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Abstract

Nonparametric prediction of time series is a viable alternative to parametric prediction,

since parametric prediction relies on the correct speci�cation of the process, its order and

the distribution of the innovations. Often these are not known and have to be estimated

from the data. Another source of nuisance can be the occurrence of outliers. By using non-

parametric methods we circumvent both problems, the speci�cation of the processes and

the occurrence of outliers.

In this article we compare the prediction power for parametric prediction, semipara-

metric prediction and nonparamatric methods such as support vector machines and pattern

recognition. To measure the prediction power we use the MSE. Furthermore we test if the

increase in prediction power is statistically signi�cant.

1Correspondence author: Thomas Pleier, Department of Statistics and Econometrics, University of

Erlangen-Nuremberg, Lange Gasse 20, D-90403 Nuremberg, E-Mail: Thomas.Pleier@fau.de
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1 Introduction

In the analysis of time series the underlying process is often assumed to be paramet-

ric. Especially for �nancial and macro economical time series two general processes and

their various extensions have found widespread approval: Autoregressive Moving Avarage

(ARMA) processes and generalized Autoregressive Heteroscedasticty (GARCH) processes.

In order to estimate the unknown parameters from available data, the order of the process

and the distribution of the innovations have to be known beforehand. Otherwise they can

be estimated from the data. But the aim is not only to identify the underlying process,

but also to predict future values. For example, the time varying volatility of returns can be

forecasted when the parameters of the process are known. Such a forecast can be used as an

input for pricing options, other derivatives, trading and hedging strategies. Furthermore,

the risk of an asset can be measured by the predicted volatility.

An implicit assumption in the analysis of parametric time series is, that there are no

aberrant observations, so called outliers. Outliers are observations that seem not to be

consistent with the assumed model. When these observations are included to estimate the

model parameters, the resulting estimates are biased.

Past shocks that markets have been a�ected by (i.e. East Asian crisis, Dot-com bubble,

subprime mortgage crisis) question the assumption that no outlier is present. Any forecast

is questionable, when outlying observations are present. By using non-parametric methods

such as Support Vector Machines and Pattern Recognition we circumvent both problems,

the speci�cation of the processes and the occurrence of outliers.

The article is structured as follows, in the second chapter we describe some paramet-

ric models, their properties and estimation. Chapters three and four contain the non-

parametric methods we decided to gather in our simulations. A simulation study that

compares the methods according to the MSE criterion and some real live data are con-

tained in chapter �ve.

2 Time Series

A common way to model the conditional mean is class of ARMA processes is, while the

class of GARCH models is widely used to model time-varying volatility.

2.1 ARMA processes

A stochastic process (Xt)Z is said to be ARMA(p,q) process, if:

Xt =

µt

µ+

︷ ︸︸ ︷
p∑
i=1

φiXt−i +

q∑
j=1

θjνt−j +νt t ∈ Z (1)
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where Λ = (µ, θ1, . . . , θq, φ1 . . . , φq) ∈ R1+p+q and all νt follow some speci�ed distribution

with EF (ν2t ) <∞. A more rigorous treatment of GARCH(p,q) models and their properties

can be found for example in Hamilton (1994).

2.1.1 GARCH processes

GARCH(p,q) processes are standard to model the volatility of �nancial asset returns as it

captures many of the stylized facts for �nancial assets, see Cont (2001). A more rigorous

treatment of GARCH(p,q) models and their properties can be found for example in Berkes

et al. (2003) or Lindner (2009).

Following Bollerslev (1986), a stochastic process XtZ is a GARCH(1,1) process if:

Xt|Ft−1 = σtνt.

σ2t = (σt(θ))
2 = α0 + α1X

2
t−1 + β1σ

2
t−1, t ∈ Z (2)

with Λ = (α0, α1, β1), α0 > 0, α1 ≥ 0, and β1 ≥ 0, where Ft denotes the information set

of the process up to time t and νt
iid∼ F , where F is some distribution function with density

f, EF (νt) = 0 and EF (ν2t ) = 1.

The simple GARCH(1,1) is su�cient in most applications, see Hansen and Lunde (2005)

For a squared GARCH(1,1) there exists an ARMA(1,1) representation, cf. Bollerslev

(1986):

X2
t = α0 + (α1 + β1)X

2
t−1 − β1εt−1 + εt (3)

εt = X2
t − σ2t .

Note that the εt form a centered conditionally heteroscedastic series:

E(εt|Ft−1) = σ2t
(
E(ν2t )− 1

)
= 0

E(ε2t |Ft−1) = σ4tE((ν2t − 1)2) = σ4tm4,

if E(ν4t ) exists and m4 = E((ν2t − 1)2).

2.2 Prediction for parametric models

When the order and the innovations are known, the parameters of the process can be

estimated via the maximum likelihood method. Under general assumptions the (quasi)

maximum likelihood estimator is consistent and asymptotically normal even when the true

distribution F of the innovations is not known, see for example Theorem 2.2 in Francq and

Zakoïan (2004).

When the parameters are estimated the best predictor (in the sense that the mean

square error is minimized) is given by the conditional expectation conditioned on the

past observations, see Hamilton (1994). Let x1, · · · , xT be the observed data and Λ̂ the
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estimated parameters of the assumed process. The best prediction of future values is given

by:

x̂T+1 = E(Xt+1|x1, · · · , xt) = µ+

p∑
i=1

φ̂ixt−i +

q∑
j=1

θj ν̂t−j , (4)

σ̂2T+1 = E(σ2T+1|FT ) = α̂0 +

p∑
i=1

α̂ix
2
T+1−i +

q∑
i=1

β̂iσ
2
T+1−i (5)

where ν̂n−q, · · · , ν̂n and σ̂2n−q, . . . , σ̂
2
n are calculated recursively from (1) and (2). As start-

ing values we set xi = 0 for i = 1, . . . , p, ν̂j = 0 for j = 1, . . . , q and σ̂2j = 0 for j = 1 . . . , q.

2.3 Semiparametric prediction

The assumptions on the innovations are rather strong (independence, martingale di�erence

series among others). These assumptions can be relaxed, but then the optimal prediction

does not coincide with the conditional expectation. Dabo-Niang et al. (2010) propose a

semi-parametric approach. Under some general assumptions the optimal semi-parametric

prediction is given by:

x̂T+1 = E(XT+1|x1, · · · , xT )) + E(νT+1|ν1, · · · , νT ).

The extra term is the optimal (nonlinear) prediction of the innovation process at time T+1.

In order to estimate E(νT+1|ν1, · · · , νT ) a Nadaraya-Watson estimator is proposed.

3 Support Vector Machines

Support Vector Machines (SVM) were �rst introduced by Vapnik (1995). SVM can be

understood as learning system that uses a hypothesis space of linear functions in a high

dimensional feature space. For more information on SVM see for example Schölkopf and

Smola (2002).

In order to use SVM in the regression context we sssume that y ∈ R. One is interested
predicting unobserved y values. With small modi�cations the SVM can be applied in the

regression context. Possible loss functions include:

• ε-insensitive loss function:

Lε(x, y, f) = |y − f(x)|ε = max(ε, |y − f(x)|)− ε.

• Given a σ > 0 then Huber's robust loss function is given by:

Lε(x, y, f, σ) =

{
1
2σ (y − f(x))2 if |y − f(x)| ≤ σ
|y − f(x)| − σ

2 else

4



The resulting optimization problem is now (in its dual form)

max
α,α∗

−1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi, xj)− ε
n∑
i=1

(αi + α∗i ) +

n∑
i=1

yi(αi + α∗i ),

under the constraints
n∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, γ].

Let Φ : x → Rk be any transformation of the data into a higher dimension, then k is a

kernel, if the following holds:

k(x, x′) = 〈Φ(x),Φ(x′)〉.

The kernel can be seen as a transformation of the to data to higher dimension. In this

higher dimension the data is now linearly separable.

f(x) =
n∑
i=1

(αi − α∗i )k(xi, x) + b

gives the prediction of the y value of a new object x.

4 Pattern Recognition

The whole chapter is based on the book by Devroye et al. (1996). The idea of pattern

recognition is that patterns recognized in the past are likely to be seen again.

The �rst task is to �x the recognition rule. We use two rules based on the euclidean

distance. Given the actual pattern at time T of length p

pT =
(
xT−(p−1), . . . , xT

)
we want to look at dates in the past that exhibit a similar pattern.

The so called elementary prediction of xT+1 is obtained either by averaging the observa-

tions xt1+1, . . . xtk+1, where t1, . . . tk ∈ {1, . . . , T} are the k dates of which the correspond-

ing patterns have smallest euclidean distance from the current pattern pT - the nearest

neighbour based prediction strategy (NNBP), or by a kernel-based weighted average of the

whole past observations - the kernel based prediction strategy (KBP).

Another recognition rule we use is the generalized linear prediction strategy (GLP)

proposed by Biau et al. (2010). The elementary predictor to the lag p of this strategy is a

linear combination of the past p observations. In summary the elementary predictions are

of the following form

x̂T+1, p =

{∑T−1
i=p xi+1 · w(pi) (KBP & NNBP)∑p
i=1 cixT+1−i (GLP)
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where w(pi) gives the above described weights determined by the euclidean distance from

pt and (ci)
p
i=1 is the vector of coe�cients of a �tted linear model.

For di�erent �xed pattern lengths p di�erent elementary predictors are obtained. Biau

et al. (2010) propose a performance oriented criterion for the �nal prediction strategy:

combine the di�erent predictors linearly with weights determined by their past perfor-

mance. They derive consistency properties for their algorithms under weak assumptions

on the underlying process. We use a slight modi�cation of their algorithms that enables

comparison among the di�erent predictions considered in this paper.

5 Outliers

Fox (1972) introduced two types of outliers for time series, namely additive (type I) and

innovational (type II) outliers.

Type I outliers only e�ect a single observation while type II outliers also a�ect the

following observations.

Intervention analysis introduced by Box and Tiao (1975) can be embedded in the

de�nition of Fox (1972) when more then one outlier can occur.

Let Xt be the underlying and unobserved process and Yt be the observable process

which contains outliers, than additive outliers can be modelled the following way:

Yt = Xt + ν1t(τ),

where ν ∈ R the size of the outlier, τ ∈ Z the time of occurrence of the outlier and 1t(τ)

is the indicator function which is one if τ = t and zero if τ 6= t. Outlying observations

lead to several problems. The estimate of the order of the process is biased towards 0,

cf. Maronna et al. (2006). For an ARMA process, the estimated parameters are biased

towards 0, cf. Maronna et al. (2006). For a GARCH process, Ardelean (2009) investigates

the e�ect of outliers on the estimated parameters in a simulation study and �nds that the

resulting estimates are biased upwards, especially the o�set parameter

6 Numerical Results

With a simulation study we compare the prediction performance of the methods described

in the previous sections:

• Maximum Likelihood prediction (ML)

• Maximum Likelihood prediction with a non-parametric regression in the MA part

(SP)

• Support Vector Machine with a gaussian Kernel (SVM)
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• Kernel based prediction (KBP)

• Nearest neighbour based prediction(NNBP)

• Generalized linear prediction (GLP)

The prediction strategy based on the likelihood approach is based on the information of

the full sample. In comparison the prediction strategies described by Devroye et al. (1996)

are constructed in a sequential manner, which suits well the task of time series prediction,

as new information is available is updated on a regular basis. As we want to compare

di�erent strategies we study performance in a non-sequential way. Furthermore we split

the sample in two parts. The �rst part is the insample (�rst 80%) while the remaining

part is the outsample (last 20%). The procedures learn only the pattern on the training

sample. For both samples the performance measure is calculated.

As a measure of prediction power we use the MSE of the 1-step-ahead-predictions. For

the GARCH processes we predict x2t , which is often used as a proxy for σ2t see for example

Andersen and Bollerslev (1998). As the squared observation of a GARCH(1,1) process can

be written as an ARMA(1,1) process, we can use the prediction methods introduced in

section 2.2. In these simulations the MSE turns out to be much lower than in the ARMA-

type simulations, which is due to the processes and not a hint for easier predictability. For

a more convenient look we calculate the relative prediction performance in means of the

MSE with the optimal constant prediction as reference.

Furthermore we use a binomial test to �nd out weather the sophisticated methods

signi�cantly improve the predictions. For example, using a semiparametric method, the

Null is Hnon: The prediction of the parametric strategy cannot be improved by the semi-

parametric extension. Looking at the proportion p̂ of simulations in which we observe

a lower prediction error in the semiparametric prediction we execute a standard test for

H0 : p ≤ 0.5 versus H1 : p > 0.5 (compare the tea tasting lady). This test provides

information we can use to compare prediction performance of di�erent strategies instead

of only comparing average MSE which is a single value aggregating many possibly strongly

deviating results.

We also use the test sample in order to see if any of the procedure su�ers from so called

'over�tting', i.e. if a low insample cannot be traced in the outsample.

For the simulation study we use 3 di�erent stationary data generating processes (DGP)

DGP Process Order Parameter

DGP-1 AR 2 0.0, 0.7, -0.4

DGP-2 ARMA 1,1 0.0, 0.7, -0.2

DGP-3 GARCH 1,1 0.001, 0.05, 0.8
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As innovations for the DGP's the standard normal and a t-distribution with 5 degrees of

freedom are used. Sample size is n = 500.DGP-1 and DGP-2 are true ARMA processes

(with order (2,0) respectively (1,1)). The squared instances of DGP-3 data follow a het-

eroscedastic ARMA-process. Alltogether we refer to these DGPs as ARMA-type processes.

In order to quantify the impact outliers have on the prediction performance we con-

taminate the samples with two outliers at τ1 = 250 and τ2 = 300. The size of the outliers

is 5 (DGP1 and DGP2). For DGP3 we multiply 5 with the conditional variance at that

time (relative) or with the unconditional variance (�xed).

Each setting is repeated 250 times.

6.1 Pure simulations of ARMA-type processes

Process DGP-1 N DGP-1 t DGP-2 N DGP-2 t

MSE IN OUT IN OUT IN OUT IN OUT

ML AR(2)N 0.989 1.001 0.989 1.027 1.140 1.159 1.137 1.189

ML AR(2)t 0.990 1.002 0.991 1.024 1.141 1.160 1.138 1.186

ML ARMA(1,1) N 1.019 1.030 1.021 1.055 0.990 0.999 0.989 1.026

ML ARMA(1,1) t 1.019 1.031 1.022 1.052 0.991 1.001 0.991 1.024

SP AR(2)N 0.991 0.996 0.995 1.026 1.095 1.099 1.100 1.139

SP AR(2) t 0.991 0.996 0.997 1.025 1.095 1.099 1.102 1.139

SP ARMA(1,1) N 1.059 1.064 1.063 1.089 0.989 0.993 0.994 1.024

SP ARMA(1,1) t 1.060 1.064 1.064 1.088 0.989 0.993 0.995 1.023

SVM 0.843 1.512 0.912 1.705 1.256 3.489 1.523 4.119

KBP 0.326 1.269 0.252 1.349 0.473 2.714 0.318 3.050

NNBP 0.875 1.195 0.892 1.243 1.357 2.173 1.407 2.223

GLP 0.981 1.004 0.980 1.031 0.993 1.019 0.989 1.040

Table 1: MSE for the prediction performance for DGP-1 and DGP-2, total length n = 500.

Table 1 summarizes the results of the simulation using DGP1 and DGP2 with either normal

or student t(5) distributed residuals. The variance of the residual distribution is rescaled

to the value 1 so the average MSE ought to take values in a region of 1. It turns out that

parametric ML estimates achieves the expected performance in our simulations. Note that

correct speci�cation in parameters and correct speci�cation of the residuals' distribution

lead to di�erent improvements in performance. The parametric speci�cation has more

in�uence on the prediction results. The semiparametric estimates show rather similar

performance. Looking at the nonparametric forecasts there are larger deviations both in

in- and outsample which can be considered an indication for over�tting.

Comparing overall performance in in- and outsample this clue can be traced further.

The loss in performance of the parametric models does not exceed 5% and that of the
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semiparametric ones not even 4%. The loss in performance of the nonparametric models

takes values from 2% to more than 800%. A tendency to over�tting now becomes obvious.

Process DGP-1 N DGP-1 t DGP-2 N DGP-2 t

AR(2)N 0.492 (0.624) 0.504 (0.475) 0.980 (0.000) 0.948 (0.000)

AR(2)t 0.588 (0.003) 0.464 (0.885) 0.984 (0.000) 0.916 (0.000)

ARMA(1,1) N 0.136 (1.000) 0.144 (1.000) 0.424 (0.993) 0.504 (0.475)

ARMA(1,1) t 0.156 (1.000) 0.128 (1.000) 0.604 (0.001) 0.468 (0.859)

Table 2: Proportion of simulations where semiparametric extension improved parametric

prediction and corresponding p-value (H0 : semiparametric extension does not improve

prediction performance).

Process DGP-1 N DGP-1 t DGP-2 N DGP-2 t

SVM 0.096 (1.000) 0.104 (1.000) 0.000 (1.000) 0.000 (1.000)

KBP 0.056 (1.000) 0.068 (1.000) 0.000 (1.000) 0.000 (1.000)

NNBP 0.156 (1.000) 0.152 (1.000) 0.000 (1.000) 0.000 (1.000)

GLP 0.812 (0.000) 0.732 (0.000) 0.988 (0.000) 0.984 (0.000)

Table 3: Proportion of simulations where nonparametric strategies achieved lower MSE

than falsely speci�ed (in model speci�cation and residual distribution) parametric predic-

tion and corresponding p-value (H0 : nonparametric prediction strategy does not achieve

lower MSE).

In table 2 we see that in many of the simulations the semiparametric extension does

not improve the parametric prediction. Even if the parametric model is falsely speci�ed

but �exible, there is no signi�cant improvement. Table 3 shows that only the predictions

of the GLP strategy are better than the falsely speci�ed parametric prediction.

Process DGP-3 N DGP-3 t

MSE IN OUT IN OUT

ML AR(2) N 0.986 1.004 0.977 0.994

ML AR(2) t 1.050 1.045 1.045 1.008

ML ARMA(1,1) N 0.986 1.027 0.977 1.061

ML ARMA(1,1) t 1.050 1.051 1.047 1.011

SP AR(2) N 0.995 0.999 0.978 0.972

SP AR(2) t 0.992 0.982 0.982 0.950

SP ARMA(1,1) N 0.989 1.021 0.975 1.040

SP ARMA(1,1) t 0.990 0.989 0.981 0.951

SVM 0.902 1.063 0.886 1.006

KBP 0.996 0.999 0.954 0.998

NNBP 0.839 1.038 0.835 1.050

GLP 1.067 1.099 1.013 1.045

Table 4: Relative MSE for the prediction performance with simulated DGP-3 data

9



Forecasting squared ARCH-type models is a hard task. Table 2 shows the performance

of the di�erent strategies relative to the performance of the best constant prediction.

At �rst sight it seems almost impossible to outperform the constant prediction. The

parametric predictions in this heteroskedastic setting are rather poor, in the semiparametric

approach there are improvements and the nonparametric are somewhere in between. In

contrast to table 1, the nonparametric strategies seem to su�er less from over�tting.

Process DGP-3 N DGP-3 t

AR(2)N 0.544 (0.092) 0.692 (0.000)

AR(2)t 0.896 (0.000) 0.864 (0.000)

ARMA(1,1) N 0.544 (0.092) 0.676 (0.000)

ARMA(1,1) t 0.884 (0.000) 0.880 (0.000)

Table 5: Proportion of simulations where semiparametric extension improved paramet-

ric prediction and corresponding p-value (H0 : semiparametric extension doesn't improve

prediction performance).

Process DGP-3 N DGP-3 t

SVM 0.144 (1.000) 0.396 (1.000)

KBP 0.600 (0.001) 0.584 (0.005)

NNBP 0.240 (1.000) 0.272 (1.000)

GLP 0.052 (1.000) 0.132 (1.000)

Table 6: Proportion of simulations where nonparametric strategies achieved lower MSE

than AR(2) with normal distributed residuals and corresponding p-value (H0 : nonpara-
metric prediction strategy doesn't achieve lower MSE).

The improvement of semiparametric strategies is observed in signi�cantly many simu-

lations. Table 5 shows that in each setting the fraction of simulated series with improved

prediction in the outsample exceeds 50%. Table 6 shows that the choice of using nonpara-

metric strategies does not automatically lead to suitable predictions. In this setting the

KBP strategy is the only competitive nonparametric approach.

6.2 Simulations of ARMA-type processes with outliers

Figure 1 shows the typical result for the di�erent prediction strategies when two outlying

observations are present (τ1 = 250 and τ2 = 300). The residuals at τ1 and τ2 are larger

than the other residuals, indicating that all prediction methods (K-BP excluded) do not

anticipate the outlying observations. Table 3 and 4 summarize the prediction performance

when outliers are present. When calculating the MSE, the observations at time (τ1 =

250 and τ2 = 300) are excluded since we want to measure the impact of outliers on

the prediction performance of 'typical' observations. For DGP-1 the outlier only have
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in�uence on the insample performance. The best overall performance is achieved by the

GLP method. For DGP-2, outliers also in�uence the insample as well as the outsample.

The best overall performance is achieved by the semiparametric approach (SP ARMA(1,1))

followed by the GLP approach.

The prediction performance is similar regardless of the size of the outlier is relative or

�xed. The SVM loses insample performance but gains outsample performance and has the

best overall performance followed by semi-parametric model. Even though the NNBP has

a very good insample performance the over�tting e�ect is clearly visible in the outsample.

Process DGP-1 N DGP-1 t DGP-2 N DGP-2 t

MSE IN OUT IN OUT IN OUT IN OUT

ML AR(2) N 1.092 1.015 1.065 1.021 1.550 1.264 1.514 1.273

ML AR(2) t 1.094 1.007 1.066 1.013 1.689 1.159 1.669 1.176

ML ARMA(1,1) N 1.103 1.047 1.082 1.049 1.520 1.203 1.485 1.197

ML ARMA(1,1) t 1.108 1.038 1.086 1.041 1.712 1.050 1.696 1.048

SP AR(2) N 1.085 0.997 1.063 1.011 1.407 1.117 1.394 1.154

SP AR(2) t 1.020 1.006 1.072 1.014 1.635 1.105 1.624 1.137

SP ARMA(1,1)N 1.110 1.044 1.096 1.055 1.375 1.056 1.366 1.082

SP ARMA(1,1) t 1.144 1.066 1.118 1.068 1.654 0.996 1.656 1.016

SVM 0.856 1.463 0.921 1.606 1.407 3.316 1.605 3.903

KBP 0.330 1.278 0.228 1.364 0.446 2.7780 0.279 3.202

NNBP 0.926 1.190 0.931 1.228 1.493 2.126 1.523 2.235

GLP 1.075 1.019 1.050 1.025 1.509 1.225 1.462 1.221

Table 7: MSE for the prediction performance for DGP-1 and DGP-2 with two �xed outliers

at τ1 = 250 and τ2 = 300, total length n = 500.

Process DGP-1 N DGP-1 t DGP-2 N DGP-2 t

AR(2)N 0.504 (0.475) 0.624 (0.000) 0.992 (0.000) 0.948 (0.000)

AR(2)t 0.524 (0.243) 0.480 (0.757) 0.972 (0.000) 0.908 (0.000)

ARMA(1,1) N 0.528 (0.206) 0.440 (0.975) 0.992 (0.000) 0.956 (0.000)

ARMA(1,1) t 0.228 (1.000) 0.240 (1.000) 0.964 (0.000) 0.852 (0.000)

Table 8: Proportion of simulations where semiparametric extension improved paramet-

ric prediction and corresponding p-value (H0 : semiparametric extension doesn't improve

prediction performance).
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Process DGP-1 N DGP-1 t DGP-2 N DGP-2 t

SVM 0.108 (1.000) 0.092 (1.000) 0.000 (1.000) 0.012 (1.000)

KBP 0.072 (1.000) 0.032 (1.000) 0.000 (1.000) 0.000 (1.000)

NNBP 0.212 (1.000) 0.108 (1.000) 0.000 (1.000) 0.004 (1.000)

GLP 0.744 (0.000) 0.768 (0.000) 0.472 (0.829) 0.732 (0.000)

Table 9: Proportion of simulations where nonparametric strategies achieved lower MSE

than falsely speci�ed (in model speci�cation and residual distribution) parametric predic-

tion and corresponding p-value (H0 : nonparametric prediction strategy doesn't achieve

lower MSE).

Comparing table 7 with table 1 we �nd prediction performance is generally weaker

in the presence of outliers. Simulations with normally distributed residuals are a�ected

stronger and the over�tting problem of nonparametric strategies seems to be reduced. In

table 8 it can be seen that semiparametric predictions now lead to lower MSE more often

and in table 9 the prediction performance is hardly a�ected by outliers.

The values in tables 10 and 13 are relative to the best constant prediction. This

constant prediction is strongly a�ected by outliers, so the small values here does not show

a prediction improvement because of the presence of outliers. This relative improvement

shows that the considered models are more robust against (few) outliers than the constant

prediction.

Tables 11 and 14 reveal the strength of semiparametric extension in a situation with

heteroskedastic residuals and outliers in the insample. In every setting the proportion of

time series with semiparametric improved prediction signi�cantly exceeds 50%. Among

the nonparametric strategies the KBP still is considerably well performing. The most

interesting result in tables 12 and 15 is that SVM seems to su�er only very little from the

presence of outliers and turn out to be very competitive in these simulations.
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Process DGP-3 N �xed DGP-3 t �xed

MSE IN OUT IN OUT

ML AR(2)N 0.995 0.999 0.992 0.999

ML AR(2) t 1.030 1.011 1.039 1.010

ML ARMA(1,1) N 0.994 1.064 0.991 1.097

ML ARMA(1,1) t 1.030 1.014 1.039 1.011

SP AR(2)N 0.992 0.974 0.988 0.974

SP AR(2) t 0.993 0.973 0.991 0.967

SP ARMA(1,1) N 0.990 1.014 0.988 1.051

SP ARMA(1,1) t 0.993 0.976 0.991 0.966

SVM 0.935 0.979 0.921 0.984

KBP 0.994 0.999 0.991 0.996

NNBP 0.844 1.144 0.844 1.126

GLP 1.067 1.123 1.046 1.067

Table 10: MSE for the prediction performance for DGP-3 with two �xed outlier at τ1 = 250
and τ2 = 300, total length n = 500.

Process DGP-3 N �xed DGP-3 t �xed

AR(2)N 0.680 (0.000) 0.768 (0.000)

AR(2)t 0.700 (0.000) 0.784 (0.000)

ARMA(1,1) N 0.680 (0.000) 0.736 (0.000)

ARMA(1,1) t 0.704 (0.000) 0.788 (0.000)

Table 11: Proportion of simulations where semiparametric extension improved paramet-

ric prediction and corresponding p-value (H0 : semiparametric extension doesn't improve

prediction performance).

Process DGP-3 N �xed DGP-3 t �xed

SVM 0.528 (0.206) 0.600 (0.001)

KBP 0.448 (0.956) 0.588 (0.003)

NNBP 0.064 (1.000) 0.100 (1.000)

GLP 0.104 (1.000) 0.136 (1.000)

Table 12: Proportion of simulations where nonparametric strategies achieved lower MSE

than AR(2) with normal distributed residuals and corresponding p-value (H0 : nonpara-
metric prediction strategy doesn't achieve lower MSE).
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Process DGP-3 N relative DGP-3 t relative

MSE IN OUT IN OUT

ML AR(2) N 0.994 1.000 0.983 0.988

ML AR(2) t 1.030 1.011 1.043 0.981

ML ARMA(1,1) N 0.993 1.125 0.984 1.123

ML ARMA(1,1) t 1.030 1.011 1.045 0.985

SP AR(2) N 0.991 0.972 0.980 0.947

SP AR(2) t 0.993 0.970 0.985 0.933

SP ARMA(1,1) N 0.988 1.036 0.978 1.072

SP ARMA(1,1) t 0.992 0.969 0.984 0.934

SVM 0.933 0.985 0.893 0.978

KBP 0.994 0.999 0.956 0.981

NNBP 0.844 1.143 0.838 1.060

GLP 1.066 1.118 1.021 1.018

Table 13: MSE for the prediction performance for DGP-3 with two relative outlier at

τ1 = 250 and τ2 = 300, total length n = 500.

Process DGP-3 N relative DGP-3 t relative

ML AR(2)N 0.728 (0.000) 0.796 (0.000)

ML AR(2)t 0.736 (0.000) 0.804 (0.000)

ML ARMA(1,1) N 0.764 (0.000) 0.804 (0.000)

ML ARMA(1,1) t 0.740 (0.000) 0.808 (0.000)

Table 14: Proportion of simulations where semiparametric extension improved paramet-

ric prediction and corresponding p-value (H0 : semiparametric extension doesn't improve

prediction performance).

Process DGP-3 N relative DGP-3 t relative

SVM 0.532 (0.171) 0.556 (0.044)

KBP 0.516 (0.329) 0.628 (0.000)

NNBP 0.100 (1.000) 0.232 (1.000)

GLP 0.084 (1.000) 0.264 (1.000)

Table 15: Proportion of simulations where nonparametric strategies achieved lower MSE

than AR(2) with normal distributed residuals and corresponding p-value (H0 : nonpara-
metric prediction strategy doesn't achieve lower MSE).
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6.3 Real Data

We analyse Germany's gross domestic product from 1970 until 2007. We use seasonally

adjusted quarterly data available from Deutsche Bundesbank2 , giving us 148 observations.

The �rst 118 observations form the insample and the remaining are used as the outsample.

Figure 1 shows the rescaled data, the empirical autocorrelation function and the empirical

partial autocorrelation function.

Figure 1: Germany's Gross Domestic Product

From what we learned of tables 1-3 and 7-9 the results are not astonishing: Semipara-

metric approaches achieve an improved prediction of the pure parametric ones and among

the nonparametric predictions the GLP has lowest MSE in the outsample. The SVM, the

KBP and the NNBP seemingly su�er from over�tting.

2http://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/

Makrooekonomische_Zeitreihen/its_details_value_node.html?listId=www_s311_b40201&tsId=

BBK01.JBB000! , visited August 16th 2012.
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MSE IN OUT

ML AR(2) N 0.435 0.348

ML AR(2) t 0.442 0.363

ML ARMA(1,1) N 0.435 0.349

ML ARMA(1,1) t 0.442 0.364

SP AR(2) N 0.406 0.270

SP AR(2) t 0.389 0.264

SP ARMA(1,1) N 0.393 0.269

SP ARMA(1,1) t 0.378 0.262

SVM 0.539 0.468

KBP 0.420 0.614

NNBP 0.426 0.595

GLP 0.416 0.333

Table 16: MSE of Germany's GDP prediction

As a GARCH-type setting we use DAX closing prices from November 16th, 2005 until

December 28th, 2007, available at YAHOO! FINANZEN3. The squared log-returns are

supposed to be similar to a squared GARCH-process. The �rst 428 observations are the

insample, the successive 107 are predicted as outsample instances. Figure 2 shows the

DAX log-returns and the corresponding empirical autocorrelation function (ACF) and the

empirical partial autocorrelation function of the squared data.

3http://de.finance.yahoo.com/q/hp?s=^GDAXI , visited August 16th 2012.
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Figure 2: Log-Returns of pre-crisis DAX

We use the test by Engle (1982) to test for (G)ARCH e�ects in the residuals of a

�tted ARMA-model on the squared log-returns. The p-value of the test is 0.0067. As

mentioned above, a GARCH(1,1) su�ces in most �nancial applications. Thus, we use a

GARCH(1,1) as the parametric model. The MSE results of the prediction strategies show

the expected performance in most parts. The outsample error is smaller than the insample

error. The values given in the table are relative to the constant prediction strategy. There

is more variation in the outsample than in the insample (compare Figure 2). As in times

of high volatility it is easier to outperform this constant strategy, the special outsample

performance is only due to the time series at hand.

Like in the simulations we can see that the improved performance of the semiparametric

extension on the insample, can be traced in a improved outsample prediction. Interest-

ingly all the nonparametric strategies show remarkably good results and no tendency of

over�tting.
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MSE IN OUT

ML AR(2) N 1.008 0.867

ML AR(2) t 1.648 1.649

ML ARMA(1,1) N 1.018 0.885

ML ARMA(1,1) t 1.301 1.247

SP AR(2) N 0.979 0.841

SP AR(2) t 1.006 0.884

SP ARMA(1,1) N 0.995 0.867

SP ARMA(1,1) t 1.002 0.881

SVM 0.795 0.670

KBP 1.018 0.887

NNBP 0.857 0.738

GLP 0.972 0.841

Table 17: MSE of predicting �ltered DAX log-returns

7 Conclusion

We have compared prediction performance of parametric, semiparametric and nonpara-

metric strategies in several ARMA-type settings. The results we �nd are the following:

• A prediction out of a model speci�cation close to the true speci�cation of the under-

lying process can hardly be beaten by any strategy.

• Semiparametric approaches lead to good performance even with only little deviation

in model speci�cation.

• The performance of nonparametric strategies depends mainly on the data at hand.

Note that we used rather simple rules of thumb, when using more sophisticated

techniques (i.e. cross validation) results may di�er.

• Prediction strategies that use the linearity of the model perform well on homoskedas-

tic time series simulations. Especially the GLP bene�ts in this situation.

• Simulations of heteroskedastic time series better are not predicted with the GLP. It

turns out that now the KBP achieves better forecasts.

If outliers are added, there are some �ndings worth taking into care. Predicting power

of the considered strategies on homoskedastic time series simulations is almost une�ected

by outliers. Strategies using the linearity perform superior. Generally the speci�cation of

the model has more in�uence on the performance. Again the GLP which uses the linear

structure is the most competitive among the nonparametric approaches. Note that the

strategies su�er less from over�tting.
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On the other hand, predicting heteroskedastic time series simulations turns out to be

a hard task. As the constant predictor seems to be hardly beatable, the e�ort of applying

time series theory seems to not always be worth it. Outliers strongly e�ect the estimation of

the contant predictor, that's why the predictions bene�t more of the time series approach.

This bene�t a�ects almost all considered strategies, so the ranking doesn't change, except

for the KBP which almost doesn't bene�t at all. In the presence of outliers (�xed or

relative) the SVM are therefore the best choice among the nonparametric strategies when

predicting heteroskedastic time series.

Two real datasets were used to look for similar results in non-arti�cial examples. It

turned out that in the homoskedastic setting we were able to �nd the properties we expected

from what we learned from the simulations. In the heteroskedastic setting the results were

surprisingly extreme. It turned out that the nonparametric strategies achieved a better

performance than expected. This may show that the deviation in model speci�cation is

much stronger in the real world than we implied in our simulations.
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