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Abstract

In parametric time series analysis there is the implicit assumption of no aberrant observations,
so-called outliers. Outliers are observations that seem to be inconsistent with the assumed model.
When these observations are included to estimate the model parameters, the resulting estimates
are biased.
The fact that markets have been a�ected by shocks (i.e. East Asian crisis, Dot-com bubble, sub-
prime mortgage crisis) make the assumption that no outlier is present questionable.
This paper addresses the problem of detecting outlying observations in time series. Outliers can be
understood as a short transient change of the underlying parameters. Unfortunately tests designed
to detect structural breaks cannot be used to �nd outlying observations. To overcome this problem
a test normally used to detect structural breaks is modi�ed. This test is based on the cumulative
sum (CUSUM) of the squared observations. In comparison to a likelihood-ratio test neither the
underlying model nor the functional form of the outliers have to be speci�ed.
In a simulation study the �nite sample behaviour of the proposed test is analysed. The simulation
study shows that the test has reasonable power against a variety of alternatives.
Moreover, to illustrate the behaviour of the proposed test we analyse the returns of the Volkswagen
stock.

1Corresponding author: Vlad Ardelean. Department of Statistics and Econometrics. University of Erlangen-

Nuremberg. Lange Gasse 20. D-90403 Nuremberg. E-Mail: Vlad.Ardelean@wiso.uni-erlangen.de
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1 Introduction

Returns of �nancial time series are often modelled by a generalised autoregressive conditional

heteroscedasticity (GARCH) process, proposed by Bollerslev (1986). As the GARCH model is

able to capture many stylised facts of �nancial returns.

The time-varying volatility of returns can be forecasted when the parameters of the process are

known. Such a forecast can be used as an input for pricing options, other derivatives, trading and

hedging strategies. Furthermore, the risk of an asset can be measured by the predicted volatility.

The usefulness of the forecast is questionable when the estimated parameter are biased. In a

simulation study, Ardelean (2009) investigates the e�ect on the estimated parameters when outlying

observations are present and �nds that the resulting estimates are biased upwards, especially the

o�set parameter.

Outliers are not a theoretical problem but occur more often than usually assumed in �nancial data,

see for example Charles and Darné (2005) and the references therein. Even though many stylised

facts of �nancial time series can be modelled with a GARCH process, the residuals of the �tted

time series show excess kurtosis. According to Carnero et al. (2007) this indicates the presence of

outliers.

This paper focuses on the question whether an observation is outlying or not. It is organized as

follows: Section 2 gives a short introduction on GARCH models and their estimation. Section 3

gives a short review on the identi�cation of outliers in GARCH processes. Section 4 introduces a

test based on the cumulated sums of the squared observations to identify outlying observations.

In Section 5 the �nite-sample behaviour of the proposed test is analysed via a simulation study.

Finally the tests are applied to �nancial data to check whether they contain outlying observations.

2 GARCH Processes

GARCH(p,q) processes are nowadays a standard tool to model �nancial asset returns. This is

due to the fact that many of the stylised facts of �nancial assets are captured by this model, see

Rama (2001). This chapter gives a short overview of GARCH(p,q) models and their estimation

via the maximum likelihood method. In the following chapters, the likelihood is used to identify

outlying observations. A more rigorous treatment of GARCH(p,q) models and their properties can

be found, for example, in Berkes et al. (2003) or Lindner (2009).

De�nition 1 (Bollerslev (1986)).
A stochastic process (Xt)t∈Z is said to be a GARCH(p,q) process, if:

Xt|Ft−1 = σtνt,

σ2
t = (σt(θ))

2 = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiσ
2
t−i, t ∈ Z

with θ = (α0, α1, · · · , αp, β1, · · · , βq), α0 > 0, αi ≥ 0, i = 1, · · · , p and βj ≥ 0, j = 1, · · · , q.
Ft denotes the information set of the process up to time t and (νt) is an i.i.d. sequence of real-
valued random variables, independent of σ0, with EF (νt) = 0 and EF (ν2

t ) = 1. The probability
distribution F of νt has a continuous density (with respect to Lebesgue measure on the real line),
and its density f is positive on (−∞,+∞)
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The parameters can be estimated via the maximum likelihood(ML) method. Let x1, · · · , xn be the
observed sample, then the likelihood L is given by:

L(θ) = fX1,...,Xn(x1, . . . , xn; θ)

= fX1
(x1; θ)fX2|X1

(x2|x1; θ) · · · fXn|Xn−1···X1
(xn|xn−1 · · ·x1; θ)

=

n∏
i=max(p,q)+1

fXi|Fi−1
(xi|Fi−1; θ).

The initial values x1, · · · , xi−1 can be set to zero. Let Θ ∈ C and let C be a compact subspace of R1+p+q, i.e.

Cε :=

a ∈ Rp+1
+ , b ∈ Rq+

∣∣∣∣ a0 ∈ [ε, 1/ε],

p∑
i=1

ai ≥ ε,
p∑
i=1

ai +

q∑
j=1

bj ≤ 1− ε

 ,

where ε ∈ R+. Then the maximum likelihood estimator is de�ned as:

θ̂ = arg max
θ∈Θ
L(θ).

Under general assumptions the maximum likelihood estimator is consistent and asymptotically

normal even when the true distribution F of the innovations is not known, see for example Francq

and Zakoïan (2004, Theorem 2.2). Furthermore, nested hypotheses can be tested on the basis of the

di�erence between the maximum likelihood under the null hypothesis and under the alternative

hypothesis, using the likelihood ratio test. Under general assumptions the likelihood ratio test

statistic has a limiting χ2 distribution under the null hypothesis, see for example Engle (1984).

In the next chapter the likelihood ratio test by Doornik and Ooms (2005) to detect outlying

observations is reviewed.

3 Identifying outliers

The detection of an outlier is simple when there is no dependency structure within the observations.

In that case, the notion of which observations are possibly outlying simpli�es to the question of

which observations are the largest and the smallest, receptively. These observations can be tested

for outlyingness, since they may be not consistent with the assumed distribution. A more rigorous

analysis of outliers can be found in Barnett and Lewis (1994) and the references therein.

For dependent processes, especially autoregressive processes, Fox (1972) introduced two types of

outliers namely additive (type-I) and innovational (type-II) outliers.

Type-I outliers only e�ect a single observation, while type-II outliers also a�ect the following ob-

servations.

Intervention analysis introduced by Box and Tiao (1975) can be embedded in the de�nition of Fox

(1972) if more than one outlier can occur.

Let (Xt)t∈Z be the underlying and unobserved GARCH(1,1) process, and let (Yt)t∈Z be the ob-

servable process which contains outliers. Then the two types of outliers can be modelled as follows:
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additive outliers

Yt = Xt + ν1τ (t)

Xt|Ft−1 ∼ N(0, σ2
t−1),

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiσ
2
t−i,

innovational outliers

Yt = Xt + ν1τ (t)

Xt|Ft−1 ∼ N(0, σ2
t−1),

σ2
t = α0 +

p∑
i=1

αiY
2
t−i +

q∑
i=1

βiσ
2
t−i,

where ν ∈ R denotes the size of the outlier, τ ∈ Z represents the time of occurrence of the

outlier and 1t(τ) is the indicator function, which is one if τ = t and zero if τ 6= t. As time

dependent volatility is based on the disturbed processes for an innovational outlier, the outlier

a�ects subsequent observations. Similar de�nitions for outliers in GARCH models can be found in

Hotta and Tsay (2012), Doornik and Ooms (2005) and Carnero et al. (2007).

3.1 Outlier detection with the likelihood ratio test

Outlier detection in autoregressive processes was �rst proposed by Fox (1972). He proposed to

use a likelihood ratio test if the type and the location of the outlier is known. If the location

is unknown, each time point has to be tested individually. Box and Tiao (1975) extended the

method in order to �nd outliers in autoregressive-moving-average (ARMA) processes. Abraham

and Yatawara (1988) proposed a score test instead of a likelihood ratio test. Iterative procedures

were introduced, among others, by Chang et al. (1988), Chen and Liu (1993) and Tsay (1986).

A di�erent approach was introduced by Bruce and Martin (1989), who proposed to omit obser-

vations and test the changes in the estimated parameters. The literature for outlier detection in

GARCH processes is rather sparse. Franses and Ghijsels (1999) used the method proposed by

Chang et al. (1988) by using the fact that a squared GARCH(1,1) process is an ARMA process.

Recently, Hotta and Tsay (2012) proposed a Lagrange multiplier test to detect outliers. Lately

the likelihood displacement approach proposed by Cook (1986) and extended by Billor and Loynes

(1993) was applied to GARCH processes. Liu (2004) used elliptical error while Zhang and King

(2005) used Gaussian errors.

The likelihood approach is more �exible since not all GARCH extensions have an ARMA repre-

sentation. Mimicking the approach by Fox (1972) to detect outliers in autoregressive processes,

Doornik and Ooms (2005) propose a likelihood ratio test to detect outliers. With the likelihood

ratio test the occurrence of both types of outliers can be tested simultaneously. It is assumed that

the functional form of the outlier is known, for example the form de�ned above. To test whether

an outlier of any type occurred at a speci�c time τ one estimates the parameters of an extended
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model:

Yt = ν11τ +Xt,

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiσ
2
t−i +

p∑
i=1

ν1+i1τ−i,

where ν1 is the size of an additive outlier occurring at time point τ and ν2, . . . , νp+1 is the size of each

innovational outlier. The parameters of this extended model can be estimated via the ML-method.

Since the model with no outlier is nested (ν1 = ν2 = · · · = νp+1 = 0) one can test the null hypothesis

'no outlier occurred at time τ ' with a likelihood ratio test. Let θ̂0 = (α̂0, α̂1, . . . , α̂p, β̂1, . . . , β̂q) be

the restricted ML estimate and

θ̂1 = (α̂0, α̂1, . . . , α̂p, β̂1, . . . , β̂q, ν̂1, . . . , ν̂p+1) be the unrestricted ML estimate. The test statistic

λτ for an outlier at time τ is de�ned as:

λτ = 2(logL(θ̂0)− logL(θ̂1))
a∼ χ2(p+ 1)

Since the time of an outlier is not known, the test statistic is computed for every τ ≤ n

Mn = max
t≤n

λt.

The distribution of Mn is non-standard. The parameters that estimate the size of the outliers

appear only in the alternative. This problem was �rst discussed by Davies (1977) and Davies (1987).

Andrews and Ploberger (1994) introduced optimal tests for this problem, which have exponential

form, but have the disadvantage that they cannot detect the location of the outlier. Andrews and

Ploberger (1995) showed that it is a best test if the alternative hypothesis is su�ciently distant from

the null hypothesis. Under certain regularity conditions, Andrews and Ploberger (1995) showed

that the distribution of the maxLR test statistic converges under the null hypothesis. Doornik

and Ooms (2005) approximated the distribution of Mn by:

P (Mn ≤ x) = exp

(
exp

(
−
x+ 1.283− 1.88 log n(1 + 12

n )

2.223

))
.

When more than one outlier is present the outliers can be detected via an iterative procedure, see

for example Rosner (1975).

3.2 Outlier detection based on online analysis

To save computational time we propose a method that reduces the number of observations that need

to be tested. Instead of estimating the time-varying scale from the given process by a parametric

model, one can estimate the variance model-free.

Rousseeuw and Hubert (1996) proposed a a�ne-invariant estimate for the scale in a bivariate

regression. Any three points in R2 determine a (possibly degenerated) triangle. The height of such

a triangle can be used as a measure of volatility.

The volatility modelled by a GARCH process is clustered, so it is reasonable to assume that the

volatility of any datum can be approximated by its past volatilities. Gelper et al. (2009) extend the

methodology of Rousseeuw and Hubert (1996) to the time series setting. Let yt be the observed

process, then the height of a triangle formed by three successive observations is:

hi =

∣∣∣∣yi+1 −
yi + yi+2

2

∣∣∣∣ .
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Di�erent scale estimators can be based on the hi. Let n be the length of a window, and for each

time t the observations yt−n+1, . . . , yt are part of the window. From the observations within the

window, n− 2 such triangles can be constructed. Furthermore, let h(i) be the ordered sequence of

the heights in the current window. A scale estimate for the time t is given by:

σ̂t = Qαadj(y1, . . . , yn),

where α satis�es 0 < α < 1 and Qαadj is a function that depends on the heights in the current

window and α. The parameter α regulates the trade o� between robustness and e�ciency. Gelper

et al. (2009) discuss di�erent choices of the scale estimate and propose

Qαadj(y1, . . . , yn) = cqh〈α(n−2)〉,

where cq is a consistency factor and depends on the distribution of the innovations. If the underlying

distribution is the normal distribution then the consistency factor is given by:

cq =

(√
3

2
Φ−1

(
α+ 1

2

))
,

where Φ−1 is the quantile function of the normal distribution.

This allows the identi�cation of the time points which are possible candidates for outliers:

• Estimate the variance with the above mentioned procedure.

• Calculate the estimated residuals r̂t = yt/σt t = 1, · · · , n.

• The likelihood ratio test is only computed for those observations with |rt| > 1.65 t = 1, · · · , n.

The bound for the observations that are considered is somewhat arbitrary, but in the case of a

GARCH(p,q) with normal innovations this boundary corresponds to the 97.5% con�dence interval

for the properly standardized observations. With this pre-procedure the number of observations

for which a test for outlyingness has to be computed decrease drastically.

4 Outlier detection based on the increments of a Brownian

motion

Outliers can be interpreted as an external shock to the system and can be tested via the likelihood

ratio test introduced in the last section. But outliers can also be interpreted as short change of

parameters of the underlying process. A change in the parameters of the underlying process is

called a structural break. In order to test for structural breaks Inclan and Tiao (1994) propose to

use the iterated cumulative sums of the squared processes. Under suitable regularity conditions the

cumulative sums of the squared processes converges to a Brownian Motion. This test is applicable

to GARCH processes but fails to detect outliers when they are present. This can be explained by

the fact that outliers correspond to very short structural breaks. We modify the test in order to

detect outliers.

The detection procedure is based on the fact that the correctly standardized cumulative sum of

the squared GARCH process converges to a Brownian motion. Furthermore the distribution of
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the increments of a Brownian motion is known. In Theorem 2 the test is proposed. The following

Theorem gives su�cient conditions under which the correctly standardized cumulative sum of

random variables converges to a Brownian Motion.

Theorem 1 (Theorem 11 from Merlevède et al. (2006)). Let F0 be a σ−Algebra on a probability
space (Ω,A,P) satisfying F0 ⊆ T(F0), where T : Ω→ Ω.Let (Xt)t∈Z be a stationary sequence with
E(X0) = 0 and E(X0)2 <∞ Assume that the following holds:

∞∑
i=1

||E(Sn|F0)||2
n

3
2

<∞,

where Sn =
∑n
i=1Xi and ||X||p = (E(|X|p))

1
p . Then,{

max1≤k≤n
S2
k

n
: n ≥ 1

}
is uniformly integrable and

Wn
D→ √ηW,

where Wn(r) = 1
σ
√
n

∑bnrc
i=1 Xi and W a Brownian Motion, ν is a non-negative random variable

with �nite mean E[η] = σ2 and independent of {W (r); r ≥ 0}. Moreover, η is determined by the
limit

lim
n→∞

E

(
S2
n|I
n

)
= η in L1,

where I is the invariant sigma �eld. In particular, limn→∞E
(
S2
n

n

)
= σ.

The following Theorem is the basis for the outlier detection method.

Theorem 2.
Let (Xt)t∈Z be a stationary process that ful�ls the assumptions of the previous theorem and let
ξt = X2

t −Var(Xt), then

1

σ
√
n

brnc∑
i=1

ξi
D→W (r),

where σ = E
(
(
∑n
i=1X

2
i /n)2

)
.

It holds furthermore that:
max

1≤i≤n
ξi − ξi−1 → G,

where G is a Gumbel distribution with suitable normalizing constants µg(n) and σg(n).

Proof (Theorem 2) From Theorem 1 we have that

1

σ
√
n

brnc∑
i=1

ξi
D→W (r).

By de�nition the following holds for a Brownian motion:

1. W(0)=0.

2. Let t1, t2, t3, t4 ∈ [0, 1] with t1 < t2, t3 < t4. Then

W (t2)−W (t1) and W (t4)−W (t3) are stochastically independent.

3. ∀ t1, t2 ∈ [0, 1] with t1 ≤ t2 it holds: W (t2)−W (t1) N(0, t2 − t1).
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From this follows that ξt − ξt−1 is i.i.d. normal with µξ = 0 and σ2
ξ = 1

n Furthermore, the

maximum of i.i.d. normal distributed random variables lies in the domain of attraction of a

Gumbel distribution. The location parameter µg(n) and the scale parameter σg(n) are given in

Takahashi (1987)

µg(n) =

(
(2 log(n))

1
2 −

(
log(log(n) + log(4π)

)
/
(
2/(2 log(n))

1
2

))√ 1

n
(1)

σg(n) =

(
2 log(n)

)− 1
2
√

1

n
(2)

Under certain conditions on the parameters the assumptions for Theorem 2 hold for GARCH

processes and various extensions. The conditions for a GARCH(1,1) and the TGARCH process

proposed by Zakoïan (1994) can be found in ?.

With this computationally inexpensive test not only the presence but also the occurrence time of

an outlier can be identi�ed. σ2 can be consistently estimated by :

σ̂2 =
1

n

n∑
i=1

(
x2
i − σ̂2

x

)2
+

2

n

m∑
l=1

w(l,m)

n∑
i=1

(
x2
i − σ̂2

x

)2
,

where σ̂2
x is a consistent estimator of the unconditional variance of the process Xt and w(l,m) is

a lag window, i.e. the Bartlett window de�ned by

w(l,m) = 1− l

m+ 1
.

The bandwidth m can be chosen according to an automatic procedure proposed by Newey and

West (1994).

In the next section the �nite sample properties of the proposed test are evaluated.

5 Simulation study

In the following chapter the �nite samples properties of the proposed test are investigated.

5.1 Setting

For the studies we will consider the following four data generating process (DGP)

• DGP-1: GARCH(1,1) α0 = 0.001, α1 = 0.1, β1 = 0.75

• DGP-2: GARCH(1,1) α0 = 0.1, α1 = 0.1, β1 = 0.75

• DGP-3: GARCH(1,1) α0 = 0.01, α1 = 0.3, β1 = 0.3

• DGP-4: T-GARCH(1,1,1) α0 = 0.01, α1 = 0.1, α2− = 0.2, β = 0.7 proposed by Zakoïan

(1994) with the following equation for the standard deviation:

σt = α0 + α1x
+
t−1 − α2x

−
t−1 + βσt−1.

where x+
t = max(xt, 0) and x−t = min(xt, 0).
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The sample size is n = 500 or n = 1000 and the innovations are standard normal. All four processes

ful�l assumptions for Theorem 1 (see Example 1 and 2 in the appendix).

The proposed test is non-parametric in the sense that the underlying process does not need to be

known or speci�ed. In order to investigate the capability of the likelihood ration test to detect

outliers in a misspeci�ed model, we simulate DGP-4 but for the likelihood ratio test it is assumed

that the data follow a GARCH(1,1) which will be denoted by DGP-4*.

5.2 Small sample parameters

5.2.1 Convergence

In a �rst step the convergence of the parameters of the Gumbel distribution is evaluated for the

four DGP's. Each process is simulated 1000 times with di�erent sample size n. For each simulation

we record the maximal value of the test statistic. This is repeated 1000 times. First, we test if the

distribution of the maxima is indeed the Gumbel distribution. This is tested with a chi-squared

goodness of �t test with 20 classes. Table 1 shows the rejection frequencies of the null hypothesis

at the signi�cance level α = 0.01.

DGP Observations

250 500 1000

DGP-1 0.015 0.011 0.009

DGP-2 0.018 0.013 0.011

DGP-3 0.019 0.015 0.012

DGP-4 0.021 0.016 0.014

Table 1: Rejection frequencies

In a next step, a Gumbel distribution is �tted to the maxima. The estimated parameters and the

standard deviation are shown in table 8 and 9 in the appendix. As can be seen, the convergence is

rather slow, the estimated parameters are higher than the asymptotic parameters from equation

(1) and (2) and the estimated parameters di�er for each DGP. The critical values implied by

asymptotic parameters are lower then the simulated values.

5.2.2 Small sample parameters

As a consequence, the parameters for the Gumbel distribution are estimated from the largest k

Observations.

Theorem 3 (Theorem 5 of Weissman (1978)). Let x1, · · · , xn be the observed sample from a
distribution F that belongs to the domain of attraction of a Gumbel distribution. Furthermore,
let x(1) ≥ · · · ≥ x(n) be the ordered observations. The MLE estimator of µg and σg based on the
k-largest observations are given by:

σ̂g =
1

k

k∑
i=1

x(i) + x(k)

µ̂g = σ̂g ln(k) + x(k)

The procedure is sensitive to the choice of k. Finding the 'optimal' k is equivalent to determin-

ing the beginning of the tail of the distribution. Di�erent possibilities to determine k exist, see
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Strawderman and Zelterman (1998).

k = argmin
m

{(
γ̂m −R(1)

m

)2
}
, with (3)

γ̂m = R(1)
m + 1− 1

2

(
1− (R

(1)
m )2

R
(2)
m

)−1

R(j)
m = k−1

k∑
i=1

(
log(xi)− log(xk+1)

)j
.

This choice is motivated by the result of Davis and Resnick (1984):

γ̂k −R(1)
k

P→ 0.

The choice for this criterion has another justi�cation. The distribution function F of a random

variable X is in the domain of attraction of a Gumbel distribution i�

lim
t→t0

E[(X − t)2|X > t]

(E[X − t|X > t])2
= 2, (4)

with t0 = sup{t| F (t) < 1}.
The empirical analogue to equation (4) for the log-transformed random variable is

R(2)
m

(R
(1)
m )2

. It also

converges in probability to two, when F is in the domain of attraction of a Gumbel distribution.

Using equation (3) to �nd the value of k corresponds to choosing the value of k 'most consistent'

with the data coming from a Gumbel distribution cf. Strawderman and Zelterman (1998, p. 448).

5.3 Detecting outliers

The following tests were used to detect one or more outliers.

• CUSUM − type : Test based on the increments of a Brownian motion .

• LR : Likelihood-ratio test proposed by Doornik and Ooms (2005).

• LR−OSE : Likelihood-ratio test proposed by Doornik and Ooms (2005) but only on those

time points t with estimated residuals |yt/σ̂t| > 1.66 are considered. To obtain a maximal

�nite sample breakdown point, α is set to 0.2625, see Gelper et al. (2009).

We modify the GARCH processes by adding one additive outlier or one innovational outlier at time

bn/2c of size 3, 5, 7 or adding two additive outliers, respectively two innovational outliers at time

bn/2c, bn/2+50c. The size of every outlier is either relative or �xed. The size of an relative outlier
is the current standard deviation at time t σt times 3,5 or 7, while the size of an �xed outlier is the

unconditional standard deviation σ times 3,5 or 7. Figure 1 shows DGP-1 with relative additive

outlier of size 3 respectively size 5.

5.4 Results

The results are summarized in the following tables. The �rst number is the relative number

of detections of an outlier, while the number in parenthesis is the relative number of correctly
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(a) (b)

Figure 1: Simulated GARCH process (DGP-1) with one relative additive outlier of size 3 at time
250 (left) and with one relative additive outlier of size 5 at time 500 (right)

identi�ed outliers. These two measures are proposed for example by David (1981), Hawkins (1980)

and Barnett and Lewis (1994) to measure the performance of an outlier test. The results for

method LR − OSE are not shown since they are the same as for LR. The advantage lies in the

reduced number of the likelihood ratio tests that have to be performed.

Table 2 shows the results when no outlier is present. The likelihood-ratio approach does not hold

its signi�cance level in small samples. This e�ect is ample when a wrong underlying model for the

data generating process is assumed. The CUSUM-type test holds its signi�cance level.

Table 3 indicates, that both tests are consistent and the test proposed by Doornik and Ooms (2005)

is able to detect small outliers better (size=3). For larger outliers both tests give similar results.

Interestingly, when using a GARCH(1,1) model to detect outliers in an TGARCH process outliers

are still detected reasonably well. This can be due to the fact that outliers in a TGARCH process

are extreme outliers in a GARCH process. The results for other types of outliers are given in the

Appendix. The type of outliers seem to in�uence the detection rate for the CUSUM-type test.

Especially, relative outliers are detected better than �xed outliers. This can be explained by the

fact that adding a �xed value in a period with high volatility doesn't seem too unlikely.

When more than one small outlier is present, an iterative procedure is used. The signi�cance level

of each test is adjusted such that the overall signi�cance level of detecting an outlier when no

outlier is present stays at α = 0.01 or respectively α = 0.05.

The iterative procedure used here is the forward method proposed by Hawkins (1980):

• Test the time series for an occurrence of an outlier

• If the test detects an outlier, split the series in two and test each half (CUSUM-type) or

adjust the series for the outlier (LR-Test)

• Repeat until no more outlier is detected.
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DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

DGP 1
n=500 0.086 0.016 0.066 0.014
n=1000 0.068 0.012 0.058 0.012

DGP 2
n=500 0.092 0.022 0.06 0.016
n=1000 0.072 0.008 0.04 0.008

DGP 3
n=500 0.054 0.014 0.058 0.018
n=1000 0.04 0.008 0.052 0.008

DGP 4
n=500 0.066 0.022 0.062 0.02
n=1000 0.05 0.014 0.058 0.014

DGP 4*
n=500 0.132 0.038 - -
n=1000 0.102 0.032 - -

Table 2: Detection rate when no outlier is present

DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.324 (0.272) 0.136 (0.13) 0.204 (0.168) 0.082 (0.072)
5 0.962 (0.95) 0.94 (0.938) 0.904 (0.898) 0.666 (0.666)
7 0.988 (0.988 0.982 (0.982) 1 (1) 0.994 (0.994)

n=1000 3 0.4 (0.332) 0.212 (0.188) 0.21 (0.19) 0.092 (0.09)
5 0.968 (0.95) 0.944 (0.94) 0.922 (0.912) 0.708 (0.706)
7 0.998 (0.982 0.99 (0.976) 0.998 (0.998) 0.988 (0.988)

D
G
P
2

n=500 3 0.39 (0.326) 0.176 (0.164) 0.222 (0.2) 0.072 (0.072)
5 0.836 (0.816) 0.812 (0.798) 0.906 (0.906) 0.682 (0.682)
7 0.712 (0.694) 0.682 (0.668) 1 (1) 0.996 (0.996)

n=1000 3 0.41 (0.348) 0.18 (0.166) 0.256 (0.212) 0.106 (0.098)
5 0.95 (0.94) 0.932 (0.926) 0.926 (0.914) 0.73 (0.726)
7 0.926 (0.92) 0.902 (0.9) 1 (1) 0.994 (0.994)

D
G
P
3

n=500 3 0.402 (0.36) 0.182 (0.178) 0.194 (0.11) 0.07 (0.052)
5 0.984 (0.978) 0.966 (0.96) 0.636 (0.61) 0.366 (0.362)
7 0.988 (0.98) 0.974 (0.968) 0.948 (0.932) 0.802 (0.798)

n=1000 3 0.346 (0.3) 0.154 (0.152) 0.268 (0.1) 0.114 (0.058)
5 0.994 (0.992) 0.986 (0.986) 0.792 (0.764) 0.402 (0.378)
7 0.996 (0.996) 0.99 (0.99) 0.962 (0.956) 0.834 (0.834)

D
G
P
4

n=500 3 0.548 (0.52) 0.348 (0.334) 0.302 (0.272) 0.118 (0.114)
5 0.866 (0.86) 0.858 (0.856) 0.9 (0.894) 0.724 (0.724)
7 0.932 (0.912) 0.916 (0.906) 0.99 (0.99) 0.958 (0.958)

n=1000 3 0.758 (0.732) 0.572 (0.564) 0.316 (0.272) 0.122 (0.106
5 0.98 (0.976) 0.974 (0.972) 0.914 (0.898) 0.762 (0.762)
7 0.1 (0.95) 0.988 (0.978) 0.992 (0.992) 0.974 (0.974)

D
G
P
4
*

n=500 3 0.826 (0.798) 0.67 (0.66) - -
5 0.904 (0.876) 0.884 (0.866) - -
7 0.914 (0.902) 0.908 (0.902) - -

n=1000 3 0.826 (0.786) 0.65 (0.632) - -
5 0.932 (0.924) 0.922 (0.892) - -
7 0.95 (0.942) 0.944 (0.938) - -

Table 3: Detection rate when one relative additive outlier is present.
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DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.556 (0.088) 0.312 (0.036) 0.246 (0.052) 0.066 (0)
5 0.978 (0.894) 0.956 (0.818) 0.77 (0.644) 0.382 (0.254)
7 0.984 (0.942) 0.97 (0.924) 0.98 (0.94) 0.772 (0.706)

n=1000 3 0.608 (0.116) 0.354 (0.03) 0.27 (0.052) 0.11 (0.016)
5 0.984 (0.898) 0.978 (0.85) 0.848 (0.73) 0.574 (0.418)
7 0.988 (0.95) 0.968 (0.924) 0.998 (0.976) 0.948 (0.918)

D
G
P
2

n=500 3 0.524 (0.118) 0.3 (0.03) 0.234 (0.032) 0.078 (0)
5 0.778 (0.692) 0.752 (0.656) 0.78 (0.608) 0.462 (0.256)
7 0.604 (0.51) 0.572 (0.482) 0.988 (0.95) 0.82 (0.752)

n=1000 3 0.55 (0.108) 0.296 (0.026) 0.282 (0.032) 0.11 (0.002)
5 0.948 (0.91) 0.934 (0.888) 0.892 (0.718) 0.65 (0.404)
7 0.876 (0.828) 0.866 (0.808) 1 (0.98) 0.972 (0.94)

D
G
P
3

n=500 3 0.534 (0.094) 0.284 (0.026) 0.284 (0.026) 0.134 (0.002)
5 0.986 (0.946) 0.984 (0.928) 0.656 (0.372) 0.368 (0.118)
7 0.998 (0.968) 0.996 (0.96) 0.896 (0.772) 0.67 (0.474)

n=1000 3 0.554 (0.126) 0.322 (0.03) 0.318 (0.014) 0.17 (0.006)
5 1 (0.986) 1 (0.97) 0.684 (0.312) 0.438 (0.136)
7 1 (0.99) 0.998 (0.986) 0.956 (0.832) 0.792 (0.622)

D
G
P
4

n=500 3 0.796 (0.574) 0.332 (0.238) 0.308 (0.018) 0.12 (0.002)
5 0.646 (0.612) 0.492 (0.372) 0.67 (0.298) 0.424 (0.086)
7 0.86 (0.824) 0.624 (0.496) 0.908 (0.762) 0.712 (0.454)

n=1000 3 1 (0.574) 1 (0.574) 0.266 (0.014) 0.122 (0.004)
5 1 (0.95) 1 (0.95) 0.72 (0.332) 0.486 (0.142)
7 1 (0.966) 1 (0.966) 0.938 (0.76) 0.808 (0.576)

D
G
P
4
*

n=500 3 0.602 (0.096) 0.384 (0.034) - -
5 0.936 (0.902) 0.926 (0.884) - -
7 0.722 (0.648) 0.708 (0.636) - -

n=1000 3 0.686 (0.16) 0.408 (0.052) - -
5 0.996 (0.98) 0.996 (0.95) - -
7 0.938 (0.928) 0.938 (0.928) - -

Table 4: Detection rate when two relative additive outlier are present.

6 Empirical analysis

We analyse the daily log returns of the Volkswagen (VW) stock between 01.01.2003 and 08.11.2011.

To obtain a short overview of the data some descriptive statistics are given.The ADF-test on

stationarity and the Jarque-Bera test on normality are also carried out. As can be seen from table

5 the log returns are leptokurtic, stationary and not normally distributed.

Asset mean std. dev. skewness kurtosis p-value of ADF p-value of JB

Volkswagen 0.0005 0.0371 5.9008 221.2313 < 0.01 2.2e-16

Table 5: Descriptive Statistics

To check whether a GARCH model is suitable for the given data a lagrange multiplier test to

detect arch e�ects is carried out, Engle (1982). Since there may be outliers in the data a robust
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version of the test as proposed by van Dijk et al. (1999) is applied. Table 6 shows the results for

the Lagrange multiplier test. For all lags the null of no (g)arch e�ects can be rejected.

Lag

Asset 1 5 10 15

VW 2.2e-16 2.2e-16 2.2e-16 2.2e-16

Table 6: p-value of the robust LM-test for arch e�ects.

The table 7 summarizes the results. A date indicates that an outlier was detected at the particular

date. Dates that are bold indicate that only one of the tests found an outlier

α = 0.05 LR CUSUM-type

VW
30.09.03 16.09.08 30.09.03 16.09.08
17.10.08 24.10.08 24.10.08 27.10.08
27.10.08 28.10.08 28.10.08 25.11.08

Table 7: Location of outliers detected at α = 0.05

Since it is not clear whether an observation is outlying or not, news regarding the VW stock are

used as a proxy. If extreme market movements correspond to news, an outlier is assumed, otherwise

the detected outlier is regarded as false alarm. A similar approach was used in Charles and Darné

(2006). The following news correspond to detected dates:

30.09.03: Compensation for the economic disadvantages caused by the division of Germany was

dismissed by European Court of Justice.
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16.09.08: Porsche announced that the company had increased its stake in Volkswagen AG to 35

percent.

27.10.08: Porsche announced that they e�ectively held over 74 percent of the Volkswagen AG

stock.

25.11.08: The Volkswagen stock lost index weight in the MSCI World market index .

However, news were not found for all detected dates. This could indicate that there were no outliers

or extreme market movements. For the dates close to the 28.10.2008 the outliers can be explained

with the turmoil and shortage of freely traded Volkswagen stock, while for the 17.10.2008 no news

could be found.

7 Conclusion

In this paper a new test to detect outlying observations was proposed. For a small outlier a

likelihood ratio test has more accurate results. This changes when there is more than one outlier

present or when the size of the outlier increases. Another advantage of the proposed test is that

it is non-parametric, so no exact model for the time series has to be assumed. We can reduce

the number of observations that have to be tested with the LR-test by �rst applying the online

analysis approach.

The CUSUM type method can be combined with non-parametric estimation. Since every detected

outlier splits the sample into two parts, the number of outliers that can be detected is rather small.

Instead of splitting the sample one can use a non-parametric method to estimate the value of the

observation that is detected as an outlier. Possible non-parametric methods are proposed by Biau

et al. (2010).

15



References

Abraham, B. and Yatawara, N. (1988). A score test for detection of time series outliers. Journal

of time series analysis, 9(2):109�119.

Andrews, D. W. K. and Ploberger, W. (1994). Optimal Tests when a Nuisance Parameter is

Present Only Under the Alternative. Econometrica, 62(6):1383�1414.

Andrews, D. W. K. and Ploberger, W. (1995). Admissibility of the Likelihood Ratio Test When a

Nuisance Parameter is Present Only Under the Alternative. The Annals of Statistics, 23(5):1609�

1629.

Ardelean, V. (2009). The impact of outliers on di�erent estimators for GARCH processes: an

empirical study. American Statsitical Association.

Barnett, V. and Lewis, T. (1994). Outliers in statistical data. Wiley & Sons, 3 edition.

Berkes, I., Horvát, K., and Kokoszka, P. (2003). GARCH processes: structure and estimation.

Bernoulli, 9:201�227.

Biau, G., Bleakley, K., Györ�, L., and Ottucsák, G. (2010). Nonparametric sequential prediction

of time series. Journal of Nonparametric Statistics, 22(3):297�317.

Billor, N. and Loynes, R. (1993). Local in�uence: a new approach. Communications in Statistics

- Theory and Methods, 22(6):1595�1611.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics, 31:307�322.

Box, G. E. P. and Tiao, G. C. (1975). Intervention Analysis with Applications to Economic and

Environmental Problems. Journal of the American Statistical Association, 70(349):70�79.

Bruce, A. G. and Martin, R. D. (1989). Leave-k-Out Diagnostics for Time Series. Journal of the

Royal Statistical Society. Series B (Methodological), 51(3):363�424.

Carnero, M. A., Peña, D., and Ruiz, E. (2007). E�ects of outliers on the identi�cation and

estimation of GARCH Models. Journal of time series analysis, 28(4):471�497.

Carrasco, M. and Chen, X. (2002). Mixing and moment properties if various garch and stochastic

volatility models. Econometric Theory, 18(01):17�39.

Chang, I., Tiao, G. C., and Chen, C. (1988). Estimation of Time Series Parameters in the Presence

of Outliers. Technometrics, 30(2):193�204.

Charles, A. and Darné, O. (2005). Relevance of detecting outliers in GARCH models for modelling

and forecasting �nancial data: L'intérêt de détecter les outliers dans les modèles GARCH pour

modéliser et prévoir les données �nancières. Finance, 26(1):33�71.

Charles, A. and Darné, O. (2006). Large shocks and the September 11th terrorist attacks on

international stock markets. Economic Modelling, 23(4):683�698.

16



Chen, C. and Liu, L.-M. (1993). Joint Estimation of Model Parameters and Outlier E�ects in

Time Series. Journal of the American Statistical Association, 88(421):284�297.

Cook, R. D. (1986). Assessment of Local In�uence. Journal of the Royal Statistical Society. Series

B (Methodological), 48(2):p 133�169.

David, H. A. (1981). Order statistics. 2nd edition. John Wiley & Sons, New York and N.Y.

Davidson, J. (1994). Stochastic Limit Theory. Oxford University Press.

Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only under the

alternative. Biometrika, 64(2):247�254.

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the

alternative. Biometrika, 74(1):33�43.

Davis, R. and Resnick, S. (1984). Tail Estimates Motivated by Extreme Value Theory. The Annals

of Statistics, 12(4):1467�1487.

Doornik, J. A. and Ooms, M. (2005). Outlier Detection in GARCH Models.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance

of United Kingdom in�ation. Econometrica, 50:987�1007.

Engle, R. F. (1984). Handbook of Econometrics. Elsevier Science B.V.

Fox, A. J. (1972). Outliers in Time Series. Journal of the Royal Statistical Society. Series B

(Methodological), 34(3):350�363.

Francq, C. and Zakoïan, J. M. (2004). Maximum likelihood estimation of pure GARCH and

ARMA-GARCH processes. Bernoulli, 10:605�637.

Franses, P. H. and Ghijsels, H. (1999). Additive outliers, GARCH and forecasting volatility.

International Journal of Forecasting, 15(1):1�9.

Gelper, S., Schettlinger, K., Croux, C., and Gather, U. (2009). Robust online scale estimation in

time series: A model-free approach. Journal of Statistical Planning and Inference, 139(2):335�

349.

Hawkins, D. M. (1980). Identi�cation of outliers. Chapman and Hall, London and and New York.

Hotta, L. K. and Tsay, R. S. (2012). Outliers in GARCH Processes. In Bell, W. R., Holan, S. H.,

and McElroy, T., editors, Economic time series, pages 337�358. CRC Press, Boca Raton and

FL.

Inclan, C. and Tiao, G. C. (1994). Use of Cumulative Sums of Squares for Retrospective Detection

of Changes of Variance. Journal of the American Statistical Association, 89(427):913�923.

Lindner, A. M. (2009). Stationarity, Mixing, Distributional Properties and Moments of

GARCH(p,q)-processes. In Mikosch, T., Kreiÿ, J.-P., Davis, R. A., and Andersen, T. G., editors,

Handbook of Financial Time Series, pages 43�69. Springer Berlin Heidelberg.

17



Liu, S. (2004). On Diagnostics in Conditionally Heteroskedastic Time Series Models under Elliptical

Distributions. Journal of Applied Probability, 41:p 393�405.

Merlevède, F., Peligrad, M., and Utev, S. (2006). Recent advances in invariance principles for

stationary sequences. Probability Surveys, 3:1�35.

Newey, W. K. and West, K. D. (1994). Automatic Lag Selection in Covariance Matrix Estimation.

The Review of Economic Studies, 61(4):631�653.

Oodaira, H. and Yoshihara, K.-i. (1972). Functional central limit theorems for strictly station-

ary processes satisfying the strong mixing condition. Kodai Mathematical Seminar Reports,

24(3):259�269.

Rama, C. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quan-

titative Finance, 1:223�236.

Rosner, B. (1975). On the Detection of Many Outliers. Technometrics, 17(2):221�227.

Rousseeuw, P. and Hubert, M. (1996). Regression-free and robust estimation of scale for bivariate

data. Computational Statistics & Data Analysis, 21(1):67�85.

Strawderman, R. L. and Zelterman, D. (1998). A semiparametric bootstrap for simulating extreme

order statistics. In N. Balakrishnan and C.R. Rao, editors, Order Statistics: Theory & Methods,

volume 16 of Handbook of Statistics, pages 441�462. Elsevier.

Takahashi, R. (1987). Normalizing constants of a distribution which belongs to the domain of

attraction of the Gumbel distribution. Statistics & Probability Letters, 5(3):197�200.

Tsay, R. S. (1986). Time Series Model Speci�cation in the Presence of Outliers. Journal of the

American Statistical Association, 81(393):p 132�141.

van Dijk, D., Franses, P., and Lucas, A. (1999). Testing for ARCH in the presence of additive

outliers. Journal of Applied Econometrics, 14:539�562.

Weissman, I. (1978). Estimation of Parameters and Larger Quantiles Based on the k Largest

Observations. Journal of the American Statistical Association, 73(364):812�815.

Zakoïan, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and

Control, 18(5):931�955.

Zhang, X. and King, M. L. (2005). In�uence Diagnostics in Generalized Autoregressive Conditional

Heteroscedasticity Processes. Journal of Business & Economic Statistics, 23(1):p 118�129.

18



8 Appendix

8.1 Examples

In order to show under which parameter restrictions the conditons of Theorem 1 hold we need the

next two results.

The next Corollary makes it easier to check if the conditions for Theorem 1 hold.

Corollary 1 (Corollary 12 Merlevède et al. (2006)). Let everything be de�ned as in Theorem 1.
Assume that

∞∑
n=1

||E(X|F0)||2
n

1
2

<∞.

Then the conclusion of Theorem 1 hold.

To show that the conditions of Theorem 1 hold for a GARCH(1,1) we need a result form Carrasco

and Chen (2002)

Corollary 2 (Corollary 6 from Carrasco and Chen (2002)). Let the processes Xt and the process
of the innovations (νt) be de�ned as in De�nition 1. Assume that there is an integer s ≥ 1 such
that either (a) or (b) is ful�lled

(a) E

((
β1 + α1 · νt)2

)s)
< 1

(b)E(|νt|)2s <∞ β1 + α1 <
1

E(νt)
1
s

.

Then

• If σ0 is initialized from its invariant measure, then (σt) and (Xt) are strictly stationary and
β-mixing with exponential decay

• E(σt)
2 <∞ and E(|Xt|2s) <∞. Condition (a) with s = 2 is also necessary to simultaneously

have (σt) geometric ergodic and E(|σt|2s) <∞.

Example GARCH(1,1) Let the processes Xt be an GARCH(1,1) then the assumptions for

Theorem 1 hold for the process ξt = X2
t − σ under certain regularity conditions.

The process is stationary and has �nite second moments when E(X4
t ) is �nite.

We use condition (a) of Corollary 2 with s = 2:

E

((
β1 + α1 · νt)2

)s)
= β2

1 + 2 · α1βE(ν2
t ) + α2

1E(ν4
t ) < 1

The assumption that the fourth moment of the underlying GARCH exists is not uncommon,

especially when the parameters are estimated with the QML-approach.

Every squared GARCH(p,q) Xt process can be represented as an ARMA(max(p, q), q) process and

every ARMA-Process can be represented as a stationary MA(∞) process.

ξk =

k∑
j=−∞

ak−jvj =

∞∑
i=1

aivk−i

19



with
∑∞
j=0 a

2
j <∞ and vt is a martingale di�erence regarding the �ltration Ft−1 with �nite second

moment σv <∞ .

||E(ξk|F0)||2 = E
(
E(ξk|F0)2

)
= E

( ∞∑
i=1

aivk−i

)2
) = σ2

v

∞∑
i=k

a2
i → 0 for k →∞,

since E(ξk|F) =
∑0
j=−∞ ak−jvj =

∑∞
i=k aivk−i and the v′is are uncorrelated.

A GARCH process ful�ls the assumptions for Theorem 1 when β2 + 2 · αβE(ν2
t ) + α2E(ν4

t ) < 1.

The process ξ2
t − σ full�ls the assumptions for Theorem 1 when X2

t is stationary and β −mixing.
The process X2

t is stationary and β−mixing with exponential rate and therefore α−mixing. From
Davidson (1994) Theorem 14.1 we have that when the process (Xt)t∈Z is α−mixing then

ξt = g(Xt, Xt−1, · · · , Xt−τ )

is also α−mixing when g is a measurable function and τ is �nite.

In our case the function g is:

g(Xt, Xt−1, · · · , Xt−τ ) = X2
t −

∑τ
i=1Xt−i

2

τ − 1
,

which is continuous. The second part of the function is a consistent estimate of the variance.

To show that the conditions of Theorem 1 hold for a TGARCH(1,1) we need the following two

results

Theorem 4 (Theorem 2 from Oodaira and Yoshihara (1972)). Let (Xt)t∈Z be a stationary process
with E(X0) = 0 and E(X0)2 <∞ that is alpha-mixing with mixing coe�cients α(t). If

E|Xj |2+δ <∞ and

∞∑
i=1

α(t)
δ
2 +δ,

then σ <∞. If σ > 0 then:

1

σ
√
n

bntc∑
i=1

Xt
D→ B,

where and B a Brownian Motion.

The following results gives necessary the conditions for a TGARCH(1,1) to have existing higher

moments ergodicity and stationarity.

Corollary 3 (Corollary 11 from Carrasco and Chen (2002)). Let the processes Xt and the process
of the innovations (νt) be de�ned as in De�nition 1. Assume that there is an integer s ≥ 1 such
that either (a) or (b) is ful�lled

(a) E

((
β1 + α1|nt|+ α2 max(0,−νt)

)s)
< 1

(b)E(|νt|)2s <∞ β + α <
1

E(νt)
1
s

.

Then
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• If σ0 is initialized from its invariant measure, then (σt) and (Xt) are strictly stationary and
β-mixing with exponential decay

• E(σt)
2 <∞ and E(|Xt|2s) <∞. Condition (a) with s = 2 is also necessary to simultaneously

have (σt) geometric ergodic and E(|σt|2s) <∞.

Example TGARCH(1,1) Let (Xt)t∈Z be a TGARCH(1,1) process. A functional limit theorem

hold for the process ξt = X2
t − σ, where σ = E(X2

t ). From Theorem 4 we have a su�cient

conditions is the existence of the E|Xj |2+δ moment with δ > 0 and the fact that the process is

α−mixing. We can use Theorem 3 with δ = 1
2 . The 5th Moment of an TGARCH exists when:

E[(β + α1|νt|+ α2 max(0,−νt))5] < 1.

E

(
α5

1|νt|5 + 5α4
1β1|νt|4 + 5α4

1α2 max(0,−νt)|νt|4 + 10α3
1β

2
1 |νt|3 + 20α3

1β1(α2 max(0,−νt))|νt|3+

+ 10α3
1(α2 max(0,−νt))2|νt|3 + 10α2

1β
3
1 |νt|2 + 30α2

1β
2
1(α2 max(0,−νt))|νt|2+

+ 30α2
1β1(α2 max(0,−νt))2|νt|2 + 10α2

1(α2 max(0,−νt))3|νt|2 + 5α1β
4
1 |νt|+

+ 20α1β
3
1(α2 max(0,−νt))|νt|+ 30α1β

2
1(α2 max(0,−νt))2|νt|+ 20α1β1(α2 max(0,−νt))3|νt|+

+ 5α1(α2 max(0,−νt))4|νt|+ β5
1 + 5β4

1(α2 max(0,−νt)) + 10β3
1(α2 max(0,−νt))2+

+ 10β2
1(α2 max(0,−νt))3 + 5β1(α2 max(0,−νt))4 + (α2 max(0,−νt))5

)
< 1

When the distribution of νt is symmetric E(max(0,−νt)) = E(|νt|)/2. This equation simpli�es to:

6.38α5
1 + 15α4

1β1 + 31.9α4
1α2 + 25.6α3

1β
2
1 + 30α3

1α2β1 + 31.4α3
1α

2
2 + 10α2

1β
3
1 + 24α2

1β
2
1α2+

+ 45α2
1β1α2 + 31.9α2

1α
3
2 + 4α1β

4
1 + 10α1β

3
1α2 + 24α1β

2
1α

2
2 + 30α1β1α

3
2 + 15.95α1α

4
2 + β5

1+

+ 4β4
1α2 + 5β3

1α
2
2 + 8β2

1α
3
2 + 7.5β1α

4
2 + 3.14α5

2 < 1

The parameter constellations that full�ll this equation are not as strict as it seems. The following

table gives the largest parameter β1 that is allowed for given α1 and α2

α1 α2 β1

0.05 0.1 0.87

0.1 0.15 0.78

0.1 0.2 0.73

with E(|νt|) =
√

2/
√
π ∼ 0.8 E(|νt|3) = 2

√
2/
√
π ∼ 1.6 and E(|νt|5) = 8

√
2/
√
π ∼ 6.38

Furthermore the process Xt is stationary and β−mixing with exponential rate and therefore

α−mixing. From Davidson (1994) Theorem 14.1 we have that when the process (Xt)t∈Z is

α−mixing then
ξt = g(Xt, Xt−1, · · · , Xt−τ )

is also α−mixing when g is a measurable function and τ is �nite.

In our case the function g is:

g(Xt, Xt−1, · · · , Xt−τ ) = X2
t −

∑τ
i=1Xt−i

2

τ − 1
,
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which is continuous. The second part of the function is a consistent estimate of the variance.

This fact together with the parameter restriction such that the 5th Moment exist are su�cient

assumptions of Theorem 3.

8.2 Convergence

T True Param DGP-1 DGP-2 DGP-3 DGP-4

50 0.348 1.084 (0.023) 1.106 (0.023) 1.069 (0.022) 1.061 (0.022)

100 0.271 0.890 (0.018) 0.899 (0.018) 0.745 (0.014) 0.809 (0.016)

250 0.190 0.574 (0.010) 0.568 (0.009) 0.434 (0.005) 0.509 (0.007)

500 0.144 0.399 (0.004) 0.393 (0.004) 0.327 (0.003) 0.372 (0.003)

1000 0.108 0.287 (0.002) 0.292 (0.002) 0.250 (0.002) 0.281 (0.002)

2000 0.081 0.214 (0.001) 0.215 (0.001) 0.190 (0.001) 0.215 (0.002)

3000 0.068 0.185 (0.001) 0.186 (0.001) 0.164 (0.001) 0.186 (0.001)

4000 0.059 0.164 (0.001) 0.164 (0.001) 0.149 (0.001) 0.168 (0.001)

5000 0.054 0.150 (0.001) 0.151 (0.001) 0.139 (0.001) 0.155 (0.001)

10000 0.040 0.116 (0.001) 0.114 (0.001) 0.109 (0.001) 0.123 (0.001)

15000 0.033 0.100 (0.001) 0.099 (0.001) 0.096 (0.001) 0.108 (0.001)

20000 0.029 0.089 (0.001) 0.089 (0.001) 0.087 (0.001) 0.097 (0.001)

Table 8: Asymptotic and estimated location parameter for the resulting Gumbel for �nite samples

T True Param DGP-1 DGP-2 DGP-3 DGP-4

50 0.050 0.714 (0.020) 0.709 (0.020) 0.673 (0.019) 0.689 (0.016)

100 0.033 0.554 (0.017) 0.568 (0.016) 0.430 (0.012) 0.508 (0.014)

250 0.019 0.310 (0.009) 0.275 (0.008) 0.142 (0.004) 0.220 (0.006)

500 0.0127 0.127 (0.003) 0.129 (0.003) 0.085 (0.002) 0.105 (0.003)

1000 0.0090 0.067 (0.002) 0.070 (0.002) 0.061 (0.002) 0.069 (0.002)

2000 0.0057 0.043 (0.001) 0.044 (0.001) 0.043 (0.001) 0.048 (0.001)

3000 0.0046 0.036 (0.001) 0.036 (0.001) 0.039 (0.001) 0.038 (0.001)

4000 0.0039 0.031 (0.001) 0.030 (0.001) 0.034 (0.001) 0.035 (0.001)

5000 0.0034 0.028 (0.001) 0.028 (0.001) 0.031 (0.001) 0.033 (0.001)

10000 0.0023 0.020 (0.001) 0.021 (0.001) 0.026 (0.001) 0.026 (0.001)

15000 0.0019 0.018 (0.001) 0.018 (0.001) 0.023 (0.001) 0.022 (0.001)

20000 0.0016 0.016 (0.001) 0.015 (0.001) 0.021 (0.001) 0.019 (0.001)

Table 9: Asymptotic and estimated scale parameter for the resulting Gumbel distribution for �nite
samples
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8.3 Results

8.3.1 One outlier

DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.394 (0.338) 0.172 (0.164) 0.184 (0.168) 0.06 (0.06)
5 0.956 (0.948) 0.908 (0.902) 0.932 (0.93) 0.686 (0.686)
7 0.996 (0.992) 0.988 (0.984) 1 (1) 0.99 (0.99)

n=1000 3 0.454 (0.402) 0.24 (0.22) 0.194 (0.158) 0.082 (0.072)
5 0.954 (0.942) 0.91 (0.904) 0.966 (0.96) 0.738 (0.736)
7 0.994 (0.99) 0.992 (0.988) 1 (1) 1 (1)

D
G
P
2

n=500 3 0.43 (0.366) 0.216 (0.204) 0.188 (0.172) 0.072 (0.066)
5 0.828 (0.808) 0.77 (0.762) 0.938 (0.934) 0.654 (0.652)
7 0.734 (0.72) 0.716 (0.706) 0.998 (0.998) 0.984 (0.984)

n=1000 3 0.45 (0.388) 0.22 (0.21) 0.196 (0.184) 0.084 (0.076)
5 0.94 (0.932) 0.918 (0.912) 0.954 (0.948) 0.792 (0.788)
7 0.956 (0.94) 0.934 (0.918) 1 (1) 0.996 (0.996)

D
G
P
3

n=500 3 0.482 (0.454) 0.296 (0.284) 0.162 (0.108) 0.05 (0.034)
5 0.966 (0.962) 0.922 (0.922) 0.77 (0.758) 0.454 (0.45)
7 0.984 (0.98) 0.972 (0.968) 0.986 (0.986) 0.902 (0.902)

n=1000 3 0.57 (0.544) 0.322 (0.314) 0.22 (0.078) 0.074 (0.026)
5 0.956 (0.95) 0.93 (0.926) 0.786 (0.764) 0.468 (0.446)
7 0.986 (0.98) 0.976 (0.972) 0.988 (0.974) 0.94 (0.934)

D
G
P
4

n=500 3 0.122 (0.05) 0.044 (0.03) 0.144 (0.098) 0.034 (0.03)
5 0.482 (0.444) 0.306 (0.3) 0.708 (0.658) 0.416 (0.386)
7 0.784 (0.776) 0.688 (0.684) 0.972 (0.958) 0.898 (0.888)

n=1000 3 0.134 (0.072) 0.042 (0.028) 0.202 (0.166) 0.064 (0.044)
5 0.536 (0.496) 0.328 (0.316) 0.798 (0.79) 0.48 (0.478)
7 0.854 (0.842) 0.758 (0.754) 0.972 (0.97) 0.908 (0.906)

D
G
P
4
*

n=500 3 0.594 (0.53) 0.41 (0.39) - -
5 0.886 (0.874) 0.828 (0.82) - -
7 0.82 (0.792) 0.778 (0.762) - -

n=1000 3 0.664 (0.61) 0.482 (0.454) - -
5 0.954 (0.95) 0.928 (0.924) - -
7 0.976 (0.97) 0.97 (0.966) - -

Table 10: Detection rate when one �xed additive outlier is present.
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DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.356 (0.29) 0.164 (0.15) 0.154 (0.132) 0.048 (0.042)
5 0.964 (0.942) 0.904 (0.894) 0.858 (0.846) 0.554 (0.55)
7 1 (0.978) 0.994 (0.972) 0.978 (0.966) 0.9 (0.894)

n=1000 3 0.372 (0.322) 0.202 (0.184) 0.178 (0.14) 0.056 (0.048)
5 0.976 (0.966) 0.924 (0.918) 0.924 (0.912) 0.672 (0.664)
7 0.998 (0.992) 0.992 (0.988) 0.996 (0.988) 0.968 (0.962)

D
G
P
2

n=500 3 0.398 (0.34) 0.158 (0.126) 0.102 (0.902) 0.046 (0.02)
5 0.792 (0.774) 0.636 (0.618) 0.76 (0.724) 0.424 (0.402)
7 0.93 (0.908) 0.918 (0.9) 0.908 (0.908) 0.782 (0.782)

n=1000 3 0.398 (0.34) 0.188 (0.176) 0.17 (0.15) 0.086 (0.07)
5 0.892 (0.874) 0.836 (0.818) 0.86 (0.854) 0.524 (0.522)
7 0.962 (0.958) 0.948 (0.924) 0.978 (0.978) 0.882 (0.882)

D
G
P
3

n=500 3 0.436 (0.402) 0.256 (0.246) 0.16 (0.084) 0.042 (0.026)
5 0.948 (0.94) 0.896 (0.892) 0.644 (0.572) 0.346 (0.318)
7 0.99 (0.982) 0.968 (0.96) 0.922 (0.842) 0.73 (0.67)

n=1000 3 0.488 (0.46) 0.266 (0.258) 0.228 (0.058) 0.078 (0.018)
5 0.956 (0.952) 0.908 (0.904) 0.72 (0.59) 0.416 (0.338)
7 1 (0.988) 0.98 (0.976) 0.96 (0.846) 0.866 (0.774)

D
G
P
4

n=500 3 0.124 (0.05) 0.04 (0.024) 0.118 (0.062) 0.038 (0.028)
5 0.45 (0.408) 0.258 (0.252) 0.606 (0.692) 0.338 (0.324)
7 0.78 (0.766) 0.67 (0.662) 0.904 (0.884) 0.76 (0.76)

n=1000 3 0.132 (0.066) 0.042 (0.028) 0.196 (0.058) 0.064 (0.012)
5 0.474 (0.432) 0.278 (0.266) 0.638 (0.582) 0.358 (0.342)
7 0.836 (0.826) 0.72 (0.716) 0.952 (0.936) 0.836 (0.83)

D
G
P
4
*

n=500 3 0.54 (0.462) 0.328 (0.3) -
5 0.892 (0.868) 0.846 (0.83) -
7 0.884 (0.864) 0.852 (0.838) -

n=1000 3 0.578 (0.512) 0.374 (0.342) -
5 0.938 (0.932) 0.892 (0.888) -
7 0.982 (0.976) 0.972 (0.966) - -

Table 11: Detection rate when one �xed innovational outlier is present.
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DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.296 (0.252) 0.144 (0.128) 0.182 (0.166) 0.07 (0.064)
5 0.996 (0.966) 0.976 (0.948) 0.874 (0.868) 0.598 (0.598)
7 1 (0.978) 0.998 (0.978) 0.988 (0.986) 0.932 (0.932)

n=1000 3 0.34 (0.278) 0.168 (0.156) 0.234 (0.176) 0.086 (0.074)
5 0.998 (0.976) 0.982 (0.962) 0.892 (0.886) 0.634 (0.626)
7 1 (0.99) 0.998 (0.99) 0.994 (0.978) 0.97 (0.956)

D
G
P
2

n=500 3 0.306 (0.232) 0.138 (0.126) 0.2 (0.17) 0.052 (0.044)
5 0.906 (0.888) 0.894 (0.878) 0.834 (0.822) 0.558 (0.552)
7 0.926 (0.914) 0.898 (0.888) 0.996 (0.984) 0.918 (0.912)

n=1000 3 0.322 (0.254) 0.14 (0.124) 0.242 (0.182) 0.09 (0.076)
5 0.984 (0.97) 0.962 (0.95) 0.898 (0.87) 0.674 (0.656)
7 0.978 (0.966) 0.976 (0.964) 0.998 (0.986) 0.984 (0.974)

D
G
P
3

n=500 3 0.282 (0.24) 0.122 (0.118) 0.18 (0.084) 0.074 (0.04)
5 0.988 (0.984) 0.976 (0.972) 0.578 (0.498) 0.302 (0.274)
7 0.996 (0.992) 0.994 (0.99) 0.876 (0.804) 0.696 (0.656)

n=1000 3 0.348 (0.302) 0.144 (0.142) 0.274 (0.086) 0.118 (0.046)
5 0.998 (0.988) 0.98 (0.972) 0.598 (0.526) 0.38 (0.316)
7 0.998 (0.992) 0.998 (0.992) 0.89 (0.796) 0.728 (0.656)

D
G
P
4

n=500 3 0.678 (0.65) 0.472 (0.46) 0.248 (0.218) 0.096 (0.092)
5 0.804 (0.792) 0.802 (0.786) 0.844 (0.836) 0.67 (0.67)
7 0.888 (0.868) 0.88 (0.866) 0.978 (0.976) 0.926 (0.926)

n=1000 3 0.706 (0.676) 0.502 (0.494) 0.286 (0.206) 0.128 (0.106)
5 0.988 (0.982) 0.982 (0.976) 0.878 (0.856) 0.68 (0.676)
7 0.994 (0.988) 0.990 (0.982) 0.992 (0.988) 0.962 (0.958)

D
G
P
4
*

n=500 3 0.722 (0.722) 0.546 (0.532) -
5 0.894 (0.872) 0.888 (0.872) -
7 0.948 (0.932) 0.932 (0.912) -

n=1000 3 0.774 (0.73) 0.55 (0.534) -
5 0.986 (0.978) 0.978 (0.97) -
7 1 (1) 1 (1) -

Table 12: Detection rate when one relative innovational outlier is present.

25



8.3.2 Two outliers

DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.54 (0.088) 0.294 (0.024) 0.26 (0.024) 0.078 (0.004)
5 0.972 (0.88) 0.942 (0.814) 0.79 (0.696) 0.396 (0.258)
7 986 (0.958)0.992 (0.968) 0.974 (0.93) 0.974 (0.95) 0.81 (0.776)

n=1000 3 0.588 (0.154) 0.344 (0.048) 0.23 (0.028) 0.068 (0.004)
5 0.982 (0.882) 0.966 (0.812) 0.914 (0.828) 0.59 (0.42)
7 0.992 (0.968) 0.978 (0.944) 0.998 (0.978) 0.984 (0.962)

D
G
P
2

n=500 3 0.582 (0.128) 0.308 (0.038) 0.23 (0.016) 0.06 (0)
5 0.786 (0.698) 0.746 (0.636) 0.808 (0.72) 0.428 (0.278)
7 0.974 (0.970) 0.968 (0.958) 0.992 (0.97) 0.812 (0.774)

n=1000 3 0.588 (0.138) 0.37 (0.036) 0.208 (0.026) 0.066 (0.002)
5 0.912 (0.862) 0.886 (0.806) 0.904 (0.798) 0.598 (0.444)
7 0.988 (0.982) 0.982 (0.972) 1 (0.988) 0.98 (0.962)

D
G
P
3

n=500 3 0.696 (0.24) 0.474 (0.084) 0.236 (0.004) 0.042 (0)
5 0.99 (0.912) 0.972 (0.846) 0.558 (0.428) 0.212 (0.124)
7 0.996 (0.962) 0.992 (0.94) 0.912 (0.864) 0.596 (0.524)

n=1000 3 0.742 (0.242) 0.47 (0.068) 0.144 (0.006) 0.082 (0)
5 0.998 (0.9) 0.992 (0.836) 0.718 (0.498) 0.354 (0.17)
7 1 (0.976) 1 (0.958) 0.976 (0.93) 0.852 (0.782)

D
G
P
4

n=500 3 0.122 (0.05) 0.042 (0.028) 0.146 (0.028) 0.038 (0.004)
5 0.482 (0.444) 0.306 (0.3) 0.664 (0.528) 0.292 (0.17)
7 0.784 (0.776) 0.688 (0.684) 0.932 (0.89) 0.676 (0.608)

n=1000 3 0.134 (0.072) 0.12 (0.008) 0.188 (0.04) 0.06 (0.02)
5 0.536 (0.496) 0.328 (0.316) 0.696 (0.52) 0.356 (0.166)
7 0.854 (0.842) 0.758 (0.754) 0.972 (0.948) 0.824 (0.768)

D
G
P
4
*

n=500 3 0.822 (0.322) 0.634 (0.158) - -
5 0.922 (0.818) 0.91 (0.764) - -
7 0.698 (0.63) 0.688 (0.602) - -

n=1000 3 0.844 (0.38) 0.694 (0.204) - -
5 0.992 (0.874) 0.984 (0.818) - -
7 0.958 (0.928) 0.958 (0.91) - -

Table 13: Detection rate when two �xed additive outlier are present.
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DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.494 (0.062) 0.248 (0.016) 0.198 (0.024) 0.052 (0.002)
5 0.988 (0.858) 0.964 (0.784) 0.62 (0.432) 0.274 (0.122)
7 1 (0.94) 0.992 (0.924) 0.84 (0.718) 0.536 (0.366)

n=1000 3 0.508 (0.1) 0.278 (0.03) 0.226 (0.02) 0.062 (0.004)
5 0.994 (0.864) 0.986 (0.752) 0.832 (0.636) 0.438 (0.242)
7 1 (0.95) 0.998 (0.946) 0.982 (0.902) 0.848 (0.712)

D
G
P
2

n=500 3 0.51 (0.076) 0.252 (0.012) 0.16 (0.006) 0.036 (0.002)
5 0.958 (0.82) 0.93 (0.736) 0.642 (0.466) 0.284 (0.114)
7 0.974 (0.878) 0.956 (0.856) 0.868 (0.724) 0.542 (0.352)

n=1000 3 0.542 (0.076) 0.296 (0.02) 0.198 (0.01) 0.054 (0)
5 0.986 (0.894) 0.968 (0.806) 0.832 (0.634) 0.474 (0.258)
7 0.986 (0.938) 0.98 (0.926) 0.986 (0.91) 0.864 (0.734)

D
G
P
3

n=500 3 0.638 (0.132) 0.394 (0.048) 0.168 (0) 0.056 (0)
5 0.992 (0.714) 0.98 (0.642) 0.466 (0.206) 0.18 (0.046)
7 1 (0.788) 1 (0.782) 0.746 (0.476) 0.454 (0.23)

n=1000 3 0.66 (0.158) 0.432 (0.088) 0.248 (0.004) 0.102 (0)
5 0.994 (0.712) 0.99 (0.662) 0.664 (0.29) 0.322 (0.068)
7 1 (0.794) 0.998 (0.774) 0.904 (0.584) 0.714 (0.412)

D
G
P
4

n=500 3 0.132 (0.066) 0.042 (0.028) 0.176 (0) 0.038 (0)
5 0.45 (0.408) 0.258 (0.252) 0.364 (0) 0.246 (0)
7 0.78 (0.766) 0.67 (0.662) 0.744 (0.744) 0.588 (0.628)

n=1000 3 0.124 (0.05) 0.04 (0.024) 0.216 (0) 0.086 (0)
5 0.474 (0.432) 0.278 (0.266) 0.458 (0.432) 0.23 (0.224)
7 0.836 (0.826) 0.72 (0.716) 0.832 (0.822) 0.626 (0.624)

D
G
P
4
*

n=500 3 0.586 (0) 0.348 (0) - -
5 0.906 (0.014) 0.852 (0.008) - -
7 0.868 (0.038) 0.842 (0.026) - -

n=1000 3 0.568 (0.002) 0.374 (0.002) - -
5 0.95 (0.004) 0.882 (0.002) - -
7 0.988 (0.002) 0.98 (0) - -

Table 14: Detection rate when two �xed innovational outlier are present.
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DGP Observations LR CUSUM − type
0.95 0.99 0.95 0.99

D
G
P
1

n=500 3 0.544 (0.064) 0.22 (0.016) 0.21 (0.022) 0.042 (0.002)
5 0.98 (0.868) 0.962 (0.782) 0.628 (0.434) 0.29 (0.134)
7 0.988 (0.936) 0.98 (0.922) 0.85 (0.694) 0.538 (0.364)

n=1000 3 0.572 (0.098) 0.262 (0.024) 0.264 (0.038) 0.096 (0.012)
5 0.998 (0.892) 0.996 (0.828) 0.768 (0.584) 0.47 (0.26)
7 1 (0.96) 1 (0.952) 0.976 (0.898) 0.818 (0.71)

D
G
P
2

n=500 3 0.402 (0.037) 0.206 (0.012) 0.204 (0.018) 0.056 (0)
5 0.942 (0.83) 0.932 (0.786) 0.63 (0.378) 0.296 (0.114)
7 0.962 (0.878) 0.952 (0.856) 0.866 (0.684) 0.598 (0.354)

n=1000 3 0.456 (0.066) 0.232 (0.016) 0.264 (0.018) 0.092 (0.002)
5 0.98 (0.902) 0.976 (0.89) 0.82 (0.566) 0.522 (0.248)
7 0.982 (0.934) 0.976 (0.926) 0.984 (0.848) 0.856 (0.68)

D
G
P
3

n=500 3 0.49 (0.068) 0.234 (0.016) 0.3 (0.01) 0.136 (0)
5 0.996 (0.786) 0.988 (0.764) 0.578 (0.188) 0.306 (0.044)
7 1 (0.826) 1 (0.822) 0.772 (0.418) 0.528 (0.172)

n=1000 3 0.668 (0.098) 0.286 (0.032) 0.31 (0.008) 0.162 (0.004)
5 0.998 (0.804) 0.994 (0.78) 0.626 (0.158) 0.396 (0.05)
7 1 (0.838) 0.998 (0.836) 0.898 (0.482) 0.692 (0.276)

D
G
P
4

n=500 3 0.816 (0.41) 0.368 (0.186) 0.218 (0) 0.092 (0)
5 0.63 (0.588) 0.18 (0.146) 0.622 (0) 0.358 (0)
7 0.734 (0.666) 0.284 (0.254) 0.928 (0) 0.764 (0)

n=1000 3 1 (0.348) 1 (0.348) 0.236 (0) 0.106 (0)
5 1 (0.836) 1 (0.836) 0.668 (0) 0.4 (0)
7 0.998 (0.93) 0.998 (0.93) 0.882 (0) 0.774 (0)

D
G
P
4
*

n=500 3 0.414 (0) 0.186 (0) - -
5 0.948 (0.006) 0.908 (0.004) - -
7 0.862 (0.016) 0.858 (0.008) - -

n=1000 3 0.46 (0.002) 0.262 (0) -
5 0.984 (0.002) 0.954 (0) - -
7 0.966 (0.008) 0.964 (0.002) - -

Table 15: Detection rate when two relative innovational outlier are present.

28



_____________________________________________________________________ 
 

Friedrich-Alexander-Universität 
IWQW 

Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung 

Diskussionspapiere 2012 
Discussion Papers 2012 

 
01/2012 Wrede, Matthias: Wages, Rents, Unemployment, and the Quality of Life 
 
02/2012 Schild, Christopher-Johannes: Trust and Innovation Activity in European 

Regions - A Geographic Instrumental Variables Approach 
 

03/2012 Fischer, Matthias: A skew and leptokurtic distribution with polynomial 
tails and characterizing functions in closed form 

 
04/2012 Wrede, Matthias: Heterogeneous Skills and Homogeneous Land: Seg-

mentation and Agglomeration 
 
 

 
 

Diskussionspapiere 2011 
Discussion Papers 2011 

 
01/2011 Klein, Ingo, Fischer, Matthias and Pleier, Thomas: Weighted Power 

Mean Copulas: Theory and Application 
 
02/2011 Kiss, David: The Impact of Peer Ability and Heterogeneity on Student 

Achievement: Evidence from a Natural Experiment 
 
03/2011 Zibrowius, Michael: Convergence or divergence? Immigrant wage as-

similation patterns in Germany 
 
04/2011 Klein, Ingo and Christa, Florian: Families of Copulas closed under the 

Construction of Generalized Linear Means 
 
05/2011 Schnitzlein, Daniel: How important is the family? Evidence from sibling 

correlations in permanent earnings in the US, Germany and Denmark 
 
06/2011 Schnitzlein, Daniel: How important is cultural background for the level 

of intergenerational mobility? 
 
07/2011 Steffen Mueller: Teacher Experience and the Class Size Effect - Experi-

mental Evidence 
 
08/2011 Klein, Ingo: Van Zwet Ordering for Fechner Asymmetry 
 
09/2011 Tinkl, Fabian and Reichert Katja: Dynamic copula-based Markov chains 

at work: Theory, testing and performance in modeling daily stock re-
turns  

 



_____________________________________________________________________ 
 

Friedrich-Alexander-Universität 
IWQW 

Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung 

10/2011 Hirsch, Boris and Schnabel, Claus:  Let’s Take Bargaining Models Seri-
ously: The Decline in Union Power in Germany, 1992 – 2009 

 
11/2011 Lechmann, Daniel S.J. and Schnabel, Claus : Are the self-employed real-

ly jacks-of-all-trades? Testing the assumptions and implications of 
Lazear’s theory of entrepreneurship with German data 

 
12/2011 Wrede, Matthias: Unemployment, Commuting, and Search Intensity 
 
13/2011 Klein, Ingo: Van Zwet Ordering and the Ferreira-Steel Family of Skewed 

Distributions 
 
 

Diskussionspapiere 2010 
Discussion Papers 2010 

 
01/2010 Mosthaf, Alexander, Schnabel, Claus and Stephani, Jens: Low-wage ca-

reers: Are there dead-end firms and dead-end jobs? 
 
02/2010 Schlüter, Stephan and Matt Davison: Pricing an European Gas Storage 

Facility using a Continuous-Time Spot Price Model with GARCH Diffu-
sion 

 
03/2010 Fischer, Matthias, Gao, Yang and Herrmann, Klaus: Volatility Models 

with Innovations from New Maximum Entropy Densities at Work 
 
04/2010 Schlüter, Stephan and Deuschle, Carola: Using Wavelets for Time Series 

Forecasting – Does it Pay Off? 
 
05/2010 Feicht, Robert and Stummer, Wolfgang: Complete closed-form solution 

to a stochastic growth model and corresponding speed of economic re-
covery. 

 
06/2010 Hirsch, Boris and Schnabel, Claus: Women Move Differently: Job Sepa-

rations and Gender. 
 
07/2010 Gartner, Hermann, Schank, Thorsten and Schnabel, Claus: Wage cycli-

cality under different regimes of industrial relations. 
 
08/2010 Tinkl, Fabian: A note on Hadamard differentiability and differentiability 

in quadratic mean. 
 

 



_____________________________________________________________________ 
 

Friedrich-Alexander-Universität 
IWQW 

Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung 

Diskussionspapiere 2009 
Discussion Papers 2009 

 
01/2009 Addison, John T. and Claus Schnabel: Worker Directors: A German 

Product that Didn’t Export? 
 
02/2009 Uhde, André and Ulrich Heimeshoff: Consolidation in banking and fi-

nancial stability in Europe: Empirical evidence 
 
03/2009 Gu, Yiquan and Tobias Wenzel: Product Variety, Price Elasticity of De-

mand and Fixed Cost in Spatial Models 
 
04/2009 Schlüter, Stephan: A Two-Factor Model for Electricity Prices with Dy-

namic Volatility 
 
05/2009 Schlüter, Stephan and Fischer, Matthias: A Tail Quantile Approximation 

Formula for the Student t and the Symmetric Generalized Hyperbolic 
Distribution 

 
06/2009 Ardelean, Vlad: The impacts of outliers on different estimators for 

GARCH processes: an empirical study 
 
07/2009 Herrmann, Klaus: Non-Extensitivity versus Informative Moments for Fi-

nancial Models - A Unifying Framework and Empirical Results 
 
08/2009 Herr, Annika: Product differentiation and welfare in a mixed duopoly 

with regulated prices: The case of a public and a private hospital 
 
09/2009 Dewenter, Ralf, Haucap, Justus and Wenzel, Tobias: Indirect Network 

Effects with Two Salop Circles: The Example of the Music Industry 
 
10/2009 Stuehmeier, Torben and Wenzel, Tobias: Getting Beer During Commer-

cials: Adverse Effects of Ad-Avoidance 
 
11/2009 Klein, Ingo, Köck, Christian and Tinkl, Fabian: Spatial-serial dependency 

in multivariate GARCH models and dynamic copulas: A simulation study 
 
12/2009 Schlüter, Stephan: Constructing a Quasilinear Moving Average Using 

the Scaling Function 
 
13/2009 Blien, Uwe, Dauth, Wolfgang, Schank, Thorsten and Schnabel, Claus: 

The institutional context of an “empirical law”: The wage curve under 
different regimes of collective bargaining 

 
14/2009 Mosthaf, Alexander, Schank, Thorsten and Schnabel, Claus: Low-wage 

employment versus unemployment: Which one provides better pro-
spects for women? 

 
 



_____________________________________________________________________ 
 

Friedrich-Alexander-Universität 
IWQW 

Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung 

Diskussionspapiere 2008 
Discussion Papers 2008 

 
01/2008 Grimm, Veronika and Gregor Zoettl: Strategic Capacity Choice under 

Uncertainty: The Impact of Market Structure on Investment and Wel-
fare 

 
02/2008 Grimm, Veronika and Gregor Zoettl: Production under Uncertainty: A 

Characterization of Welfare Enhancing and Optimal Price Caps 
 
03/2008 Engelmann, Dirk and Veronika Grimm: Mechanisms for Efficient Voting 

with Private Information about Preferences 
 
04/2008 Schnabel, Claus and Joachim Wagner: The Aging of the Unions in West 

Germany, 1980-2006 
 
05/2008 Wenzel, Tobias: On the Incentives to Form Strategic Coalitions in ATM 

Markets 
 
06/2008 Herrmann, Klaus: Models for Time-varying Moments Using Maximum 

Entropy Applied to a Generalized Measure of Volatility 
 
07/2008 Klein, Ingo and Michael Grottke: On J.M. Keynes' “The Principal Aver-

ages and the Laws of Error which Lead to Them” - Refinement and Gen-
eralisation 


