnew
n

i gen
g · z gncp

g +
∑

g∈Gall
n

∑

t∈T

v gen
g · z gen

g,t





2It is well known that the integrated planner approach yields the same outcome as a nodal price system in the
short run (see, for instance, Hogan (2002)). Analogously, our results in section 5 imply that the solution of the
long run integrated planner approach (the First Best) is equivalent to the outcome of a three-level nodal pricing
model which also accounts for investments in transmission and generation capacity. In such a model, a regulated
transmission operator decides on transmission expansion at the first stage. At the second stage, competitive firms
decide on generation expansion investment and spot market bids. At the third stage, the transmission operator
decides on the welfare maximizing feasible allocation and implements nodal prices.
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subject to:

First Kirchhoff’s Law (FKL):

zdem
n,t =

∑

g∈Gall
n

z gen
g,t −

∑

l∈L





∑

n′∈N |(n,n′)∈Ll

z f low

(n,n′),t −
∑

n′∈N |(n′,n)∈Ll

z f low

(n′,n),t



 ∀n ∈ N , t ∈ T(3.2)

Second Kirchhoff’s Law (SKL):

z f low
l,t − bl

�

zangle
n,t − zangle

n′,t

�

≤M · z l ine
l ∀l ∈ L, l = (n, n′) ∈ Lex

l
, t ∈ T(3.3)

z f low
l,t − bl

�

zangle
n,t − zangle

n′,t

�

≤M
�

1− z l ine
l

�

∀l ∈ L, l = (n, n′) ∈ Lnew
l

, t ∈ T(3.4)

−z f low
l,t + bl

�

zangle
n,t − zangle

n′,t

�

≤M · z l ine
l ∀l ∈ L, l = (n, n′) ∈ Lex

l
, t ∈ T(3.5)

−z f low
l,t + bl

�

zangle
n,t − zangle

n′,t

�

≤M
�

1− z l ine
l

�

∀l ∈ L, l = (n, n′) ∈ Lnew
l

, t ∈ T(3.6)

Voltage Phase Angle of Reference Node (VPA):

zangle
1,t = 0 ∀t ∈ T(3.7)

Transmission Flow Limits (TFL):

−z f low
l

�

1− z l ine
l

�

≤ z f low
l,t ≤

�

1− z l ine
l

�

z f low
l ∀l ∈ L, l ∈ Lex

l
, t ∈ T(3.8)

−z l ine
l · z f low

l ≤ z f low
l,t ≤ z l ine

lnew
l
· z f low

l ∀l ∈ L, l ∈ Lnew
l

, t ∈ T(3.9)

Generation Capacity Limits (GCL):

z gen
g,t ≤ egen

g · z gncp
g ∀n ∈ N , g ∈ Gex

n , t ∈ T(3.10)

z gen
g,t ≤ egen

g · z gncp
g ∀n ∈ N , g ∈ Gnew

n , t ∈ T(3.11)

Variable Restrictions (VR):

z gncp
g ≥ 0 ∀n ∈ N , g ∈ Gnew

n(3.12)

z gen
g,t ≥ 0 ∀n ∈ N , g ∈ Gall

n , t ∈ T(3.13)

zdem
d,t ≥ 0 ∀d ∈ D, t ∈ T(3.14)

z l ine
l ∈ {0,1} ∀l ∈ L, l ∈ Lex

l
∪ Lnew

l
(3.15)

Let us briefly explain the different constraints the IGTC is facing:

• First Kirchhoff’s Law (see (3.2)) ensures power balance or flow conservation at any
node n ∈ N in the electricity network. To ensure flow balance, total power flow out
of node n ∈ N in any given period t ∈ T must equal the sum of power flows in node
n ∈ N .
• Constraints (3.3) to (3.6) correspond to Second Kirchhoff’s Law and determine, to-

gether with the constraint group (3.7) the network’s phase angles (and network
flows).
• Constraint (3.7) ensures that the phase angle of node 1, the reference node of our

network, equals zero in all periods t ∈ T .
• The transmission flow limit constraints in (3.8) and (3.9) guarantee that on a given

transmission line total power flow always lies between its lower and upper bound.
Here, line investment is explicitly taken into account.
• The next group of constraints, the generation capacity limits (constraints (3.10) to

(3.11)), ensure that electricity production does not exceed installed generation capacity.
These constraints explicitly account for the efficiency of the considered technologies.
• The last constraint group, (3.12) to (3.14) and (3.15), guarantees certain model

variables being nonnegative and binary, respectively.
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Note that by summing up (3.2) for all network nodes n ∈ N yields the market clearing
condition:

(3.16)
∑

d∈D

zdem
d,t =

∑

n∈N

∑

g∈Gall
n

zgen
g,t ∀t ∈ T

4. THE TRI-LEVEL POWER MARKET MODEL

In most European countries, spot market trading does not fully account for network con-
straints (if at all). Therefore, congestion management mechanisms and the way network fees
are collected play a crucial role for investment incentives, both, in network and generation
capacity expansion. While it is most likely, that energy-only markets with redispatch do not
result in an optimal incentive structure, the questions remain open (i) how far away we are
from the first best and (ii) whether alternative mechanisms have the potential to improve the
situation substantially.

In our power market model we consider an energy only market with cost-based redispatch,
which is implemented in several European countries. Electricity trading and dispatch is
organized as follows in such a system: Firms trade electricity day ahead (and possibly intra-
day) at a power exchange that does not account for any transmission constraints. After closing
of the market, the transmission operator (TO) checks feasibility of the resulting transmission
flows. If the allocation is feasible, nothing is changed and electricity is generated and consumed
as traded. If transmission is infeasible, the TO redispatches plants in the cheapest possible
way that ensures feasibility of transmission flows. To that aim the TO obliges producers to
(partially) shut down production and others on the other side of the congested link are called
to step in instead. Plants that are shut down have to pay their marginal cost (that they save
due to the shutdown) to the TO, while plants that are called to step in receive their variable
production cost. Production cost of the called plants are necessarily higher than production
cost of the plants shut down, since otherwise they would have been successful at the spot
market. The resulting cost is collected by the TO through transmission fees. While in the early
days of liberalized electricity markets redispatch was a rare event, nowadays the phenomenon
becomes more and more important. See ENTSO–E (2012) for the case of Germany, where
the decision to shut down nuclear power plants and increase the installation of renewables
implies a much more uncertain supply structure.

Example 4.1. Before we formally introduce our power market model with cost-based redis-
patch, we briefly illustrate the main effects of cost-based redispatch in a stylized market with
a simple two-node network. In the two-node network demand is located at the northern node
and production is only feasible at the southern node (see also Figure 3). We further assume that
demand is linear and that there is only one generator with constant marginal production cost.
As illustrated by Figure 3, the demand function intersects the supply function (given by the
constant marginal cost of production) in the point A. This determines the equilibrium market
price C and the equilibrium quantity B. In the case of unlimited transmission capacities, the
quantity B will be produced and consumed. However, if the market faces physical transmission
constraints this is not possible. As shown in Figure 3, D is the maximum amount of electricity
that can be transmitted from the production node to the consumption node. In this simplified
scenario ’redispatch’ implies that the transmission operator adjusts both demand and supply in
order to meet the transmission capacity constraint at D. To this aim the TO obliges consumers
(namely those with the lowest willingnesses to pay) to step back from their contracts. As a
compensation, the TO pays these consumers the amount equal to the area of the polygon
ABDF . Additionally, the transmission operator asks firms (typically those with the highest
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FIGURE 3. Cost-Based Redispatch

. . 

Price 

A 

B D 

E 

Quantity 

Transmission Capacity 

C . 

. . 

. 
F 

Supply 

Demand 

. 

. Demand Node 

Supply Node 

a) two node network B) Economic Equilibrium 

marginal cost, here marginal cost are the same) to shut down their production to an extent
that resolves the congestion problem. The respective firms pay an amout equal to the area of
the rectangle ABDE to the transmission operator, which corresponds exactly to the variable
costs that do not arise due to the redispatch. Obviously, the redispatch mechanism has no
impact on the firms’ profits if they are asked to decrease production. However, for the TO
redispatch implies additional cost equal to the area of the triangle AEF that occur due to the
reallocation procedure. These additional costs must be collected from the market participants
when collecting network fees.

4.1. Formal Representation as a Tri-Level Programming Problem. Let us briefly sketch the
structure of our model before we introduce the details at all levels. We consider a hierarchical
tri-level problem that corresponds to a multistage game, where the transmission operator (TO)
decides about investment in network expansion anticipating a perfectly competitive electricity
(energy only) market with cost-based redispatch. The timing of this game is illustrated in Figure
4. Note that investment choices are taken once (sequentially by the TO and competitive firms),
followed by multiple periods of spot market trading and redispatch (in case of transmission
constraints). We translate this game into a tri-level program as follows: At the first level, the
TO decides to invest (or not) in line expansion, anticipating the outcomes at all subsequent
levels. The TO’s objective is to maximize welfare. At the second level, we model private
firms’ investment decisions (in generation capacity) as well as trading at a sequence of T spot
markets with fluctuating demand. Other than the TO (who is driven by welfare concerns),
firms take investment and supply decisions as to maximize profits. We assume competitive
spot markets (no market power) and spot market rules yield no price signals that point to
transmission constraints (energy only market). Redispatch at the T subsequent spot markets
is modelled at the third level and taken into account by firms when they decide on investment
and supply schemes at level two. Redispatch occurs whenever traded quantities turn out
to be infeasible given transmission constraints. The TO redispatches plants as to minimize
redispatch costs, which he/she recovers through network fees. Note that consideration of
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FIGURE 4. Timing of the Corresponding Multistage Game 
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FIGURE 5. Structure of the Power Market Model

 MAX  Social Welfare  
 

  s.t.  A) budget constraint 
  B) line investment constraints 

 
 

 MAX  Firms‘ Profits 
 

  s.t.  A) generation investment constraints 
  B) production constraints 
  C) market clearing condition 
  D) market splitting 
   

 

Generation Investment & Spot Markets (Firms) 

Line Expansion (TO) 

Redispatch Market (TO) 

 MIN  Redispatch Cost  
 

  s.t.  A) production constraints 
  b) market clearing condition 
  C) market splitting 
  D) power flow constraints 
   

 

redispatch in a separate third stage is possible since, once network and generation capacities
have been chosen, redispatch at time t cannot have any impact on supply decisions at any
later point in time. Figure 5 illustrates the structure of our tri-level power market model. We
point out that all levels of our power market model are interconnected: the competitive firms’
investment and optimal spot market behaviour as well as the redispatch market are part of the
transmission operator’s constraints at the first level.

Let us finally emphasize that our power market model specification allows to account for
multiple price zones Z1, . . . , Z|Z |, which enables us to investigate the effect of market splitting
on the extent of (cost of) redispatch. Under market splitting, spot market trading does take
into account parts of the possible network constraints between (but not within) zones.
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4.2. First Level Problem: Optimal Line Expansion. At the first level, the transmission oper-
ator (TO) decides on a line expansion plan as to maximize total welfare3. The TO is restricted
by a budget constraint requiring that expenses for network expansion and redispatch are
covered by revenues from network fees. In particular, total expenses E equal (i) redispatch
cost arising at the third level problem and (ii) line investment cost at level one,

E =
∑

l∈L





∑

l∈Lnew
l

i l ine
l · z l ine

l +
∑

l∈Lex
l

i l ine
l · z l ine

l





︸ ︷︷ ︸

Line Investment Cost

+
∑

d∈D

∑

t∈T





∫ xdem
d,t

zdem
d,t

Z price
d,t (ad,t)dad,t



+
∑

n∈N

∑

g∈Gall
n

∑

t∈T

v gen
g · y gen

g,t ,

︸ ︷︷ ︸

Redispatch Cost

where the first term represents (network) investment cost and the second and third term
redispatch cost. Redispatch cost is composed of remuneration of consumers that cannot be
supplied (second term), as well as transfers to (or, from) the plants that are redispatched (third
term). y gen

g,t and ydem
d,t denote redispatch quantities, vgen

g denote variable cost of technology g
as introduced earlier.

At the first level the TO maximizes social welfare, which comprises of consumer surplus
from all markets minus investment and generation cost. The budget constraint (R = E) allows
to consider all three network fee regimes referred to in Section 2.6. We obtain the following
line investment optimization problem:

max
∑

d∈D

∑

t∈T

 

∫ zdem
d,t

0

Z price
d,t (ad,t)dad,t

!

−
∑

l∈L





∑

l∈Lnew
l

i l ine
l ·w l ine

l +
∑

l∈Lex
l

i l ine
l ·w l ine

l



(4.1)

−
∑

n∈N





∑

g∈Gnew
n

i gen
g · x gncp

g +
∑

g∈Gall
n

∑

t∈T

v gen
g · z gen

g,t





subject to:

R− E = 0 (Budget Constraint, BC)(4.2)

w l ine
l ∈ {0,1} ∀l ∈ L, l ∈ Lex

l
∪ Lnew

l
(4.3)

4.3. Second Level Problem: Generation Investment and Spot Market Behavior. At the
second level we model firms’ behavior concerning (i) generation investment and (ii) spot
market supply.4 The generation and supply market is assumed to be perfectly competitive,
i.e., no firm can directly affect prices by strategic investment or supply decisions. It has been
shown in the literature5 that a perfectly competitive environment yields welfare maximizing
investment and production decisions in our context. This simplifies our second level problem
to a constrained welfare maximization problem.6

When making investment and supply decisions, firms only consider physical constraints
for which they receive price signals. If the market is not divided into zones, firms receive no
signals concerning network capacities and thus, will not account for them. If the market is
divided into two or more zones, firms consider those physical constraints which are expressed
in price differences due to market splitting: Between any pair of zones (Zi, Z j), electricity flow
cannot exceed the maximum thermal capacity of the respective inter-zone network links – and

3All variables that can be chosen by the transmission operator at the first level will be denoted by w.
4All variables that are determined on the second stage will be denoted by x .
5See, e.g., Grimm and Zoettl (2013) for the context modelled here, or, more general, XXX.
6XX Hier sollten wir noch ein bisschen detaillierter werden. XXX
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congestion implies price differences across zones. Other physical restrictions like the phase
angle determination do not play any role under market splitting.

To summarize, at level two we consider welfare maximizing generation investment and sup-
ply decisions where supply is constrained by generation capacities installed, and transmission
constraints across zones.

max
∑

d∈D

∑

t∈T

 

∫ xdem
d,t

0

Z price
d,t (ad,t)dad,t

!

−
∑

n∈N





∑

g∈Gnew
n

i gen
g · x gncp

g +
∑

g∈Gall
n

∑

t∈T

v gen
g · x gen

g,t



− R(4.4)

subject to:

Generation Capacity Limits (GCL):

x gen
g,t ≤ egen

g · x gncp
g ∀n ∈ N , g ∈ Gex

n , t ∈ T(4.5)

x gen
g,t ≤ egen

g · x gncp
g ∀n ∈ N , g ∈ Gnew

n , t ∈ T(4.6)

Zonal First Kirchhoff’s Law (ZFKL):

∑

d|d∈Zk

x dem
d,t =

∑

n|n∈Zk

∑

g∈Gall
n

x gen
g,t −

∑

l∈L





∑

(n,n′)∈Linter
l

|n∈Zk

x f low

(n,n′),t −
∑

(n′,n)∈Linter
l

|n′∈Zk

x f low

(n′,n),t



 ∀t ∈ T, Zk ∈ Z

(4.7)

Market Splitting Flow Restriction (MCF):

−w l ine
l · z l ine

l ≤ x f low
l,t ≤ w l ine

l · z l ine
l ∀l ∈ L, l ∈ L inter

l
∩ Lnew

l
, t ∈ T(4.8)

−
�

1−w l ine
l

�

· z l ine
l ≤ x f low

l,t ≤
�

1−w l ine
l

�

· z l ine
l ∀l ∈ L, ll ∈ L inter

l
∩ Lex

l
, t ∈ T(4.9)

x gncp
g ≥ 0 ∀n ∈ N , g ∈ Gnew

n(4.10)

x gen
g,t ≥ 0 ∀n ∈ N , g ∈ Gall

n , t ∈ T(4.11)

x dem
d,t ≥ 0 ∀d ∈ D, t ∈ T(4.12)

Note that in (4.4), R again denotes the respective network fee payments (as introduced in
Section 2.6) that affect demand and/or generation decisions on the spot market.

We finally point to the following observations regarding the Zonal First Kirchhoff’s Law.
Summing up (4.7) for all zones we obtain the well known market clearing condition:

(4.13)
∑

d∈D

xdem
d,t =

∑

n∈N

∑

g∈Gall
n

x gen
g,t ∀t ∈ T

Thus, in a model with redispatch and only one zone (|Z | = 1), ZFKL coincides with a standard
market clearing condition. In the case where every zone consists of exactly one network node
(|Z |= n), ZFKL coincides with first Kirchhoff’s law ensuring power balance of every network
node. Intermediate cases require the market to clear within each zone, accounting for possible
transmission constraints across zones through differences in the respective market clearing
prices.

4.4. Third Level Problem: Optimal Redispatch. At the third level, the transmission operator
simultaneously decides on redispatch for all T spot markets.7 Reallocation of spot market
outcomes is realized in a way that ensures compatibility with network constraints at the

7Recall that we can consider redispatch separately since there are no temporal interdependencies, i.e. redispatch
at time t has no effect on future supply decisions of any firm.
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lowest possible cost.8 The corresponding cost minimization problem (4.14) comprises of
remunerations of consumers and firms that are involved in redispatch. The redispatch decision
has to take into account all physical flow restrictions of installed network capacity as well as
generation capacity limits, see (4.15) to (4.27).

min
∑

d∈D

∑

t∈T





∫ xdem
d,t

zdem
d,t

Z price
d,t (ad,t)dad,t



+
∑

n∈N

∑

t∈T





∑

g∈Gall
n

�

v gen
g · y gen

g,t

�



(4.14)

subject to:

First Kirchhoff’s Law (FKL):

zdem
n,t =





∑

g∈Gall
n

z gen
g,t



−
∑

l∈L





∑

n′∈N |(n,n′)∈Ll

z f low

(n,n′),t −
∑

n′∈N |(n′,n)∈Ll

z f low

(n′,n),t



 ∀n ∈ N , t ∈ T(4.15)

Second Kirchhoff’s Law (SKL):

z f low
l,t − bl

�

zangle
n,t − zangle

n′,t

�

≤M ·w l ine
l ∀l ∈ L, l = (n, n′) ∈ Lex

l
, t ∈ T(4.16)

z f low
l,t − bl

�

zangle
n,t − zangle

n′,t

�

≤M
�

1−w l ine
l

�

∀l ∈ L, l = (n, n′) ∈ Lnew
l

, t ∈ T(4.17)

−z f low
l,t + bl

�

zangle
n,t − zangle

n′,t

�

≤M ·w l ine
l ∀l ∈ L, l = (n, n′) ∈ Lex

l
, t ∈ T(4.18)

−z f low
l,t + bl

�

zangle
n,t − zangle

n′,t

�

≤M
�

1−w l ine
l

�

∀l ∈ L, l = (n, n′) ∈ Lnew
l

, t ∈ T(4.19)

Voltage Phase Angle of Reference Node (VPA):

zangle
1,t = 0 ∀t ∈ T(4.20)

Transmission Flow Limits (TFL):

−
�

1− z l ine
l

�

z f low
l ≤ z f low

l,t ≤
�

1− z l ine
l

�

z f low
l ∀l ∈ L, l ∈ Lex

l
, t ∈ T(4.21)

−z l ine
l · z f low

l ≤ z f low
l,t ≤ z l ine

l · z f low
l ∀l ∈ L, l ∈ Lnew

l
, t ∈ T(4.22)

Generation Capacity Limits (GCL):

z gen
g,t ≤ egen

g · x gncp
g ∀n ∈ N , g ∈ Gex

n , t ∈ T(4.23)

z gen
g,t ≤ egen

g · x gncp
g ∀n ∈ N , g ∈ Gnew

n , t ∈ T(4.24)

Spot and Redispatch Quantities (SRQ):

zdem
d,t = x dem

d,t + ydem
d,t ∀d ∈ D, t ∈ T(4.25)

z gen
g,t = x gen

g,t + y gen
g,t ∀n ∈ N , g ∈ Gall

n , t ∈ T(4.26)

z f low
l,t = x f low

l,t + y f low
l,t ∀l ∈ L, l ∈ L inter

l
, t ∈ T(4.27)

zdem
d,t ≥ 0 ∀d ∈ D, t ∈ T(4.28)

z gen
g,t ≥ 0 ∀n ∈ N , g ∈ Gall

n , t ∈ T(4.29)

We conclude this section with the following relation between our integrated planning
approach and the tri-level power market model:

Lemma 4.2. Denote the solution of the integrated planer approach by f I P and by f MS the
solution of the tri-level power market program with market splitting. Then

f I P ≥ f MS.

8Redispatch quantities will be denoted by y while quantities that result after redispatch will be denoted by z.
Note that the following relationship between different variable types always holds: z = y + x .
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Proof. Consider a solution of the tri-level program with market splitting f MS. Obviously, this
solution is a feasible solution of the integrated planer approach as well. Thus, f MS is a lower
bound for the solution of the integrated planer approach f I P . �

5. DECOMPOSITION OF THE TRI-LEVEL PROGRAM AND SOLUTION STRATEGY

The presented tri-level programming approach is a special case of a general multi-level
programming problem that takes the following form (see also Dempe, 2002)

minx1
f1(x1, x2, . . . , xp)

s.t. g1(x1, x2, . . . , xp)≥ 0
x2, . . . , xp solve

minx2
f2(x1, x2, . . . , xp)

s.t. g2(x1, x2, . . . , xp)≥ 0(5.1)
...

xp solves

minxp
fp(x1, x2, . . . , xp)

s.t. gp(x1, x2, . . . , xp)≥ 0

with fi being a real-valued function and gi describing vectors of real-valued functions. In
the case p = 1, we face a single-level problem (as our integrated planner model). It is a
key feature of every multi-level optimization problem that the first level problem cannot be
solved until the (conditional) solutions to the lower level problems are known and adequately
incorporated into the solution process. Of course, the lower level problem(s) can in general
not be solved until the optimal solution of the first level is known. These interdependencies
make general multilevel problems very hard to solve. In Jeroslow (1985) it is shown that a
simple linear bi-level problem is already NP-hard. Most algorithmic approaches for bi-level
problems make use of some version of Karush-Kuhn-Tucker (KKT) conditions and solve the
resulting mathematical program with equilibrium constraints (MPEC).9 However, such problem
reformulations explicitly rely on nonconvex and nondifferentiable optimization problems. An
obvious drawback is that in these problem formulations the Mangasarian-Fromovitz constraint
qualification (MFCQ) is violated. Therefore, various local optimality or stationarity conditions
such as Clarke, Mordukhovich, Strong or Bouligand stationarity have been developed (see
Scheel and Scholtes, 2000). For more infomation on the topic of multilevel programming
and MPECs we refer the interested reader to the monographs Cottle et al. (1992), Dempe
(2002) and Luo et al. (1996). In this section we will present a new decomposition approach

9For applied studies we refer the reader for instance to Hobbs (2001), Jenabi et al. (2013) or Jin and Ryan
(2011).
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FIGURE 6. Decomposed Tri-Level Problem: Sub and Master Problem

 MAX  Social Welfare 
 

  s.t.  A) First Stage Constraints: 
 

    - line investment constraints 
 

  B) Third Stage Constraints: 
 

   - production constraints 
   - market clearing condition 
   - market splitting 
   - power flow constraints 

 
  C) fixed transmission fee 
  D) fixed inter-zone line capacities 
  E) fixed generation investment &  
       spot market variables   
     

 

Master Problem:  
 

Redispatch + Line Expansion  

 MAX  Firms‘ Profits 
 

  s.t.  A) generation investment constraints  
  B) production constraints 
  C) market clearing condition  
  D) market splitting 
  E) fixed transmission Fee 
  F) fixed inter-zone line capacities  
    

 

Subproblem:  
 

Generation Investment & Spot Markets  

Insert solution 

that allows us to find a global optimal solution to the presented tri-level problem without
explicitly using KKT systems. Recall that we analyze three different network fee regimes. Our
basic decomposition approach for solving the tri-level programming problem will be slightly
modified depending on the respective network fee regime we consider. Before we present our
formal decomposition approach, we point out that the tri-level problem has always a finite
global optimal solution, since the feasible region is bounded.

5.1. Basic Decomposition Idea. Our decomposition approach builds on a detailed two step
analysis of the connection between the three problem levels. In a first step, we fix all non-
second level variables in the second-level problem and use them as parameters in the second
level. This allows us to iteratively solve independent single-level sub problems (i.e., the second
level problem for given scenarios with respect to line investment) and corresponding bi-level
master problems consisting of the original first and third level problems. In a second step, we
will show that instead of solving a master problem of bi-level type, we can solve an easier
single-level master problem. Combining the results of step 1 and step 2, we will iteratively solve
single-level sub and master problems arriving at a global optimal solution to the initial tri-level
problem. Figure 6 depicts the decomposition of the tri-level problem into two independent
single-level (sub and master) problems.

5.1.1. Step 1: From the Original Tri-level Problem to Single-Level Sub and Bi-level Master Problem.
As a starting point, note that the second-level problem (generation investment and production
decisions) includes only first and second level variables. The reason is basically that for cost
based redispatch firms never receive additional rents from the third stage. Consequently,
although the second-level problem is connected to the third (redispatch) level via the line
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investment problem at the first level, there is no direct interconnection.10 To be more precise,
the stages’ interconnection is purely driven by inter-zonal line investment variables and the
transmission fee variable from the first level problem. We can thus fix those variables and solve
the second-level market sub problem for every possible realization of those variables. We then
replace the respective variables in the first-level and the third-level problem by this solution.
Doing so reduces the problem to a bi-level master problem with a reduced number of variables.
Note that the approach to substitute in the optimal second-level values requires uniqueness
of the second-level solution. In Grimm et al. (2014) we prove that under pairwise disjoint
variable cost of production the second stage solution (optimal generation investments and
spot market production) is unique if competitive firms interact on a given network structure.

5.1.2. Step 2: From a Bi-level to a Single-Level Master Problem. We will now show how the
bi-level master problem consisting of the line investment and the redispatch stage can be
solved efficiently. To develop our algorithmic approach we make use of the following lemma
proving that the third stage objective f3 is an affine linear transformation of the first level
objective f1. To be more precise, we have f1 = − f3 + b with

b = −
∑

l∈L





∑

l∈Lnew
l

i l ine
l ·w l ine

l +
∑

l∈Lex
l

i l ine
l ·w l ine

l



+
∑

d∈D

∑

t∈T

 

∫ xdem
d,t

0

Z price
d,t (ad,t)dad,t

!

−
∑

n∈N

∑

g∈Gall
n





∑

t∈T

�

v gen
g · x gen

g,t

�

+
∑

g∈Gnew
n

�

i gen
g · x gncp

g

�





depending only on spot market variables x and line investment variables w. This insight
reveals that the first and the third stage problem have identical objective functions and thus,
identical optimization directions.

Lemma 5.1. There exists a b ∈ R such that

f1 = − f3 + b.

We will now exploit the fact that in order to solve a general mixed-integer nonlinear bi-level
problem with identical objective functions, it is possible to solve an easier single-level problem
which is equivalent. This single-level problem includes both, the constraints of the upper level
program and the lower level problem.

Lemma 5.2. Consider a mixed-integer nonlinear bi-level problem of the general form given in
(5.1) but with identical objective functions. Denote by SBLP the solution set of the bi-level problem.
Let SSLP denote the set of optimal solutions to the single-level problem (SLP) whose constraint
system equals the union of the upper and lower level constraints:

minx1,x2
f (x1, x2)

s.t. g1(x1, x2)≥ 0
g2(x1, x2)≥ 0

Then, we have:
SSLP =SBLP

10Such a connection would result if the redispatch mechanism would allow for profits that depend on decisions
taken at the second stage.
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Proof. Consider an optimal solution (xBLP
1 , xBLP

2 ) ∈SBLP to the bi-level optimization problem.
Obviously, (xBLP

1 , xBLP
2 ) is also feasible for the single-level problem. Let (xSLP

1 , xSLP
2 ) ∈SSLP

be an optimal solution to the single-level problem. Then, we get:

(5.2) f (xBLP
1 , xBLP

2 )≥ f (xSLP
1 , xSLP

2 )

Now, consider an optimal solution (xSLP
1 , xSLP

2 ) ∈SSLP to the single-level optimization problem.
Then, there exists x̄SLP

2 such that

(5.3) f (xSLP
1 , xSLP

2 )≥ f (xSLP
1 , x̄SLP

2 )≥ f (xBLP
1 , xBLP

2 )

where (xSLP
1 , x̄SLP

2 ) is a feasible solution to the bi-level problem and (xBLP
1 , xBLP

2 ) ∈ SBLP is
again an optimal solution to the bi-level problem. Combining (5.2) and (5.3) we obtain:

(5.4) f (xBLP
1 , xBLP

2 ) = f (xSLP
1 , xSLP

2 )

�

Let us note that the above result can easily be generalized to p-level programming problems.
For the sake of completeness let us also state the following theorem which is an immediate
consequence:

Theorem 5.3. Assume a general p-level programming problem in the form 5.1 with fi denoting
the ith problem stage’s objective function, for all i ∈

�

1, . . . , p
	

. If there exist affine linear
transformations Γi = ai · fi + bi with Γ ( fi) = f1 and ai > 0 for all i ∈

�

2, . . . , p
	

, then the
multilevel problem can be solved as a single-level program.

To illustrate the intuition of these results, we will apply the above theorem to an adapted
mixed-integer bi-level problem example taken from the monograph on bi-level programming
in Dempe (2002):

Example 5.4. Let us assume the following mixed-integer nonlinear bi-level problem based on
an example in Dempe (2002) (p. 256):

max f1 = y3 − 2y − 2x
s.t. x + y ≥ 0

y ∈ [−5,5]
x solves

min f2 = x
s.t. x + y ≤ 2

x − y ≤ 2
− 4x + 5y ≤ 10
− 4x − 5y ≤ 10
x ∈ Z

Figure 7a) depicts both the feasible set of the lower level problem (blue lines) and different
first level isoobjective lines (dashed curves). Obviousely, the bi-level’s optimal solution is
(x∗ = 0, y∗ = 2) with an objective value of f1 = 4. However, by the above theorem we can also
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FIGURE 7. A Mixed-Integer Nonlinear Bi-level Programming Problem

a) Original Bi-level Problem                                              b) Corresponding Single-Level Problem  

solve a single-level problem given the following relationship between the upper and lower
level objective:

(−2) · f2 + y3 − 2y = x = y3 − 2y − 2x = f1
Figure 7b) depicts the feasible set of the corresponding single-level problem (blue lines). It
shows that its optimal value coincides with the optimal bi-level objective value.

With these results our two level master problem can be solved as a single-level problem.
Combining step 1 and step 2, we arrive at both single-level sub and single level master problems.
Figure 6 depicts the result of our decomposition.

5.2. Linear vs. Binary Search Strategies. In this subsection we will discuss how all the
relevant sub and master problems can be evaluated in an efficient way using an inner and an
outer loop. Accounting for all possible network expansion plan and transmission fee pairs, in
an inner loop we will consider fixed inter-zone network capacities and iteratively solve sub
and master problems for all the relevant transmission fees. In an outer loop we will consider
the different network expansion plans. In the following two subsections we will first describe
a linear search strategy and then a binary search procedure.

5.2.1. Linear Search.

Inner Loop: Transmission Fees. Solving the decomposed tri-level problem for all possible values
of the transmission fee is not possible, given that the three different transmission fees are all
real valued. Therefore, we will restrict λ, ρ and κ to the case having at most m<∞ fractional
digits. A natural choice seems m = 2, in which case we calculate a fee that is accurate to
the cent. Given upper bounds λ̄, ρ̄ and κ̄ and the common lower bound zero, we need an
exponential number of inner loop iterations in the input length to find a solution that is optimal
for a given network expansion plan.
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TABLE 1. Transmission Line Data

Start Zone-End Zone Susceptance Max. Flow

1-2

0.25 500

0.5 500

1 500

2-3 1 1000

3-4

0.5 500

1 500

4-1

0.5 1000

1 1000

Outer Loop: Inter-Zone Network Expansion Plans. Not having to check all possible inter-zone
network configurations, we will group construction choices that yield identical transmission
capacities between zone pairs (Zk, Zl), with Zk 6= Zl . By CC we will denote the set of all the
relevant network configurations or construction choices that we will evaluate. Note that a
reduction in sub problems is only possible given that physical line characteristics other than
thermal capacities do not play a role on the spot market. The next example illustrates that
grouping the corresponding line construction decisions and fixing thermal capacities in the
second level problem can indeed significantly reduce the number of sub problems and therfore
the number of iterations:

Example 5.5. Let a four zone network be given. Assume that there are no existing lines
connecting the different zones. Table 1 gives the candidate transmission lines that can be build
to connect the four zones. Solving the problem for all construction choices yields 28 = 256
different sub problems (for a given transmission fee). Grouping line construction decisions we
only have to solve 4 · 2 · 3 · 3= 72 sub problems (for a given transmission fee). Thus, in the
present example we will check less than 30 percent of all existing sub problems by introducing
line construction groups.

Denoting by ϕ one of the three network fees λ, κ or ρ, Algorithm 1 depicts the general
structure of this solution process.

Algorithm 1: Tri-Level Decomposition Approach for a Transmission Fee ϕ
Input : Parameter set for the tri-level power market problem
Output : Optimal solution w∗, x∗, y∗ and z∗ to the tri-level problem

1 Set f = 0
2 forall the network configurations c ∈ CC do
3 forall the network fees ϕ ∈

�

0, ϕ̄
�

do
4 Solve the sub problem
5 Substitute its optimal values x∗c,ϕ into the master problem and solve
6 if f (w∗c,ϕ, x∗c,ϕ, y∗c,ϕ, z∗c,ϕ)> f then
7 Update: f (w∗c,ϕ, x∗c,ϕ, y∗c,ϕ, z∗c,ϕ)→ f

8 Return f



20 VERONIKA GRIMM, ALEXANDER MARTIN, MARTIN WEIBELZAHL, AND GREGOR ZOETTL

Remark 5.6. Obviously, the above algorithm can easily be generalized to the case where a
mix of the three different network fee regimes is used. In this case, the number of inner loops
increases to the cross product of the different fees.

Further Algorithmic Simplifications in the Case of a Lump Sum. In the case of a lump sum we
can further simplify our presented search strategy. Obviousely, electricity demand is totally
independent of income, i.e., the income elasticity ηd,t ist zero for all d ∈ D and t ∈ T . This
total inelasticity means that spot market outcomes are completely independent of the lump
sum. As a consequence, our inner loop will only have one iteration. With this in mind we can
solve the sub problem with a normalized lump sum of zero, drop the budget constraint in the
master problem and solve this relaxed single-level master problem for fixed spot market and
generation investment values. Then, we calculate ex post the transmission operator’s total
cost E. Given that in any optimal solution to the original problem total cost must equal total
revenues Rλ, the a priori unknown lump sum λ will be equal to the calculated cost. Algorithm
2 depicts the structure of this simplyfied search strategy.

Algorithm 2: Tri-Level Decomposition Approach for a Lump Sum
Input : Parameter set for the tri-level power market problem
Output : Optimal solution w∗, x∗, y∗ and z∗ to the tri-level problem with a lump sum

1 Set f = 0
2 forall the network configurations c ∈ CC do
3 Solve the sub problem
4 Substitute its optimal values x∗c into the master problem and solve
5 if f (w∗c , x∗c , y∗c , z∗c )> f then
6 Update: f (w∗c , x∗c , y∗c , z∗c )→ f

7 Return f

5.2.2. Binary Search. In this subsection we will discuss a binary search strategy with a linear
number of inner loop iterations to solve the tri-level energy market model. Given the above
simplifications in the case of a lump sum, ϕ will be restricted to capacity fees κ and energy fees
ρ. Let us now consider the transmission operator’s budget constraint. We will explicitly define
the profit function M(w, x , y, z,ϕ) with an optimal solution (and any other feasible solution)
to the tri-level problem (w∗, x∗, y∗, z∗,ϕ∗) realizing a nonprofit situation, i.e., a situation with
M(w∗, x∗, y∗, z∗,ϕ∗) = 0. We will further introduce the following optimal value function:

V (ϕ) = M(w∗(ϕ), x∗(ϕ), y∗(ϕ), z∗(ϕ),ϕ)

V (ϕ) describes the transmission operators profits for varying transmission fee and explicitly
takes the optimal variable values w∗(ϕ), x∗(ϕ), y∗(ϕ) and z∗(ϕ) into account. To use a binary
search solution algorithm, we will have to prove that V (ϕ) is a monotonic increasing function

within an interval
�

ϕ
∼

,
∼
ϕ

�

. Such a monotonicity seems quite plausible: Increasing the network

fee, revenues of the network operator should also increase. On the other hand, higher network
fees should lead to lower generation investment and lower production. This effect should yield
a less congested network and therefore less need for redispatch. In a consequence, network
expenses including redispatch cost should decrease. Indeed, our numerical test instances
strongly suggest that the profit function should be monotonic increasing. Eventhough Grimm
et al. (2014) prove the monotonicity of the transmission operator’s revenues, a complete
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analytical proof for the operator’s profits does not seem straightforward. Possible or plausible
values for ϕ

∼
and

∼
ϕ are discussed in the next section. We will summarize these considerations

in the following claim:

Claim 5.7. V (ϕ) is a monotonic increasing function in the transmission fee ϕ ∈
�

0,
∼
ϕ
�

.

Algorithm 3 depicts the structure of the binary search.

Algorithm 3: Binary Search: Tri-Level Decomposition Approach
Input : Parameter set for the tri-level power market problem
Output : Optimal solution w∗, x∗, y∗ and z∗ to the tri-level problem

1 Set f = 0
2 forall the network configurations c ∈ CC do
3 Set l= 0 and u=

∼
ϕ

4 Solve the sub problem for ϕ = l and ϕ = u

5 Substitute its optimal values x∗c,ϕ into the master problem and solve
6 while l≤ u do
7 Calculate m= 0.5(l+ u) and set ϕ = m
8 Solve the sub problem for ϕ = m

9 Substitute its optimal values x∗c,ϕ into the master problem and solve
10 if |V (m)| ≤ 0.009 then
11 STOP
12 else
13 if V (m)≤ 0 then
14 Update: l← m
15 else
16 Update: u← m

17 if f (w∗c,ϕ, x∗c,ϕ, y∗c,ϕ, z∗c,ϕ)> f then
18

19 Update: f (w∗c,ϕ, x∗c,ϕ, y∗c,ϕ, z∗c,ϕ)→ f

20 Return f

6. NUMERICAL RESULTS

In this section we will discuss two prominent test networks. The first example is taken
from Jenabi et al. (2013) and consists of three nodes. Applying our power market model to
this simple network will illustrate the scope of our approach. Our second test network is a
six node example by Chao and Peck (1998) that has widely been used in the energy market
literature. For both scenarios (consisting of the network structure and assumed demand and
cost parameters) we will calculate i) the welfare optimum (which coincides with the market
outcome of a nodal price system in our framework), as well as the market outcomes in the
case of ii) a redispatch model without market splitting and iii) a redispatch model with market
splitting (i.e. price zones). For the two redispatch models (ii and iii) we will consider the
three different network fee regimes, a lump sum fee, an energy based fee, as well as a capacity
based fee. Note that we transformed all parameters into equivalent annual hourly values.
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FIGURE 8. 3 Node Test Network

6.1. Implementation. We implemented the redispatch model as well as the integrated plan-
ning model in ZIMPL and used SCIP’s file writer to generate corresponding mps files. With
these input files we solved the problems using the CPLEX interface in our Java code. All
experiments were performed on a 12 core computer equipped with two AMD Opteron(tm)
2435 Processors, with 2x6 MB cache and 64 GB DDR2-RAM, running Linux (in 64 bit mode).

Given the importance of appropriate transmission fee bounds, we will take the following
strategy. In all transmission fee regimes we will use zero as a lower bound excluding negative
transmission fees. Then, we will calculate monopoly solutions and derive the respective
monopoly markups. Based on the implicit assumption that the TO will not charge fees that
are larger than monopoly markups, we use these markups to derive upper bounds. Choosing
the respective upper bound, we will consider the different network fee regimes separately: In
the case of a per unit fee charged for each electricity unit actually produced, we will use the
average monopoly markup across all time periods and market zones as an upper bound. In
the case of a per unit fee charged for each unit of capacity connected to the network, we will
use the cumulative monopoly markup across all time periods where total generation capacity
is binding in a given zone. To obtain the upper bound we then take averages over all market
zones.

As can easily be seen, in the capacity fee regime the calculated upper bound will in general
be much larger than in the energy fee model. This immediately results in relatively long
linear search solution times for the capacity fee models. Indeed, this was confirmed by our
numerical examples. In our six node example with 2 price zones, given upper capacity fee
bounds between 1000 and 1500 the maximum running time amounted up to days. All other
model variants including the energy fee models were solved in a few minutes or hours using a
linear search procedure. In contrast, our binary search algorithm solved all problems in only a
few minutes. This indicates that our binary search seems quite promising also for larger test
instances.

6.2. A Three Node Test Example. Our first test example consists of three nodes and four
time periods. We allow for both, investment in the transmission network and in generation
units. Before we present our main results, we briefly review the input data that is directly
taken from Jenabi et al. (2013).

Network Parameters. Similar to Jenabi et al. (2013), we assume a complete graph with three
nodes as depicted in figure 8. We number the three existing links (solid lines) counterclockwise,
i.e., line 1 connects network node 1 and 2 and so forth. Each line has a susceptance of 8. Lines
1 and line 3 have thermal capacity of 2 MW and line 2 has a capacity of 0.25 MW. To explicitly
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model line investment, we allow for investment in a new transmission line connecting node
2 and node 3 (dashed line). This candidate transmission line has a capacity of 0.25 MW,
susceptance of 10, and investment cost of 4 $/MW.

Generation Parameters. Nodes 2 and node 3 are generation nodes. We assume that at
the beginning of the planning horizon there are no existing generators but explicitly model
generation investment. Technology 1 can be built at node 2 at investment costs of 160 $/MW
and produces at constant variable cost equal to 10 $/MWh. Technology 2 can be built at node
3 at investment cost of 120 $/MW and produces at constant variable cost of production of 11
$/MWh. On average, 80% of capacity is available.

Demand Parameters. Consumers are located at node 1. We will assume the following basic
linear demand function:

Z price(xdem) = 550− 500xdem

To give the four periods t = 1,2,3,4 some simple interpretation, we will refer to them as
the four seasons spring, summer, autumn and winter. For this reason, we will multiply the
intercept of the above demand function by 1,0.5, 1 and 1.5 in period 1 to 4, respectively11.

Numerical Results. In our three node test framework the integrated planner approach yields
a social welfare of $ 1083. This would also be the welfare level under a nodal pricing model. A
redispatch model with no market splitting (1 price zone) implies a welfare loss as compared to
the first best solution in all three network fee regimes. In the case of a capacity based fee, an
electricity based fee and a lump sum fee the realized welfare levels are $ 1050, $ 1044 and $
1040, respectively. This welfare loss is mainly driven by a distortion of generation investment:
As Figure 9 illustrates, the optimal solution implies positive investment in both technologies,
where investment in technology 1 is much larger, however. The tri-level power market model,
on the contrary, yields generation investment only in technology 1. Investment in technology
1 is higher than in the welfare optimum for all network fee regimes (lowest for capacity based
fees, highest for lump sum fees). The candidate line connecting the two nodes 2 and 3 is build
in all three scenarios, and also in the welfare optimum. Introducing a second price zone does
not change the presented results. This can be explained by the fact that no matter how the two
price zones are designed, there is always at least one non–congested line that connects the two
zones. This suggests that a meaningful analysis of market splitting requires larger networks.

6.3. Test Example by Chao and Peck (1998). In order to illustrate the possibilities to analyze
effects of market splitting within our model we consider an adapted 52 period test example
based on Chao and Peck (1998). The network we use has been extensively analyzed in the
literature to illustrate the abilities of different energy market models. We extend the original
test example by Chao and Peck (1998) by several aspects important for our approach such
as fluctuating demand, generation investment, network investment, as well as a cost-based
redispatch mechanism.

11Such an interpretation implicitly assumes a simplified temperature course like in Europe where a lot of energy
is consumed for heating in winter time. However, by switching the weights for the different seasons we could
also simulate other temperature courses where most energy is for instance consumed in summer time for running
air-conditioning systems.
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FIGURE 9. Generation Investments
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FIGURE 10. Electricity Prices
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FIGURE 11. Six–Node Test Network

Network Parameters. As Figure 11 illustrates, the network consists of six nodes intercon-
nected by eight existing transmission lines (solid lines). Northern nodes (nodes 1 to 3) and
southern nodes (nodes 4 to 6) are interconnected by lines with unlimited capacities. The
“northern zone” and the “southern zone” are interconnected by only two lines (1−6 and 2−5)
that have limited capacities (200 MW and 250 MW, respectively). We consider a situation
where two different candidate transmission lines (dashed lines) can be build to alleviate
congestion problems. Detailed transmission line data including investment cost can be found
in table 2.

Generation Parameters. We assume that there are no existing generators initially but explic-
itly model generation investment. Generation units can be build at nodes 1, 2, and 4 (see the
blue triangles in Figure 11). Variable cost of technology 1, 2, and 4 are 10 $/MWh, 15 $/MWh
and 42.5 $/MWh, respectively. Investment cost are 700 $/MW, 600 $/MW and 200 $/MW,
repectively. Average availability of capacity is 80%.

Demand Parameters. Demand is located at nodes 3, 5 and 6 (see the blue dots in Figure
11). The basic demand parameters used in our numerical example are provided in Table 3.
Assuming these three basic demand functions taken from Chao and Peck (1998) we use real
world data to induce demand fluctuation across the 52 periods at all nodes.12 In particular, we
use factors derived from the German 2011 demand realizations for shifting the above demand
functions. Demand levels across nodes in a given period are always shifted by the same factor,
which accounts for the fact that typically the level of demand in a given period is correlated
across demand nodes.

12Alternatively, one could choose random draws from a distribution that reflects the nature of demand fluctuation
in electricity markets.
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TABLE 2. Transmission Line Data

Start-End Existing/Candidate Line Susceptance Max. Flow (MW) Inv. Cost ($/MW)

1-2 Existing 1 ∞ -

1-3 Existing 1 ∞ -

1-6
Existing 0.5 200 -

Candidate 0.5 200 230000

2-3 Existing 1 ∞ -

2-5
Existing 0.5 250 -

Candidate 0.5 200 230000

4-5 Existing 1 ∞ -

4-6 Existing 1 ∞ -

5-6 Existing 1 ∞ -

TABLE 3. Basic Demand Parameters

Network Node Intercept Slope

3 37.5 0.05

5 75 0.1

6 80 0.1

Numerical Results. Figure 12 illustrates welfare in the scenarios with one and two price zones,
respectively, as compared the the welfare optimum. Obviously, market splitting increases
welfare but does not achieve the maximum possible level. Whereas welfare levels under
different network tariff regimes are rather similar with two price zones we find substantial
welfare differences for different network regimes without market splitting.

Table 4 and Figure 13 illustrate investment decisions in transmission and generation ca-
pacities in our different scenarios. In the welfare optimum the social planer refrains from
transmission line expansion and generation capacities are installed at all nodes. Obviously,
from a welfare perspective, investment in generation capacity at node 4 is preferable to any
line investment, although variable production cost of the available technology is substantially
higher than variable cost of technologies available at northern nodes. Furthermore, due to
the fact that demand satisfied by northern generators is relatively low in the absence of line
investment, generation capacity is build up at node 2, where investment cost is lower than at
node 1, but unit production cost is higher.

Turing to the case of a power market without market splitting, we find that both candidate
lines are built and that generation capacity is exclusively installed at node 1. The intuition is
straightforward: Recall that we have no price zones and that transmission constraints are not
accounted for at the spot market. Thus, the generator with the lowest unit production cost will
trade at the spot market, other generators will predominantly be called for at the redispatch
stage. The fact that redispatch reimbursement covers only marginal cost implies immediately,
that those generators cannot profitably operate. Consequently, all capacity investment occurs
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FIGURE 12. Welfare Under Different Regimes
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TABLE 4. Transmission Line Investment

Model
Variant

Network
Fee
Regime

Candidate
Line 1

Candidate
Line 2

Nodal Price System n.a. NO NO

1 Price Zone

Lump Sum YES NO

Energy Fee YES YES

Capacity Fee YES YES

2 Price Zones

Lump Sum YES NO

Energy Fee YES NO

Capacity Fee YES NO

at the node where the sum of production and investment cost is lowest given that the whole
market has to be supplied — which is at node 1. Anticipating this decision, the social planner
prefers to install both candidate lines (except for the case of a lump sum network fee).

Finally, consider the scenario with two price zones, north and south. Obviously, market
splitting allows a generator in the south to earn rents whenever it is impossible to satisfy
demand in the south by production from northern generators due to transmission constraints.
Thus, firms have an incentive to install capacity at node 4, which in turn decreases the incentives
of the social planer to install additional transmission capacity. Consequently, anticipation of
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FIGURE 13. Generation Investment Under Different Regimes
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FIGURE 14. Spot Market and Nodal Prices
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generation investment at node 4 leads to less transmission investment by the TO — only one
line is built. Thus, market splitting moves the whole system closer to the welfare optimal
scenario.

Prices in Figure 14 support the above intuition for the case of the energy based fee. In the
welfare optimal solution, prices at the consumption nodes are low in the north (node 3) and
high in the south (nodes 5 and 6). With one price zones, the spot market price is relatively
high, however, generators with high unit production cost have no chance to contract their
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supply at the spot market. Two price zones imply also a north south spread which allows the
southern generators to recover their investment cost.

Overall, the 6–node test examples nicely illustrates the capability of our framework to
identify the effects of different regulatory regimes and to potentially quantify them.

7. CONCLUSION AND OUTLOOK

This article analyzes the long run impact of different transmission management regimes
on investment incentives of generating firms in a market environment with a regulated
transmission operator. We propose a tri–level programming approach to model an electricity
market with redispatch both, with and without market splitting. As a First Best benchmark we
also solve the corresponding integrated planer problem where an Integrated Generation and
Transmission Company (as a central planer) controls both the, grid and generation units. In
order to solve our tri–level problem numerically, we present a decomposition approach that
relies on a detailed analysis of interconnection between the three problem levels. We apply
our approach to two simple test problems in order to demonstrate the capabilities to analyze
transmission and capacity expansion in a market environment with the proposed methodology.

Our results clearly show that in a market environment investment choices by the transmission
operator and private firms can substantially differ from socially optimal choices. Obviously,
investment in generation units is driven by the incentives for private investors induced by
the particular market environment. Absence of proper incentives affects locational decisions
of generators and this, in turn, can have substantial effects on optimal line investment. In
two examples, we demonstrate that welfare optimal line investment is crucially affected by
the investment in generation capacity anticipated by the transmission operator. We thus
demonstrate that our model allows to compare different network management regimes and
assess their effects on long run investment decisions. Our approach is, thus, an important
extension of various studies that up to now have mainly considered the short run properties of
different transmission management regimes. As we show, transmission management has also
important implications in the long run when generation and transmission expansion are taken
into account.
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APPENDIX A. NOTATIONS AND SYMBOLS

In this subsection we will present all the sets, parameters and variables used in our models.

TABLE 5. Sets

Symbol: Description:

General Sets

N Set of all network nodes

D ⊂ N Set of demand nodes

T Set of time periods

Z Set of zones for market splitting

Generators

Gall
n Set of all generation technologies at node n ∈ N

Gex
n ⊂ Gall

n Set of existing generation technologies at node n ∈ N

Gnew
n ⊂ Gall

n Set of candidate generation technologies at node n ∈ N

Transmission Lines

L Set of all line types

Lex
l
⊂ N × N Set of existing transmission lines of type l ∈ L

Lnew
l
⊂ N × N Set of candidate transmission lines of type l ∈ L

L inter
l
⊂ N × N Set of inter-zone transmission lines of type l ∈ L
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TABLE 6. Parameters

Symbol: Description: Unit:

General Parameters

M Big M parameter 1

Demand Parameters

d inter
d,t Intercept of demand function at node d ∈ D in time period t ∈ T €

dslope
d,t Slope of demand function at node d ∈ D in time period t ∈ T MW/€

z̄dem
d,t Satiation point of demand function d ∈ D in time period t ∈ T MW

Generator Parameters

i gen
g Investment cost of candidate generation technology g ∈ Gnew

n €/MW

v gen
g Variable cost of generation technology g ∈ Gall

n €/MW

x gncp
g Maximum power generation capacity of generator g ∈ Gex

n MW

egen
g Generation efficiency parameter of g ∈ Gall

n (equivalent availability) 1

Transmission Line Parameters

i l ine
l Investment cost for candidate transmission line l ∈ Lnew

l
€

i l ine
l Deletion cost for existing transmission line l ∈ Lex

l
€

bl Susceptance of transmission line l ∈ Lall
l

S

z f low
l Maximum power flow on line l ∈ Lall

l
MW
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TABLE 7. Variables

Symbol: Description: Unit:

First Stage Variables: Line Expansion

w l ine
l Decision variable with value 1, if line l ∈ Lnew

l
is build, and 0 otherwise 1

w l ine
l Decision variable with value 1, if line l ∈ Lex

l
is deleted, and 0 otherwise 1

E Transmission operator’s expenses €
R Transmission operator’s revenues €
λ Lump sum fee €
ρ Per unit fee charged for each unit of electricity consumed/produced €/MW

κ Per unit fee charged for each unit of capacity installed €/MW

Second Stage Variables: Spot Market

x gncp
g Amount of new generation capacity installed of generator g ∈ Gnew

n MW

x gen
g,t Power generation of generator g ∈ Gall

n in time period t ∈ T MW

xdem
d,t Demand/Power sold at node d ∈ D in period t ∈ T MW

x f low
l,t (Net-)Power flow on inter-zone line l ∈ L inter

l
in time period t ∈ T MW

Third Stage Variables: Redispatch Market

y gen
g,t Redispatched electricity generation of generator g ∈ Gall

n in time period t ∈ T MW

ydem
d,t Redispatched electricity demand at node d ∈ D in period t ∈ T MW

y f low
l,t Redispatched Power flow on inter-zone line l ∈ L inter

l
in time period t ∈ T MW

z gen
g,t Final electricity generation of generator g ∈ Gall

n in time period t ∈ T MW

zdem
d,t Final electricity demand at node d ∈ D in period t ∈ T MW

zangle
n,t Nodal angle in node n ∈ N at time period t ∈ T rad

z f low
l,t Final (Net-)Power flow on line l ∈ Lall

l
in time period t ∈ T MW
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