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Abstract. We consider a continuous-time neoclassical one-sector stochastic growth model of

Ramsey-type with CRRA utility and Cobb-Douglas technology, where each of the following

components are exposed to exogeneous uncertainties (shocks): capital stock K, effectiveness

of labor A, and labor force L; the corresponding dynamics is modelled by a system of three

interrelated stochastic differential equations. For this framework, we solve completely explicitly

the problem of a social planner who seeks to maximize expected lifetime utility of consumption.

In particular, for any (e.g. short-term) time-horizon t > 0 we obtain in closed form the

sample paths of the economy values Kt, At, Lt and the optimal consumption copt(Kt, At, Lt)

as well as the non-equilibrium sample paths of the per capita effective capital stock kt =
Kt

At Lt
. Moreover, we also deduce explicitly the limiting long-term behaviour of kt expressed

by the corresponding steady-state equilibrium distribution. As illustration, we present some

Monte Carlo simulations where the abovementioned economy is considerably disturbed (out

of equilibrium) by a sudden crash but recovers well within a realistic-size time-period.

Keywords: stochastic Ramsey-type growth; utility maximization; stochastic differential equa-

tions; explicit closed-form sample path dynamics; economic recovery; Monte Carlo simula-

tions; steady-state.

1 Introduction

Nowadays, continuous-time neoclassical stochastic growth models of Ramsey type are well es-

tablished tools for getting insights into the real mechanism through which uncertainties work

their way through the economy, see e.g. the seminal work of Merton (1975) as well as the recent

studies of Amilon and Bermin (2003), Roche (2003), Baten and Miah (2007), Smith (2007),

Bucci et al. (2008), Posch (2009b); comprehensive coverages of this subject can be found e.g.

in the books of Malliaris and Brock (1982), Turnovsky (2000b), Chang (2004), Wälde (2009a).
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It is well known that the deduction of closed-form pathwise solutions to such continuous-time

stochastic Ramsey growth models is not generally possible. Usually, for some components one

can obtain closed-form equilibrium solutions – in the sense of explicitly derived steady-state

distributions. Furthermore, one typically approximates in an indirect way the unknown solu-

tion sample paths by employing a corresponding numerical Euler method for the underlying

stochastic differential equations (SDEs). However, in principle there can be pitfalls (e.g. non-

convergence problems in case of wrong stepsize choices) to such an Euler-type approach even

in the case of SDEs with very smooth drift and diffusion term, like for the prominent Cox-

Ingersoll-Ross interest rate model (cf. Higham and Mao (2005)). Such potential difficulties

can be quite reduced in case of finding an explicit pathwise solution to be sampled directly

from.

Another advantage of finding explicit pathwise solutions to stochastic Ramsey growth mod-

els is that one gets the precise dynamics of involved economy components even if they start

respectively restart from a non-equilibrium (i.e. non-steady-state) distribution. The latter sit-

uation certainly appears in case of a sudden considerable (partial) economy crash, whereas the

former seems to be reasonable for modelling emerging economies like the BRIC countries and

other, newly industrializing, countries. Within such a context, the following questions arise:

how long does it take the model economy to recover back to – respectively to reach (e.g. for the

first time) – a steady-state equilibrium distribution ? Is this recovery time of realistic length ?

Within a neoclassical one-sector economy framework (posed in Section 2) which consists of a

continuous-time, “fully” stochastic, Ramsey-type growth model with CRRA utility and Cobb-

Douglas technology, the main goals of this paper are

• to solve completely explicitly the social planner’s problem – namely to maximize the

expected lifetime utility of consumption under appropriate SDE-type constraints on

capital stock K, labor-effectiveness A and labor force L – by obtaining in a closed form

– the optimal consumption strategy (see Section 3),

– the sample-path solutions Kt, At, Lt at time t ≥ 0 of the underlying “optimized”

stochastic differential equations, and hence the non-equilibrium sample paths of

the per capita effective capital stock described by kt = Kt
AtLt

(see Section 3),

– the corresponding long-term limit respectively the equilibrium steady-state distri-

bution of kt (see Section 4),

• to study the corresponding speed of recovery from an economy crash by means of

“direct” (i.e. non-Euler-method-type) Monte Carlo simulations for realistic parameter

values (see Section 5).
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2 The Economic Framework

In terms of the – at time t ≥ 0 prevailing – capital stock Kt, effectiveness of labor At and labor

force Lt, the production function for the economy is supposed to be of the Cobb-Douglas-type

Yt = Kα
t (AtLt)1−α (1)

for some arbitrary but fixed capital share (output elasticity of capital stock) α ∈ (0, 1). The

random dynamics of the effectiveness of labor (labor-augmenting technology level, total factor

productivity) At evolves according to a geometric Brownian motion given by the stochastic

differential equation (SDE)

dAt = μAAtdt + σAAtdBA
t , A0 > 0 given, (2)

with average growth rate μA ≥ 0 and constant volatility σA > 0. Furthermore, the random

dynamics of the labor force (labor supply) Lt is represented by another geometric Brownian

motion solving the SDE

dLt = μLLtdt + σLLtdBL
t , L0 > 0 given, (3)

with average growth rate μL ∈ R and constant volatility σL > 0. Finally, the random

dynamics of the capital stock Kt evolves according to

dKt =
[
Yt − δKt − Lt ct

]
dt + σKKtdBK

t , K0 > 0 given, (4)

where σK > 0 denotes the constant volatility, δ ≥ 0 the constant depreciation rate and ct the

random per capita consumption at time t.

Notice that we model our economy to be “fully stochastic” in the sense that (due to the

assumption σA > 0, σL > 0, σK > 0) each of the economy values At, Lt, Kt is exposed to a

source of uncertainties/shocks, here in form of independent standard Brownian motions BA
t ,

BL
t , BK

t . By employing (1), the dynamics (4) turns into the SDE1

dKt =
[
Kα

t (AtLt)1−α − δKt − Lt ct

]
dt + σKKtdBK

t , K0 > 0 given. (5)

The representative consumer is supposed to have a constant rate ρ ≥ 0 of time-preference and

CRRA utility2

u(c) =
c1−γ − 1

1 − γ
(6)

with coefficient of relative risk aversion (respectively, the reciprocal of the intertemporal elas-

ticity of substitution) γ. For the rest of this paper, we assume that the coefficient of relative

risk aversion is equal to the capital share, i.e. γ = α. This equality is well established in

1for technical reasons, we set (hiddenly) in advance both the drift term and the diffusion term to
be zero in case that Kt turns strictly negative; later on it will however turn out that the solution
satisfies Kt > 0 with probability 1 which is what one expects from capital stock

2we have chosen a power type form which converges to the logarithmic function as γ tends to zero
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literature, see e.g. Chang (1988), Xie (1991, 1994), Boucekkine and Ruiz-Tamarit (2004),

Wälde (2005), Smith (2006, 2007), Boucekkine and Ruiz-Tamarit (2008), Ferrara and Guer-

rini (2009a,b), Posch (2009a,b), Posch and Wälde (2010).

In order to get precise and short mathematical formulations of the involved optimization

problem, we introduce the notation Xt = (Kt, At, Lt) for the time-t economy values. Fur-

thermore, we use P to denote the underlying probability law 3 governing the economy-value

process (Xt)t≥0, and by E the corresponding expectation. The term Ps,x stands for the

conditional probability law given that the time-s economy value Xs is x, with deterministic

three-dimensional vector x; in other words, Ps,x[ · ] = P[ · |Xs = x ]. For the corresponding

conditional expectation we write Es,x, i.e. Es,x[ · ] = E[ · |Xs = x ].

Within the abovementioned economy framework, the social planner is supposed to solve the

following optimization problem for fixed γ ∈ (0, 1), depreciation rate δ ≥ 0, time-preference

rate ρ ≥ 0, volatilities σK , σA, σL > 0, and average growth rates μA ≥ 0, μL ∈ R, under the

technical assumption
(1 − γ)μA + μL < ρ (7)

which we require to hold for the rest of this paper.

Optimization Problem 2.1. For prevailing economy value x > 0 4 at arbitrary decision time

s ≥ 0, maximize over all admissible nonnegative per capita consumption strategies (ct)t≥s ∈
C(s, x) 5 the expected (discounted) remaining-lifetime utility of consumption

Es,x
[ τs∫

s

e−ρt c1−γ
t − 1
1 − γ

Lt dt
]

(8)

subject to the constraints (5), (2), (3).

Here, τs denotes is the first time r > s for which Kr becomes nonpositive. The corresponding

value function is denoted by V (s, x), i.e.

3on the sample space Ω of all continuous functions ω : [0,∞) �→ R× [0,∞)× [0,∞) from the time-
interval [0,∞) into the three-dimensional Euclidean subspace R × [0,∞) × [0,∞); each such sample
point ω ∈ Ω is identified with a particular potential economy-value-(path-)scenario from time 0 to
time ∞. As usual we omit ω except for Lemma A.1 in Appendix A.2 as well as its later point of
application.

4here and henceforth, x > 0 means here that all three components of x are strictly positive; the
same terminology will also be used for vectors other than x.

5as usual, for technical reasons, we confine ourselves here to a “sufficiently (maximally) large”
collection C(s, x) of so called admissible consumption strategies (ct)t≥s which are nonnegative (adapted
cadlag) processes such that (i) all the involved quantities are well defined as well as finite wherever
needed, (ii) the system (5), (2), (3) of SDEs has a unique strong solution, (iii) the optimization problem
can be carried out and verified afterwards. Notice that from the well-known distributional properties
of the geometric Brownian motion Lt (cf. (3)) it is easy to see that the value function V (s, x) is strictly
larger than −∞ for all (s, x).
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V (s, x) = sup
(ct)t≥s∈C(s,x)

Es,x
[ τs∫

s

e−ρt c1−γ
t − 1
1 − γ

Lt dt
]
. (9)

In the following, without (much) loss of generalization we always suppose that ct depends

on (Ku)u≥0, (Au)u≥0, (Lu)u≥0 only in a time-homogeneous “memoryless” (“Markovian”) way,

i.e. ct = c(Kt, At, Lt) for some deterministic, nonnegative consumption strategy c(·) ∈ C 6.

Accordingly, with the help of the abovementioned assumption α = γ, the SDE (5) turns into

dKt =
[
Kγ

t (AtLt)1−γ − δKt − Lt c(Xt)
]
dt + σKKtdBK

t , K0 > 0 given , (10)

and one can simplify

V (s, x) = e−ρs V (0, x) = e−ρs sup
c(·)∈C

E0,x
[ τ0∫

0

e−ρt

(
c(Xt)

)1−γ − 1
1 − γ

Lt dt
]

. (11)

Hence, for the rest of this paper, we confine ourselves to this special case of Optimization

Problem 2.1:

find the value function V (0, x) (inclusively the optimizing consumption strategy copt(·) )

subject to the constraints (10), (2), (3). (12)

In Table 1 we exemplarily mention some studies about continuous-time stochastic growth mod-

els (mainly with Cobb-Douglas type technology), which are similiar but of lower-dimensional

“uncertainty” than our framework; for comparison, we have also included some Solow-Swan

type investigations.

reference σK σA μA σL μL type

Amilon and Bermin (2003) = 0 > 0 ∈ R Ramsey
Baten and Miah (2007) = 0 > 0 ∈ R Ramsey
Bourguignon (1974) > 0 > 0 ∈ R Solow–Swan
Bucci et al. (2008) = 0 > 0 ∈ R = 0 ∈ R Ramsey
Jensen and Richter (2007) > 0 > 0 ∈ R Solow–Swan
Merton (1975) = 0 > 0 ∈ R Solow–Swan & Ramsey
Posch (2009b) = 0 > 0 ∈ R Ramsey
Roche (2003) > 0 > 0 ∈ R Ramsey
Smith (2007) = 0 > 0 ∈ R Ramsey
Smith (2007) = 0 > 0 ∈ R Ramsey
this paper > 0 > 0 ∈ R > 0 ∈ R Ramsey

Table 1: Some literature comparison: “blank” spaces mean no-occurrence; eventual parameter restrictions are not
mentioned here.

Some further related investigations, which are less similar to ours than those mentioned in

Table 1, can be found in e.g. Eaton (1981), Chang (1988), Pindyck and Solimano (1993),

Corsetti (1997), Grinols and Turnovsky (1998), Attanasio (1999), Jensen and Wang (1999),

Pindyck (2000), Turnovsky (2000a), Bank and Riedel (2001), Jensen et al. (2001), Cagetti

6such that (ct)t≥s ∈ C(s, x) holds
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et al. (2002), Fleming and Stein (2004), Kenc (2004), Maenhout (2004), Clemens (2005),

Fleming and Pang (2005), Hartley and Rogers (2005), Jensen and Larsen (2005), Jones and

Manuelli (2005), Steger (2005), Wälde (2005), Sennewald and Wälde (2006), Turnovsky and

Smith (2006), Nishide and Ohyama (2007), Stein (2007), Elie and Touzi (2008), Morimoto

(2008), Morimoto and Zhou (2008), Dunbar (2009), Posch (2009a), Sotomayor and Cadenillas

(2009), Wälde (2009b), Chen and Wu (2010), Palacios (2010) and Posch and Wälde (2010).

3 Closed-Form Optimal Consumption and Closed-Form

Economy Sample Paths

By virtue of (11), it suffices to solve the Optimization Problem 2.1 for the special case s = 0

(cf. (12)), for which we can identify x with the initial economy values, i.e. x = (K0, A0, L0) > 0.

The corresponding unique optimal consumption strategy turns out to be copt
t = copt(Xt) where

copt(·) is given in terms of X = (K,A,L) > 0 7 by

copt(X) = 1
γ

[
ρ + δ(1 − γ) − γ μL + 1

2(1 − γ) γ (σ2
K + σ2

L)
]K

L
=: b1

K

L
; (13)

this will be derived in Appendix A.1 by solving the corresponding Hamilton-Jacobi-Bellman

equation explicitly, and verified in Appendix A.4 thereafter. Notice that

• the optimal consumption strategy copt(·) does not depend on the labor-effectiveness

(technology level) A,

• from the general parameter restrictions γ ∈ (0, 1), δ ≥ 0, σK > 0, σL > 0 as well as

assumption (7) one gets b1 > 0 and thus copt(X) > 0.

By formally plugging copt
t = copt(Xt) into (10), one arrives at

dKt =
[
Kγ

t (AtLt)1−γ − (δ + b1)Kt

]
dt + σKKtdBK

t , K0 > 0 given. (14)

It is possible to obtain explicitly the closed form of the unique strong solution Xt = (Kt, At, Lt) >

0 of the coupled system (14), (2), (3) of SDEs, and thus the desired non-equilibrium sample-

path dynamics of the economy values. In order to achieve this, let us first notice that (2), (3)

are uniquely solved by the well-known geometric Brownian motions

At = A0 e(μA− 1
2
σ2

A)t+σABA
t > 0 and (15)

Lt = L0 e(μL− 1
2
σ2

L)t+σLBL
t > 0 . (16)

Furthermore, as a next step we seek for the unique strong solution kt of the SDE

dkt =
[
kt

γ − b2kt

]
dt + kt

[
σKdBK

t − σAdBA
t − σLdBL

t

]
, k0 > 0 given, (17)

7with slight abuse of notation
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where

b2 := δ + b1 + μA + μL − σ2
A − σ2

L = ρ+δ
γ + μA + 1

2(1 − γ)σ2
K − σ2

A − 1
2(1 + γ)σ2

L (18)

can be negative, zero or positive, depending on the parameter constellations. Notice that we

start here with a single-valued distribution – namely with mass concentrated at k0 > 0 – rather

than the equilibrium steady-state distribution8. In other words, the process (kt)t≥0 starts in

non-equilibrium which explains respectively justifies our correspondingly chosen terminology

throughout this paper. As it will be derived in Appendix A.2, the unique strong (non-

equilibrium) solution of (17) is given by

kt = eσKBK
t −σABA

t −σLBL
t − 1

2
b3t

·
[
(1 − γ)

t∫
0

e(1−γ)[−σKBK
s +σABA

s +σLBL
s + 1

2
b3s] ds + k0

1−γ

] 1
1−γ

, (19)

with b3 :=σ2
K + σ2

A + σ2
L + 2b2 = 2ρ+δ

γ + 2μA + (2 − γ)σ2
K − σ2

A − γσ2
L . (20)

Because of γ ∈ (0, 1) and k0 > 0, one gets with probability 1 that kt > 0 for all t ≥ 0. Notice

that b3 can be negative, zero or positive, depending on the parameter constellations. From

(19), (15), (16) we construct the process (Kt)t≥0 by Kt := kt At Lt. Accordingly, by means of

the appropriate three-dimensional version of Ito’s formula one can derive from (17), (2), (3)

that (Kt)t≥0 is the unique strong solution of the SDE (14); see Appendix A.3 for the details.

Since Kt represents the capital stock at time t, one can interpret kt = Kt
AtLt

as per capita

effective capital stock (capital per effective worker, capital per efficiency unit) at time t. 9

Summing up, with the help of (19) we arrive at the explicit closed form of the sample paths

of the economy value process given by Xt = (Kt, At, Lt) with (15), (16) and

Kt = kt At Lt (21)

= A0L0 e
[
μL− ρ+δ

γ
− 1

2
(2−γ)σ2

K− 1
2
(1−γ)σ2

L

]
t+σKBK

t

·
[
(1 − γ)

t∫
0

e(1−γ)[−σKBK
s +σABA

s +σLBL
s + 1

2
b3s] ds +

(
K0

A0L0

)1−γ
] 1

1−γ

. (22)

One gets immediately with probability 1 that Kt > 0 for all t ≥ 0, and hence the random

remaining lifetime in Optimization Problem 2.1 with s = 0 (cf. (12)) becomes τ0 = ∞. In a

similar way, one can deduce from (19) and (15) a closed-form sample-path expression for the

optimal consumption copt
t = copt(Xt) = b1 kt At (cf. (13), (21)).

Let us further study the abovementioned economy value processes. Of course – due to

their geometric Brownian motion nature (15) respectively (16) – the behaviour of the labor-

8which will be derived later on
9vice versa, by using the appropriate version of Ito’s formula for kt = Kt

AtLt
one can deduce from

(14), (2), (3) that kt is a solution of the SDE (17); since this is purely formal until one knows the
existence of a solution Kt of (14), we have used above the opposite direction of arguments.
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effectiveness process (At)t≥0 respectively the labor-force process (Lt)t≥0 is very well known in

detail; for instance, At respectively Lt is lognormal distributed for each time t ≥ 0. Thus, in

the following we concentrate on deriving some properties of the capital stock process (Kt)t≥0

and its per capita effective counterpart (kt)t≥0. We first notice that by means of the explicit

representation (22) one can straightforwardly perform corresponding Monte Carlo simulations

upon future capital stock evolution scenarios; this will be done in Section 5 below.

Next, we investigate the corresponding probability distribution of the non-equilibrium per

capita effective capital stock kt for any fixed (e.g. short-term or long-term) horizon t ≥ 0; the

analogous conclusions for the capital stock Kt can be then deduced in principle from (21),

(15), (16).

It is straightforward to deduce from (19) that the distribution of kt is given by

kt ∼
[
Y1,t

{
θ1Y2,t + θ2

}] 1
1−γ (23)

with constants θ1 := 1− γ > 0, θ2 := k0
1−γ > 0 as well as random variables Y1,t, Y2,t with the

following properties in terms of the newly introduced variables σ̆ :=(1 − γ)
√

σ2
K + σ2

A + σ2
L

and b4 := b3
2 (1−γ)(σ2

K+σ2
A+σ2

L)
:

• Y1,t ∼ LN (−σ̆2b4t, σ̆
2t), i.e. log Y1,t is normal distributed with mean −σ̆2b4t and vari-

ance σ̆2t,

• Y2,t ∼
t∫
0

eσ̆2b4s−(1−γ)[σKBK
s −σABA

s −σLBL
s ] ds , which in case of the assumption b4 > −1

respectively its equivalent characterizations

b3 > −2 (1−γ)(σ2
K + σ2

A + σ2
L) ⇐⇒ 2ρ+δ

γ +2μA+(4−3γ)σ2
K+(1−2γ)σ2

A+(2−3γ)σ2
L > 0

(24)

has the following 10 density f(·), cf. Borodin and Salminen (2002, p. 612, formula 1.8.4):

f(y) :=
σ̆2b4+1yb4− 1

2

2b4+ 1
2 k0

b4+ 1
2

M 1
2
σ̆2t

(
b4 − 1

2 , k0
σ̆2y

)
exp

{−1
2b2

4σ̆
2t − k0

σ̆2y

}
, y ≥ 0 .

Here, one involves the transformed Kummer function which for μ > −3
2 and z > 0 is defined

by

My(μ, z) := 8z
3
2 Γ(μ+ 3

2
) e

π2

4y

π
√

2πy

∞∫
0

e−z ch(2u)−u2

y M̃
(−μ, 3

2 , 2z sh2 u
)
sh(2u) sin

(
πu
y

)
du,

with Kummer function M̃(a, b, x) := 1 +
∞∑

k=1

a(a+1)...(a+k−1)xk

b(b+1)...(b+k−1)k! as well as the hyperbolic func-

tions ch x = 1
2(ex + e−x) =

∞∑
k=0

x2k

2k! and sh x = 1
2(ex − e−x) =

∞∑
k=0

x2k+1

(2k+1)! . Moreover, we

obtain the moments
10Lebesgue
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E
[
kt

1−γ
]

= E
[
(1 − γ)

t∫
0

e(1−γ)[σK(BK
t −BK

s )−σA(BA
t −BA

s )−σL(BL
t −BL

s )− 1
2
b3(t−s)] ds

]
+ E

[
e(1−γ)[σKBK

t −σABA
t −σLBL

t − 1
2
b3t] k0

1−γ
]

= (1 − γ)

t∫
0

E
[
e(1−γ)[σK(BK

t −BK
s )−σA(BA

t −BA
s )−σL(BL

t −BL
s )− 1

2
b3(t−s)]

]
ds

+k0
1−γ E

[
e(1−γ)[σKBK

t −σABA
t −σLBL

t − 1
2
b3t]

]
= (1 − γ)

t∫
0

e[−
1
2
(1−γ)b3+ 1

2
(1−γ)2(σ2

K+σ2
A+σ2

L)](t−s) ds

+k0
1−γ e[−

1
2
(1−γ)b3+ 1

2
(1−γ)2(σ2

K+σ2
A+σ2

L)]t

= (1 − γ)

t∫
0

eb5(t−s) ds + k0
1−γ eb5t =: κt > 0 (25)

with

b5 := −1
2(1 − γ)b3 + 1

2(1 − γ)2(σ2
K + σ2

A + σ2
L)

= 1
2(1 − γ)

{
−2ρ+δ

γ − 2μA − σ2
K + (2 − γ)σ2

A + σ2
L

}
. (26)

In the case b5 = 0 one gets
κt = (1 − γ)t + k0

1−γ (27)

and for b5 
= 0
κt = −1−γ

b5
+ eb5t ·

(
1−γ
b5

+ k0
1−γ

)
. (28)

From this, one can deduce a lower bound for the expectation of the per capita effective capital

stock via Jensen’s inequality

E
[
kt

] ≥ {
E

[
kt

1−γ
]} 1

1−γ = κ

1
1−γ

t , t ≥ 0 . (29)

4 Long-Term Limit and Steady State of the Stochas-

tic Non-Equilibrium Capital Stock

Recall that we know explicitly the closed form of the capital stock process (Kt)t≥0 (cf. (22)), as

well as of the non-equilibrium per capita effective capital stock process (kt)t≥0 (cf. (19)). For

the latter, we now present the corresponding time-asymptotics and stationarity properties.

Those will be deduced in Appendix A.5 below in the usual implicit way by means of scaling

and speed measure techniques. Accordingly, starting from the SDE

dkt =
[
kt

γ − b2kt

]
dt + kt

[
σKdBK

t − σAdBA
t − σLdBL

t

]
(cf. (17))

we obtain under the (here, equivalently characterized) assumption

9



b3 > 0 ⇐⇒ 2ρ+δ
γ + 2μA + (2 − γ)σ2

K − σ2
A − γσ2

L > 0 (30)

– which is stronger than assumption (24) – for every initial value k0 ∈ (0,∞) the (infinite-

time-horizon-)limit distribution function

Flim(z) := lim
t→∞P0,k0

[
kt ≤ z

]
= (1−γ)

b6
b7

Γ(b7)

z∫
0

exp
{−b6k

γ−1
}
k−[b7(1−γ)+1]dk , z ∈ (0,∞),

(31)
with

b6 := 2
(σ2

K+σ2
A+σ2

L)·(1−γ)
> 0 and (32)

b7 :=
2ρ+δ

γ + 2μA + (2 − γ)σ2
K − σ2

A − γσ2
L

(σ2
K + σ2

A + σ2
L) · (1 − γ)

> 0 . (33)

Notice that the limit distribution function Flim(·) of (kt)t≥0 does not depend on the ini-

tial value k0. The corresponding distribution (i.e. probability law) will be denoted by Plim;

according to (31) it has the density

flim(k) = (1 − γ)
b6

b7

Γ(b7)
exp

{−b6k
γ−1

}
k−[b7(1−γ)+1] , k ∈ (0,∞) . (34)

In contrast, one can also show that the per capita effective capital stock process (kt)t≥0 has

a steady-state distribution Pstea – also known as stationary distribution, invariant distribu-

tion, equilibrium distribution – which means in particular that if at some time u ≥ 0 the

distribution of ku is equal to Pstea, then at any later time v > u the distribution of kv is

also equal to Pstea. Indeed, one gets Pstea = Plim, i.e. the steady-state distribution and the

limit distribution coincide. Hence, the steady-state distribution Pstea has distribution func-

tion Fstea(z) = Flim(z) given in (31) and density fstea(k) = flim(k) given in (34). In the

light of this, within our framework there holds the effect that for long-term (but finite) time

horizons u the distribution of ku becomes close to Pstea, and thus at any later time horizon

v > u the distribution of kv stays close to Pstea. Despite of this (approximative) equilibrium

effect, we emphasize again that in our context the per capita effective capital stock process

(kt)t≥0 starts in non-equilibrium – namely, with the single-valued distribution at k0 – rather

than with the steady-state distribution Pstea.

Let us mention here that the above equilibrium investigations extend in a certain sense the

similar continuous-time steady-state studies under lower-dimensional uncertainty (cf. Table 1)

carried out e.g. by Merton (1975), Smith (2007) within a Ramsey type setup, and e.g. by Bour-

guignon (1974), Merton (1975), Jensen and Richter (2007) within a Solow-Swan type setup.

Also, these papers do not deal with finding explicit closed-form sample-path representations

of the capital stock processes (kt)t≥0 and (Kt)t≥0, which we have achieved in Section 3 above.

Next, we compute the mean μstea of the steady-state distribution Pstea (limit distribution

Plim) by

10



μstea = (1 − γ)
b6

b7

Γ(b7)

∞∫
0

k exp
{−b6k

γ−1
}

k−[b7(1−γ)+1]dk

=
b6

b7

Γ(b7)

∞∫
0

e−b6y yb7− 1
1−γ

−1dy (35)

which is finite if and only if b7 > 1
1−γ . The latter is equivalent to

b3 > σ2
K + σ2

A + σ2
L (36)

which itself is equivalent to the original-parameters-involving condition

2ρ+δ
γ + 2μA > −(1 − γ)σ2

K + 2σ2
A + (1 + γ)σ2

L . (37)

Hence, under the requirement (36) respectively (37) – which is stronger than (30) and (24) –

we end up with

μstea = b6

1
1−γ

Γ(b7 − 1
1−γ )

Γ(b7)

∞∫
0

b6
b7− 1

1−γ

Γ(b7 − 1
1−γ )

e−b6y yb7− 1
1−γ

−1dy

= b6

1
1−γ

Γ(b7 − 1
1−γ )

Γ(b7)

=
(

2
(σ2

K+σ2
A+σ2

L)(1−γ)

) 1
1−γ

Γ
(

2 ρ+δ
γ

+2μA+(1−γ)σ2
K−2σ2

A−(1+γ)σ2
L

(σ2
K+σ2

A+σ2
L)(1−γ)

)
Γ
(

2 ρ+δ
γ

+2μA+(2−γ)σ2
K−σ2

A−γσ2
L

(σ2
K+σ2

A+σ2
L)(1−γ)

) < ∞ . (38)

For statistical and other matters, it is also reasonable to study the long-term limit of the

continuous-time-average 1
T

T∫
0

g(ks)ds, where g(·) is some nonnegative transform-of-interest of

the per capita effective capital stock. For this, we obtain the following ergodicity assertion

(see Appendix A.5)

lim
T→∞

1
T

T∫
0

g(ks)ds =

∞∫
0

g(k)flim(k) dk =

∞∫
0

g(k)fstea(k) dk

= (1 − γ)
b6

b7

Γ(b7)

∞∫
0

g(k) exp
{−b6k

γ−1
}

k−[b7(1−γ)+1] dk with Probability 1, (39)

provided that the steady-state distribution average (ensemble mean)
∞∫
0

g(k) fstea(k) dk is fi-

nite. One can use (39) e.g. in connection with the verification of the consistency of some

statistical estimators and tests, and also for the time-average asympotics of other, economi-

cally relevant, functionals. Of course, the most important special case is the direct inference

upon kt (t ≥ 0) which corresponds to the choice g(x) = x leading to

lim
t→∞

1
t

t∫
0

ks ds = μstea with Probability 1

under the above assumption (37).
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5 Simulations and the Speed of Economic Recovery

In the following, we deal with Monte Carlo simulations of our per capita effective capital

stock process (kt)t≥0. To start with, we present in Table 2 an overview of concrete economy-

parameter constellations recently used in some growth studies within frameworks which are

similar but not entirely comparable to ours: for instance, we consider here a continuous-time,

fully stochastic setup in the sense σK 
= 0, σA 
= 0, σL 
= 0, and we simulate (kt)t≥0 directly

by means of the explicit closed-form sample-path representation formula (19) rather than by

applying an appropriately adapted version of a (by its nature indirect) numerical Euler type

method for approximating the underlying stochastic differential equation; the latter approach

is typically used in contexts where no explicit sample-path formula is achieved. Working

with (19), we avoid some potential pitfalls of the Euler type methods (e.g. non-convergence

problems in case of wrong stepsize choices) which can appear even in the case of SDEs with

very smooth drift and diffusion term, like for the prominent Cox-Ingersoll-Ross interest rate

model (cf. Higham and Mao (2005)).

reference ρ δ α γ σK σA μA σL μL

Acemoglu and Guerrieri (2008) 0.02 0.05 0.1–0.77 4.0 0.018
Amilon and Bermin (2003) 0.06 0.8 0.5 0.2
Barro et al. (1995) 0.05 0.3 2.0 0.01
Bernanke and Gürkaynak (2001) 0.07–0.12 0.36 0.08–0.75
Braun and Nakajimay (2009) 0.08 0.3 2.0
Bucci et al. (2008) 0.04 0.05 0.33 0.0148 0.02
Cagetti et al. (2002) 0.04 0.07 0.35 2.0 0.0192
Cagetti and Nardi (2009) 0.06 0.33 1.5
Caselli and Coleman (2006) 0.33
Conesa et al. (2009) 0.0833 0.36 4.0
Gollin et al. (2003) 0.05 0.065 0.5 1.0
Hall (2001) 0.1
Jensen and Richter (2007) 0.05, 0.08 0.2–0.6 0.03 0.01 0.01, 0.02
King and Rebelo (1993) 0.10 0.33 1.0–10.0 0.014
Nishide and Ohyama (2007) 0.02 0.08
Palacios (2010) 0.001 0.05 0.36 3.5 0.12 0.017
Posch (2009b) 0.03 0.05 0.5 1 0.02 0.01
Pyyhtiä (2007) 0.33
Schmitt-Grohe (2000) 0.04 0.1 0.016
Williams (2004) 0.015 0.0517 0.35 4 0.0492 0.0176

Table 2: Some concrete parameters in literature; “blank” spaces mean no-occurrence or lacking of comparability.

For our direct Monte Carlo simulations, we employ parameters in the range of their counter-

parts in Table 2. However, for the abovementioned non-comparability reasons, we take some

freedom in our choices; this is also consistent with the particular goal to demonstrate the

flexibility of our context for ending up with realistic economy simulations under a reasonably

sized spectrum of parameter constellations (e.g. prevailing across different countries respec-

tively different macroeconomic phases of one and the same country).

Imagine the following fictitious situation, encountered (say) at the present time t = 0: assume

that in the near past our economy – represented by the per capita effective capital stock

process (kt)t<0 with “old” parameters parold (i.e. σold
K , σold

A , etc.) – was (approximately) in

a steady-state equilibrium with old mean μold
stea. For transparency, let us suppose that just

before t = 0 – say at time t = 0− – the economy arrived at the values K0− , A0− , L0− such

that k0− =
K0−

A0− L0−
= μold

stea. Furthermore, assume that at time t = 0− there was a sudden

12



crash in the economy environment leading to

• a destruction of the equilibrium status, here for simplicity in the sense that the random

variable k0 has – instead of the pre-crash awaited old equilibrium distribution P old
stea –

a single-valued distribution with mass concentrated at one point which (with a slight

abuse of notation) is also denoted by k0,

• a change from the old parameters parold into new ones parnew (“parameter regime

switch”), where we also allow for the special case parnew = parold.

In such a context it is reasonable to ask the following question concerning the speed of economic

recovery : how long does it take that the economy reaches (respectively arrives close to) a

new equilibrium distribution Pnew
stea ?

The corresponding mean of Pnew
stea will be denoted by μnew

stea. For simplicity, we confine ourselves

here to the realistic special case that μnew
stea = μold

stea
11 and that

k0−k0−
k0−

= k0−μold
stea

μold
stea

≈ −6% which

means that we assume a crash of around 6% and search for the speed of recovery to return

“back to the old level”.

Of course, in an analogous way, one can investigate the more general question: how long does

it take that an “economy of current non-equilibrium status” transits from its current value k0

to an equilibrium distribution Pstea? For instance, this also applies to boom type phases in

emerging economies (e.g. BRIC countries) and other, newly industrializing, countries.

Concerning this question, we carried out Monte Carlo simulations “directly” by means of our

explicit closed-form sample path representation formula (19). The corresponding results will

be described in the following.

Figure 1 shows the average of 200 simulated sample paths of the per capita effective capi-

tal stock process (kt)t≥0 with initial value k0 = 78.08, as well as volatilities σnew
K = 0.08,

σnew
A = 0.03, σnew

L = 0.02, average growth rates μnew
A = 0.02, μnew

L = 0.01, capital share

γnew = 0.6, time-preference rate ρnew = 0.04, and depreciation rate δnew = 0.05; according

to (35), the new steady-state mean is μnew
stea = 82.45 (which is supposed to be equal to μold

stea)

and thus we face a crash of 78.08−82.45
82.45 ≈ −5.3%. Notice that we have normalized the vertical

axis in Figure 1 by division through k0− = 82.45. In contrast, Figure 2 shows the analogue

for the considerably lower volatilities σnew
K = 0.05, σnew

A = 0.02, σnew
L = 0.01, lower capital

share γnew = 1
3 , as well as the same μnew

A = 0.02, μnew
L = 0.01, ρnew = 0.04, δnew = 0.05 as

above. This leads to the new steady-state mean μnew
stea = 6.38 (which is supposed to be equal

to μold
stea); the assumption of a 6% crash amounts to the initial value k0 = 6.00. Notice that

we have normalized the vertical axis in Figure 2 by division through k0− = 6.38.

11despite of the possibly new parameters
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These two constellations provide the following Monte Carlo simulation based answers to our

posed question: in Figure 1, the speed of economic recovery is about 6 years, whereas in

Figure 2 the recovery speed is about 9 years.

Recall that we work here within a continuous-time Ramsey-type setup which is “fully (three-

dimensional) stochastic” in the sense σA 
= 0, σL 
= 0, σK 
= 0, and that we have simulated the

sample paths of the per capita effective capital stock process (kt)t≥0 directly by means of an

explicit closed-form non-equilibrium sample path representation (namely, (19)). In contrast,

Jensen and Richter (2007) perform similar simulations in a continuous-time lower-dimensional

stochastic Solow-Swan-type framework, by means of an indirect Euler-type method. They typ-

ically take a much larger difference between starting value and steady-state mean than we

do, leading to a – expressed in our terminology – much slower speed of recovery.

From our explicit closed-form representation formula (22), one can also simulate directly

the sample paths of the capital stock process (Kt)t≥0. This was carried out for yet an-

other parameter constellation: σnew
K = 0.06, σnew

A = 0.025, σnew
L = 0.015, μnew

A = 0.01,

μnew
L = 0.002, γnew = 0.50, ρnew = 0.05, δnew = 0.07, which results in μnew

stea = 15.92. Further-

more, we have assumed the following crash scenario: K0 = 0.94 · K0− = 0.94 · 15.92 = 14.96

(i.e. 6% reduction of capital stock). Moreover, let us suppose that A0 = A0− = 1 (i.e. no

change of labor-effectiveness level, which by appropriate choice of units is set to 1) as well as

L0 = 0.99 ·L0− = 0.99 (i.e. 1% reduction of labor force, measured in appropriate units). This

leads to k0 = 0.95 · k0− = 0.95 · 15.92 = 15.12. The corresponding average of 200 simulated

sample paths of both (Kt)t≥0 and (kt)t≥0 are shown in Figure 3, where for the sake of a better

comparability we have normalized both processes by their pre-crash values K0− respectively

k0− . For the per capita effective capital stock process (kt)t≥0, the plotted simulation-runs-

average (black line) indicates a recovery speed of 8 years to the steady-state equilibrium,

whereas the simulation-runs-average (green/grey line) of the capital stock process (Kt)t≥0

reaches his pre-crash level after about 3.8 years but (due to its nature) does not end up in a

steady-state distribution and continues to grow with an average annual rate of 1.52%.

The above examples indicate in a certain sense some realistic flexibility respectively robust-

ness of our model, which can also be seen from further Monte Carlo simulations with various

different other parameter constellations; for the sake of brevity these are omitted here.
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Figure 1: Plot of the average of 200 simulated sample paths of the per capita effective capital stock process (kt)t≥0

with initial value k0 = 78.08, as well as steady-state mean μnew
stea = 82.45 arriving from the parameter constellation

σnew
K = 0.08, σnew

A = 0.03, σnew
L = 0.02, μnew

A = 0.02, μnew
L = 0.01, γnew = 0.6, ρnew = 0.04, δnew = 0.05. This

means a 5.3% crash and search for the speed of a recovery to return “back to the old level”.
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Figure 2: Plot of the average of 200 simulated sample paths of the per capita effective capital stock process (kt)t≥0 with
initial value k0 = 6.00, as well as steady-state mean μnew

stea = 6.38 arriving from the parameter constellation σnew
K = 0.05,

σnew
A = 0.02, σnew

L = 0.01, μnew
A = 0.02, μnew

L = 0.01, γnew = 0.33, ρnew = 0.04, δnew = 0.05. This means a 6.0%
crash and search for the speed of a recovery to return “back to the old level”.
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Figure 3: Plot of the average of 200 simulated sample paths of the capital stock process (Kt)t≥0 (green/grey line) and
of the per capita effective capital stock process (kt)t≥0 (black line), with the parameter constellation σnew

K = 0.06,
σnew

A = 0.025, σnew
L = 0.015, μnew

A = 0.01, μnew
L = 0.002, γnew = 0.50, ρnew = 0.05, δnew = 0.07.

Let us finally mention that for the economy-value processes one can also obtain some statistical

decision sensitivity results along the lines of Stummer and Vajda (2007). For the sake of

brevity, this will appear in a forthcoming paper.

A Appendices

A.1 Derivation of the optimal consumption strategy

As usual, we first derive formally the Hamilton-Jacobi-Bellman (HJB) equation which cor-

responds to the Optimization Problem 2.1 for the special case s = 0 (cf. (12)). Let us

first observe that for any (admissible) consumption strategy ct = c(Xt) the three-dimensional

economy-value process (Xt)t≥0 defined by Xt = (Kt, At, Lt) is per assumption a unique strong

solution of the system of the three SDEs (10), (2), (3) where the latter two are uncoupled

linear (and thus straightforwardly treatable) SDEs. By employing the standard stochastic-

control-theoretic techniques (see e.g. Øksendal (2007, Chapter 11), Øksendal and Sulem (2007,

Chapter 3)), the corresponding HJB-equation has the form – in terms of X = (K,A,L) > 0 –

sup
v∈[0,∞)

{
v1−γ − 1

1 − γ
L − ρW (X) + [Kγ(AL)1−γ − δK − Lv]

∂W (X)
∂K

+ μAA
∂W (X)

∂A

+μLL
∂W (X)

∂L
+ 1

2σ2
KK2 ∂2W (X)

∂K2
+ 1

2σ2
AA2 ∂2W (X)

∂A2
+ 1

2σ2
LL2 ∂2W (X)

∂L2

}
= 0 . (40)
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By checking the first-order and second-order conditions one can immediately see that the

maximization (40) is uniquely solved by

v =
(

∂W (X)
∂K

)− 1
γ

=: vmax(X) . (41)

By plugging this into (40) we obtain(
∂W (X)

∂K

)− 1−γ
γ − 1

1 − γ
L − ρW (X) +

[
Kγ(AL)1−γ − δK − L ·

(
∂W (X)

∂K

)− 1
γ

]
∂W (X)

∂K

+μAA
∂W (X)

∂A
+ μLL

∂W (X)
∂L

+ 1
2σ2

KK2 ∂2W (X)
∂K2

+ 1
2σ2

AA2 ∂2W (X)
∂A2

+ 1
2σ2

LL2 ∂2W (X)
∂L2

= 0 .

(42)

As a potential solution candidate, let us try the the educated guess

W (X) := b8K
1−γLγ + b9A

1−γL + b10L (43)

for some constants b8, b9, b10 ∈ R, which transforms (42) into

[(1−γ)b8]
− 1−γ

γ (K
L

)1−γ−1

1−γ L − ρ[b8K
1−γLγ + b9A

1−γL + b10L]

+
[
Kγ(AL)1−γ − δK − L[(1 − γ)b8]

− 1
γ K

L

]
b8(1 − γ)K−γLγ + μAAb9(1 − γ)A−γL

+μLL[b8γK1−γL−(1−γ) + b9A
1−γ + b10] + 1

2σ2
KK2[−b8(1 − γ)γK−(1+γ)Lγ ]

+1
2σ2

AA2[−b9(1 − γ)γA−(1+γ)L] + 1
2σ2

LL2[−b8(1 − γ)γK1−γL−(2−γ)] = 0 for all K,A,L > 0 ,

which is equivalent to

K1−γLγb8

{
γ[(1 − γ)b8]

− 1
γ − ρ − δ(1 − γ) + μLγ − 1

2σ2
K(1 − γ)γ − 1

2σ2
L(1 − γ)γ

}
+A1−γL

{
−ρb9 + (1 − γ)b8 + μA(1 − γ)b9 + μLb9 − 1

2σ2
A(1 − γ)γb9

}
+L

{
− 1

(1−γ) − (ρ − μL)b10

}
= 0 for all K,A,L > 0 . (44)

But (44) holds if and only if the following three equations for (b8, b9, b10) hold:

b1 := [(1 − γ)b8]
− 1

γ = 1
γ

[
ρ + δ(1 − γ) − μLγ + 1

2(1 − γ)γ(σ2
K + σ2

L)
]
, (45)

b9 =
b8(1 − γ)

ρ − μA(1 − γ) − μL + 1
2σ2

A(1 − γ)γ
, (46)

b10 = − 1
(1 − γ)(ρ − μL)

. (47)

Notice that by assumption (7) the right-hand side of (45) as well as the denominators in

(46), (47) are all strictly positive. Consequently, there holds b8, b9, b10 > 0 which implies

W (X) > 0. Furthermore, the function W (·) is twice continuously differentiable on (0,∞) ×
(0,∞)×(0,∞), continuous on [0,∞)×[0,∞)×[0,∞) as well as linearly bounded; with respect

to the component K, the function W (·) is strictly increasing and strictly concave. Altogether,
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one gets W (X) explicitly from (43) together with the unique solution (b8, b9, b10) of (45), (46),

(47). From (41), (43) and (45) we obtain

vmax(X) = vmax(K,A,L) = b1
K

L
> 0 (48)

which coincides with (13).

As usual, the classical solution W (·) of the HJB (40) is a canditate for the desired optimal

expected lifetime utility of consumption V (0, ·) given in (11), and vmax(·) a canditate for the

corresponding optimal consumption strategy copt(·). However, in order to prove that this is

indeed the solution of the Optimization Problem 2.1 with s = 0 (cf. (12)) one has to run

through a standard verification procedure. This involves in principle (properties of) the cor-

responding optimal economy-value process (Xt)t≥0 for which we shall derive the explict closed

form in the following two Appendices A.2 and A.3. Thereafter, in Appendix A.4, we shall

deal with the abovementioned verification procedure including in particular the transversality

condition.

A.2 Solution of the SDE (17)

In order to obatin a strong solution of the SDE (17), we shall use the following procedure

which for potential future research we develop in general terms and which is an extension of

a method e.g. presented in Øksendal (2007, Chapter 5). Consider a one-dimensional SDE of

the form

dXt = f(t,Xt)dt + Xt

[
σ1(t)dV

(1)
t + σ2(t)dV

(2)
t + σ3(t)dV

(3)
t

]
(49)

= f(t,Xt)dt + Xt σ(t)tr · dVt , X0 = x, t ≥ 0 ,

where f(·, ·), σ1(·), σ2(·), σ3(·) are deterministic continuous real-valued functions and Vt =

(V (1)
t , V

(2)
t , V

(3)
t )tr is a three-dimensional Gauss process12 with continuous13 sample paths,

independent increments, V0 = 0 , E[Vt] = 0 , and absolutely continuous variance function{
E[Vt V tr

t ]
}

t≥0
(see e.g. Arnold (1974)). Thus, one can represent Vt as a stochastic integral14

Vt =

t∫
0

G(s) dWs , (50)

where {Wt}t≥0 a three-dimensional standard Brownian motion, and G(·) is a deterministic

function taking values in the space of all (3 × 3)-matrices such that
t∫
0

|G(s)|2ds < ∞ for all

t ≥ 0 (cf. Arnold (1974)). Hence, {Vt}t≥0 can be interpreted as a “straightforward” time-

12here, Vt (and thus Xt) is interpreted as a column vector, and tr indicates henceforth the transpose
of a vector respectively a matrix

13(with probability 1)
14of Ito type
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inhomogeneous generalization of a Brownian motion. The following assertion describes how

to construct a SDE solution from a (pathwise) solution of a – generally easier to handle –

ordinary differential equation (ODE)15:

Lemma A.1. Suppose that G(·) is continuous and define the auxiliary stochastic process

(Ft(ω))t≥0 by

Ft(ω) := exp
{
−

t∫
0

σ1(s)dV 1
s (ω) −

t∫
0

σ2(s)dV 2
s (ω) −

t∫
0

σ3(s)dV 3
s (ω)

+ 1
2

t∫
0

[(
σ1(s), σ2(s), σ3(s)

) · G(s) G(s)tr ·
(

σ1(s)
σ2(s)
σ3(s)

)]
ds

}
> 0 with probability 1 .

Then the following holds: if there exists a stochastic process (Yt(ω))t≥0 such that for each fixed

ω ∈ Ω the corresponding (deterministic-function type) sample path t �→ Yt(ω) is a solution of

the ODE
dYt(ω)

dt
= Ft(ω) f

(
t, F−1

t (ω)Yt(ω)
)
, Y0(ω) = x, (51)

then the stochastic process (Xt(ω))t≥0 defined by Xt(ω) := F−1
t (ω)Yt(ω) is a strong solution

of the SDE (49).

Proof. One can represent Ft = g(t, Zt), where

g(t, z) := exp
{−z + 1

2

t∫
0

σ̃(s)ds
}

with

σ̃(s) =
(
σ1(s), σ2(s), σ3(s)

) · G(s) G(s)tr ·
(

σ1(s)
σ2(s)
σ3(s)

)
,

and Zt :=
t∫
0

σ(s)trdVs =
t∫
0

σ(s)trGs dWs . Thus, by Ito’s formula we obtain

dFt =
∂g

∂t
(t, Zt)dt +

∂g

∂z
(t, Zt)dZt + 1

2

∂2g

∂z2
(t, Zt)(dZt)2

= 1
2Ftσ̃(t)dt − Ftσ(t)trG(t) dWt + 1

2Ft

(
σ(t)trG(t) dWt

)2

= Ftσ̃(t)dt − Ftσ(t)trG(t) dWt (52)

which by another application of Ito’s formula leads to

d
(
F−1

t

)
= −F−2

t dFt + F−3
t (dFt)2 = −F−1

t σ̃(t) dt + F−1
t σ(t)tr G(t) dWt + F−1

t σ̃(t) dt

= F−1
t σ(t)tr G(t) dWt .

From the appropriate two-dimensional version of Ito’s formula and (51) we get

15for the sake of transparancy, we exceptionally quote the involved sample point ω in the formulation
(but not the proof) of Lemma A.1, and in its concrete application below
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dXt = d
(
F−1

t Yt

)
= F−1

t dYt + Yt d
(
F−1

t

)
+ d

(
F−1

t

)
dYt

= F−1
t Ft f

(
t, F−1

t Yt

)
dt + Yt F−1

t σ(t)tr G(t) dWt + 0

which leads immediately to the desired SDE (49) with initial condition X0 = Y0 = x .

Let us now apply the general Lemma A.1 in order to derive a solution of the special case

dkt =
[
kt

γ − b2kt

]
dt + kt

[
σKdBK

t − σAdBA
t − σLdBL

t

]
, k0 > 0, t ≥ 0 . (cf. (17))

Accordingly, we set f(t, kt) := kt
γ − b2kt , σ1(t) := σK , σ2(t) :=−σA , σ3(t) :=−σL ,

Wt :=
(
BK

t , BA
t , BL

t

)tr and G(t) := I3 with three-dimensional unit matrix I3. Hence, there

holds σ̃(s) ≡ σ2
K + σ2

A + σ2
L as well as

Ft(ω) = exp
{−σKBK

t (ω) + σABA
t (ω) + σLBL

t (ω) + 1
2(σ2

K + σ2
A + σ2

L)t
}
. For fixed ω ∈ Ω we

search for the function t �→ Yt(ω) which solves uniquely the ODE

dYt(ω)
dt

= Ft(ω)
[(

Yt(ω)
Ft(ω)

)γ

− b2
Yt(ω)
Ft(ω)

]
= Ft(ω)1−γ Yt(ω)γ − b2Yt(ω) , Y0 = k0 , (53)

which can be found by straightforward ODE-techniques as

Yt(ω) = e−b2t

[ t∫
0

(1 − γ)Fs(ω)1−γ eb2(1−γ)s ds + k0
1−γ

] 1
1−γ

.

Thus, by Lemma A.1, the process (kt)t≥0 defined by

kt(ω) = F−1
t (ω)Yt(ω) = eσKBK

t (ω)−σABA
t (ω)−σLBL

t (ω)− 1
2
b3t ·

·
[
(1 − γ)

t∫
0

e(1−γ)[−σKBK
s (ω)+σABA

s (ω)+σLBL
s (ω)+ 1

2
b3s] ds + k0

1−γ

] 1
1−γ

, (cf. (19))

with b3 := σ2
K + σ2

A + σ2
L + 2b2 =

(18)
2ρ+δ

γ + 2μA + (2 − γ)σ2
K − σ2

A − γσ2
L , (cf. (20))

is a strong solution of the SDE (17). It is straightforward to see – directly respectively from the

belowmentioned formulae (61), (62) below together with Prop. 5.22 of Karatzas and Shreve

(1991) – that the solution (kt)t≥0 does not explode in finite time with probability 1. In order

to prove the strong uniqueness of solutions of (17), one can apply e.g. the corresponding

general results of Engelbert and Schmidt (1991, Section 4.5).

A.3 Transformation of (17) into (14)

By using the appropriate three-dimensional version of Ito’s formula together with the SDEs

(2), (3), (17) as well as the parameter definition (18), one can calculate
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dKt = d(ktAtLt) (54)

= AtLtdkt + AtktdLt + LtktdAt + ktdAtdLt + AtdktdLt + LtdktdAt + dktdAtdLt

= AtLt

{[
kt

γ − b2kt

]
dt + kt

[
σKdBK

t − σAdBA
t − σLdBL

t

]}
+Atkt

{
μLLtdt + σLLtdBL

t

}
+ Ltkt

{
μAAtdt + σAAtdBA

t

}
+ kt · 0

+At ·
{−σ2

LLtktdt
}

+ Lt ·
{−σ2

AAtktdt
}

+ 0

=
[
Kγ

t (AtLt)1−γ − (δ + b1)Kt

]
dt + σKKtdBK

t

which means that (Kt)t≥0 defined by (54) (with arbitrary initial value K0 > 0) is a strong

solution of the SDE (14). The corresponding strong uniqueness can be shown as follows: let

(K̃t)t≥0 be another strong solution of (14) with initial value K̃0 = K0. Then by Ito’s formula

dk̃t := d
K̃t

AtLt
(55)

=
1

AtLt

{[
K̃t

γ
(AtLt)1−γ − (δ + b1)K̃t

]
dt + σKK̃tdBK

t

} − K̃t

A2
t Lt

[
μAAtdt + σAAtdBA

t

]
− K̃t

AtL
2
t

[
μLLtdt + σLLtdBL

t

]
+

K̃t

A3
t Lt

σ2
AA2

t dt +
K̃t

AtL
3
t

σ2
LL2

t dt

=
[
k̃t

γ − b2k̃t

]
dt + k̃t

[
σKdBK

t − σAdBA
t − σLdBL

t

]
,

which shows that (k̃t)t≥0 defined by (55) is a strong solution of the SDE (17) with initial value

k̃0 = k0. Hence, by the strong uniqueness of (17) established in Appendix A.2 above, we have

with probability 1 that k̃t = kt for all t ≥ 0. Thus, with probability 1 there holds K̃t = Kt

for all t ≥ 0, which is just the desired strong uniqueness for (14).

A.4 Verification

Recall from Appendix A.1 that the function W (·) defined by (43) is a canditate for the desired

optimal expected lifetime utility of consumption V (0, ·) given in (11), and vmax(·) (cf.(48))

a candidate for the corresponding optimal consumption strategy copt(·). To show that this

is indeed the desired solution of Optimization Problem 2.1 with s = 0 (cf. (12)), one can

employ the usual (adequately adapted) standard verification procedure, see e.g. Øksendal

(2007, Chapter 11), Øksendal and Sulem (2007, Chapter 3). As a part of this, one can

conclude from the above considerations that vmax(·) is admissible, i.e. (vmax(Xt))t≥0 ∈ C(0, x).

Furthermore, the transversality condition

lim
t→∞ e−ρt E

[
W (Xt)

]
= 0 (56)

holds, which can be seen as follows:
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e−ρt E
[
W (Xt)

]
= e−ρt E

[
b8K

1−γ
t Lγ

t + b9A
1−γ
t Lt + b10Lt

]
= (1 − γ)b8A

1−γ
0 L0

t∫
0

E
[
exp

{−(
b1 + 1

2(1 − γ)2σ2
K + 1

2γ2σ2
L

)
t + 1

2(1 − γ)b3s

+(1 − γ)σK(BK
t − BK

s ) + (1 − γ)σABA
s + γσL(BL

t − BL
s ) + σLBL

s

}]
ds

+b8K
1−γ
0 Lγ

0 E
[
exp

{−(
b1 + 1

2 (1 − γ)2σ2
K + 1

2γ2σ2
L

)
t + (1 − γ)σKBK

t + γσLBL
t

}]
+b9A

1−γ
0 L0 E

[
exp

{(
(1 − γ)μA + μL − ρ − 1

2(1 − γ)σ2
A − 1

2σ2
L

)
t + (1 − γ)σABA

t + σLBL
t

}]
+b10L0 E

[
exp

{(
μL − ρ − 1

2σ2
L

)
t + σLBL

t

}]
= (1 − γ)b8A

1−γ
0 L0

t∫
0

e−b1t eb11s ds + b8K
1−γ
0 Lγ

0 e−b1t +b9A
1−γ
0 L0 e(b11−b1)t +b10L0 e(μL−ρ)t

(57)

with b11 :=(1 − γ)ρ+δ
γ + (1 − γ)μA + 1

2(1 − γ)σ2
K − 1

2(1 − γ)γσ2
A + 1

2 (1 − γ)σ2
L .

If b11 = 0 then
t∫
0

e−b1t eb11s ds = t e−b1t −−−→
t→∞ 0 (recall that b1 > 0 by (7) and (45)). If

b11 
= 0 then one gets
t∫
0

e−b1t eb11s ds = 1
b11

(
e(b11−b1)t − e−b1t

) −−−→
t→∞ 0 since b1 > 0 and

b11 − b1 = (1− γ)μA +μL − ρ− 1
2(1− γ)γσ2

A < 0 (cf. (7)). Because of b1 > 0 , b11 − b1 < 0 and

μL − ρ < 0 (cf. (7)), also the last three terms in (57) converge to 0 as t tends to ∞. Thus, we

have verified (56).

A.5 Derivation of the limit distribution, steady-state distribu-

tion and ergodicity assertion (39)

In this section we deduce the long-term behaviour of the non-equilibrium per capita effective

capital stock process (kt)t≥0 with dynamics

dkt =
[
kt

γ − b2kt

]
dt + kt

[
σKdBK

t − σAdBA
t − σLdBL

t

]
, (cf. (17))

by applying (an adaption of) the corresponding general “ergodic” theory of one-dimensional

stochastic differential equations, see e.g. Karatzas and Shreve (1991), Kallenberg (2002). No-

tice that in (17) both the drift term and the diffusion term are bounded on compact subin-

tervals of the domain I = (0,∞). By this and the nondegeneracy σ2
K + σ2

A + σ2
L > 0, all the

following quantities are well defined. Let us first examine the scale function

s(k) :=

k∫
1

exp
{
−2

ξ∫
1

yγ−b2y
(σ2

K+σ2
A+σ2

L)·y2 dy
}

dξ (58)

= − 1
1−γ e−b6

kγ−1∫
1

exp
{
b6ζ − b12 ln ζ

}
dζ , k ∈ (0,∞), (59)

with b6 := 2
(σ2

K+σ2
A+σ2

L)·(1−γ)
> 0 (cf. (32))

and b12 := 2b2
(σ2

K+σ2
A+σ2

L)·(1−γ)
+ 1

1−γ + 1 = b3
(σ2

K+σ2
A+σ2

L)·(1−γ)
+ 1 , (60)
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where b3 is given by (20). It is easy to see that

lim
k→0+

s(k) = −∞ (61)

holds. Moreover, under the assumption b12 > 1 which is equivalent to

b3 > 0 , (cf. (30))

one gets
lim

k→∞
s(k) = +∞ . (62)

Another important tool in this context is the speed measure density

m(k) := 2
s′(k)·(σ2

K+σ2
A+σ2

L)·k2 = 2

exp
{

b6 [kγ−1+b2(1−γ) ln k−1]
}
·(σ2

K+σ2
A+σ2

L)·k2
(63)

and the corresponding speed measure defined by m̃(A) =
∫
A

m(k)dk for all Borel sets A in

(0,∞). By means of the well-known gamma function Γ(·) one immediately arrives at

m̃((0,∞)) = b6 eb6

∞∫
0

e−b6y yb7−1dy = b6
1−b7 eb6 Γ(b7) < ∞ . (64)

Since by (23), every kt (t ≥ 0) has an absolutely continuous distribution, one can apply a

result of Pollak and Siegmund (1985) (see also Karatzas and Shreve, 1991, p. 352) to obtain

the desired limit distribution function (31) by

Flim(z) := lim
t→∞P0,k0

[
kt ≤ z

]
=

m̃
(
(0, z)

)
m̃((0,∞))

(65)

=

z∫
0

2
k2·(σ2

K+σ2
A+σ2

L)·exp{b6[kγ−1+b2(1−γ) lnk−1]} dk

b6
1−b7 eb6 Γ(b7)

= (1 − γ)
b6

b7

Γ(b7)

z∫
0

exp
{−b6k

γ−1
}
k−[b7(1−γ)+1] dk , z ∈ (0,∞) ,

where we have used (63), (64), (32) and (33). Finally, the ergodicity assertion (39) as well as

the equality between steady-state and limit distribution (i.e. Pstea = Plim) follow by standard

techniques, see e.g. Kallenberg (2002, Chapter 23).
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