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summary

We use an information-theoretic approach to interpret Engle’s (1982) and Boller-
slev’s (1986) GARCH model as a model for the motion in time of the expected
conditional second power moment. This interpretation is used to show how these
models may be generalized, if we use alternative measures of volatility. We choose
one feasible alternative and derive a generalized volatility model. Applying this
model to some exemplary market indices, we are able to give some empirical
evidence for our method.
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1 Introduction

Information-theoretic approaches have become more and more popular in econometrics in
recent years.2 Especially the idea of characterizing observable but unknown distributions
through their moments and some information measure has found new applications from
income distributions3 to distributions of financial returns4.

In this article, we use information theory to interpret GARCH models as models for the
motion of variance in time. Applying the principle of Maximum Entropy (ME) we get the
normal distribution as return distribution as it is the ME distribution for a given variance.

Similar interpretations of GARCH models have been used in Rockinger and Jondeau
(2002), Fischer and Herrmann (2008), Bera and Park (2008) and Queirós and Tsallis (2005).
In the first three of these articles volatility is measured by variance, additional knowledge of
higher moments is included to give a better characterization of the observed data. Queirós
and Tsallis (2005) use the above interpretation to model variance and derive return distri-
butions using the ME principle and a generalized information measure.

All these approaches use variance to measure volatility. But to our view this is only one
possible way of measuring what the notion of volatility should mean. We briefly discuss
how volatility should by defined and derive a first suggestion of how this concept may be
measured more generally as a measure of dispersion. As a first suggestion, we use Bickel
and Lehmann’s (1976) proposition of a generalized measure of dispersion where variance
and average absolute deviation appear as special cases, to derive a new volatility model.

Applying this model to daily returns of the market indices S&P 500, FTSE 100 and
Nikkei 225 from January 2001 to August 20085, we are able to give some empirical evidence
for our method.

Our argument is structured as follows: First we give a brief introduction on some con-
cepts of information theory and models for time-varying moments. Then we show how Engle
(1982)’s and Bollerslev (1986)’s GARCH models may be interpreted more generally as in-
formation theoretic models for time-varying moments. After a brief discussion on volatility
we propose a first generalization of the model and derive the corresponding ME density. In
the last chapter we are able to give some empirical evidence for our method.

2 Some Concepts of Information Theory

Information theory bases on Shannon (1948)’s idea that the abstract concept of information
can be quantified. From coding theory it is known that the most efficient way to store
a message M out of a given set of m possible messages is to code every message with
logk( 1

f(M) ) digits, where k denotes the number of signs of the alphabet, logk the logarithm
to base k and f(M) the messages relative frequency. Efficient coding here means that there

2Compare e.g. Golan and Maasoumi (2008) or Golan (2002).
3Compare Wu (2003).
4Compare e.g. Borland (2005).
5The data has been downloaded from http://de.finance.yahoo.com/.

2



is no other possibility of coding messages such that the expected code length for an unknown
message is smaller than

m∑
i=1

f(Mi) · logk
(

1
f(Mi)

)
,

where m is the number of possible messages. So, for given relative frequencies we can derive
a lower bound for the expected code length. Using this result, we can give a lower bound for
the information contained in some unknown message as its minimal expected code length.

In statistics we often deal with the different problem of searching an useful assumption
for some random variable X’s density f(X). The idea from information theory is, that if
our assumption shall include the least knowledge possible, the information generated by
some random draw should be maximal. Formally we look for some density f for which the
expression

H(X) =
∑
x∈D

f(x)ln
(

1
f(x)

)
= −

∑
x∈D

f(x)ln (f(x))

or its continuous analogue

H(X) =
∫
x∈D

f(x)ln
(

1
f(x)

)
dx = −

∫
x∈D

f(x)ln (f(x)) dx

called information entropy or simply entropy, is maximal, where D is the distribution’s
support.6 In some cases we might have some prior knowledge, e.g. derived from some model,
about F , e.g. in the form of expected values E(g(X)). This problem can be solved using
an Euler-Lagrange approach for calculus of variations7, where we can include additional
knowledge as side constraints for the maximization task.

3 Models for Time-varying Moments

Models for time-varying moments have been introduced implicitly in Rockinger and Jondeau
(2002). These models may generally be written as

Xt|It−1 ∼ F (m1,t|It−1, ...,mk,t|It−1),

where Xt is some random variable at time t, It the set of information available at time t
and F its conditional distribution for which the only known information is that

mi,t|It−1 = E(gi(Xt)|It−1), i ∈ {1, ..., k}

where gi is the i-th moment function, with E (gi(Xt)) < ∞, and mi,t the i-th moment’s
motion in time, e.g. as

mi,t|It−1 = αi,0 +
p∑
j=1

αi,jgi(xt−j) +
q∑
j=1

βi,jmi,t−j ,

6As logk(x) = c · ln(x), we can use any base for the maximization regardless of the numeral system used.
7Compare e.g. Brunt (2004).
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i = 1, ..., k and k ∈ N the number of moments to be modeled.
If there is no additional assumption on the functional form of the conditional distribution

F , using the information-theoretic concepts described above, we should assume for F the
maximum entropy distribution (MED) under constraints of the expected moment values
known from our model.8 That means that for every point in time t we find the conditional
density function f for xt as solution to the problem

max
f

(
−
∫
z∈D

f(z)log(f(z))dz
)

under the constraints that∫
z∈D

f(z)dz = 1 and
∫
z∈D

gi(z)f(z)dz = mi,t i ∈ {1, ..., k},

where D is the support for xt. Solutions to this problem can be found e.g. in Cover
and Thomas (2006). We will denote the corresponding distributions as MED(E(g1(X)) =
m1, ..., E(gk(X)) = mk).

4 GARCH-Models

The idea of Engle (1982) and Bollerslev (1986)’s GARCH models is to capture the fact that
the distribution of asset returns seems not to be stable over time, see figure 1. Assuming
that there are clusters where the returns’ volatility is higher or lower, volatility could be
explained as an autoregressive process. Using variance, that is for standardized returns xt
E(x2

t ), as measure for volatility, the general form, a GARCH(p,q) model, may be given as9

xt|It−1 = σtzt, zt ∼ P

σ2
t |It−1 = α0 +

p∑
i=1

α1,ix
2
t−i +

q∑
i=1

β1,iσ
2
t−i,

where xt is the return, zt some innovation, P its distribution and σ2
t the variance of the

returns’ distribution at time t. Traditional GARCH models give explicit assumptions on
the innovation’s distribution P . The simplest of these may be the assumption of normal
distributed innovations.

In rewriting the above equations as

m1,t|It−1 = 0, g1(x) = x,

m2,t|It−1 = α0 +
p∑
i=1

α1,ig2(xt−i) +
q∑
i=1

α2,im2,t−i, g2(x) = x2,

we can easily interpret the above model as a model for time-varying moments in the above
framework. As we only model the variance’s motion in time the corresponding ME distri-
bution again is the normal distribution.

8Compare Jaynes (1957).
9Compare Bollerslev (1986).
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Figure 1: Daily DAX returns from 1990-11-26 to 2008-02-22.

5 Measuring Volatility

The term volatility is used in many fields of science, mainly describing the notion of insta-
bility or variability. In financial literature it is often directly referred to the variance rate
of some generalized Wiener process.10 For time series analysis, including GARCH models,
volatility is usually measured by variance.

But to our view, volatility in financial analysis should also be defined more general, e.g.
as a distribution’s time-varying dispersion. Using this definition we could use any measure
of dispersion as a measure of volatility.

Measures of dispersion and required properties are discussed e.g. in Bickel and Lehmann
(1976) or Oja (1981). For the above proposed maximum entropy framework for time-varying
moments, we are only able to consider measures of dispersion that can be expressed in form
of an expected value of some function of the random variable g(X). This condition cancels
out frequently used measures of dispersion depending on quantiles, such as interquantile
range or mean absolute deviation from median.

But we can use the common measures such as variance or mean absolute deviation from
mean. Both of these are special cases of the more general class of measures of dispersion
proposed by Bickel and Lehmann (1976), called the pth power deviation, formally written
as

τp = (E (|X − µ|p))
1
p ,

10Compare Hull (1993).
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for 1 ≤ p ≤ 2. In our setting it is more convenient to change the notation and use the
monotone transformation of the pth power deviation

τ∗ = E (|X − µ|γ) .

6 A Feasible Model with a Generalized Variance

Using τ∗ as a measure of dispersion instead of variance, which means to replace g2, we derive
a more general model for a time-varying moment of dispersion as

m1,t|It−1 = 0, g1(x) = x

m2,t|It−1 = α0 +
p∑
i=1

α1,ig2(xt−i) +
q∑
i=1

α2,im2,t−i, g2(x) = |x|γ ,

where the traditional GARCH(p,q) model assuming Gaussian innovations appears as a spe-
cial case, if we set γ = 2.

The corresponding conditional maximum entropy density fME at a given time t with
information set It−1 can be derived as the solution to the problem

fME = argmax
f

(∫
R

f(v)ln(f(v))dv
)

where f is the density function, under the side conditions∫
R

f(v)dv = 1

and ∫
R

|v|γf(v)dv = m2,t|It−1.

The condition ∫
R

vf(v)dv = m1,t|It−1 = 0.

can be neglected, as it is not binding.11 The solution’s functional form is known from
standard literature on information theory as12

f(xt) = exp(λ0 + λ1|xt|γ).

This form coincides with the Box/Tiao error distribution (BT)13, which we will note as

fBT (xt) =
e−

1
γ (

|xt|
σt

)γ

c(γ)σt
11Compare Cover and Thomas (2006).
12Compare e.g. Cover and Thomas (2006) or Kapur (1989).
13Compare Box and Tiao (1962).
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where
c(γ) =

∫
R

e−
1
γ |v|

γ

dv.

For γ = 2 we find the normal distribution, for γ = 1 the Laplace distribution. As we find
for a given moment value14

E(|X|γ) =
∫
R

|v|γ e
− 1
γ (

|v|
σ )γ

c(γ)σ
dv = σγ ,

we can derive the dependence between λ0 and λ1 and m2,t as

λ0 = ln (−c(γ)σt) = ln
(
−c(γ)m−γ2,t

)
and λ1 =

1
γσγt

=
1

γm2,t
.

Using the scalability15 of the Box/Tiao error distribution, we can rewrite this model in
a notation similar to the original notation of GARCH(p,q) models as

xt|It−1 = σtzt with zt ∼MED (E (|zt|γ) = 1)

and

σγt |It−1 = E (|Xt|γ |It−1) = α0 +
p∑
i=1

αi|xt−i|γ +
q∑
i=1

βiσ
γ
t−i.

This model resembles to a model proposed by Higgins and Bera (1992) or the general
model proposed by Hentschel (1995), who applied similar specifications to model variance
under parametric assumptions for the distribution of zt.16

7 Application to Financial Market Time Series

For the application to data we will use a reduced version of the above model where we
set p = 1 and q = 1, as there is some evidence that for traditional GARCH models this
parametrization is sufficient.17 For the estimation of the models parameters we use the
maximum likelihood method. As exemplary market indices we will use daily returns of the
S&P 500, FTSE 100 and Nikkei 225 from January 2001 to August 2008. Numerical evidence
for our method is given by likelihood, see figure 2.

Here we consider three different cases, where in the first and last case γ is fixed to a value
of 1 or 2 and estimated as additional parameter by maximum likelihood in the second case.
Using asymptotic normality and the variance as estimated from the Hesse matrix (given in
small font below the estimates), we can reject the null hypothesis of γ being equal to 2 or

14For the proof see Appendix.
15See Appendix.
16Assuming Box/Tiao error distribution for zt, as suggested by Hentschel (1995), would result in a very

similar but slightly more general representation, but could no more be interpreted as an information-theoretic
model for time-varying moments, as defined above.

17Compare Bera and Higgins (1993).

7



Indice α̂0 α̂1 β̂1 γ/γ̂ logL AIC

S&P 500 0.00454
(0.00294)

0.05247
(0.01136)

0.94131
(0.01352)

1 -2492.809 4991.618

0.00493
(0.00254)

0.05985
(0.01087)

0.93451
(0.01219)

1.54308
(0.07286)

-2451.000 4910.000

0.00538
(0.00244)

0.06573
(0.01100)

0.93030
(0.01153)

2 -2466.152 4938.304

FTSE 100 0.01019
(0.00445)

0.09064
(0.01483)

0.89469
(0.01815)

1 -2419.808 4845.616

0.01051
(0.00349)

0.10949
(0.01466)

0.87890
(0.01577)

1.7483
(0.08260)

-2352.101 4712.202

0.01071
(0.00334)

0.11529
(0.01477)

0.87545
(0.01514)

2 -2356.182 4718.364

Nikkei 225 0.00786
(0.00424)

0.05639
(0.01119)

0.93325
(0.01398)

1 -2565.313 5136.626

0.00912
(0.00385)

0.06904
(0.01095)

0.92100
(0.01239)

1.58373
(0.07801)

-2522.219 5052.438

0.01076
(0.00401)

0.07915
(0.01120)

0.91231
(0.01171)

2 -2533.541 5073.082

Figure 2: Parameters, estimates, estimated standard errors (in brackets), log-likelihood and
AIC for our exemplary data sets.

1 for every data set. Our model receives not only the highest Likelihood value, but also the
highest value for the Akaike Information Criterion (AIC), which penalizes the inclusion of
the additional parameter γ. So, the generalized model performs best.

Figure 3 shows plots of kernel density of the estimated innovations together with the
theoretical distribution of the corresponding model for the S&P 500 data set, where γ = 1,
γ = 1.54308 and γ = 2 from the right to left.

Figure 3: Kernel density from estimated innovations and theoretical density.

We can see that the variance model does better for the innovations in the center, while the
generalized model slightly better captures the distribution’s tails. Still, even the innovations
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from the best performing model exhibit skewness as well as kurtosis. Using the approach for
time-varying moments, these phenomena could be included through additionally modeling
suitable skewness and kurtosis moments. Propositions for such models can be found in Bera
and Park (2008) and Fischer and Herrmann (2008).

8 Summary

In this article we present general models for time-varying moments. Using information
theory to make up for missing parametric assumptions we are able to show that GARCH
models assuming gaussian innovations appear as special case. Applying a model for a
time-varying moment to Bickel and Lehmann (1963)’s pth power deviation as a generalized
measure of volatility, we give a more general model for time-varying dispersion. Using
exemplary data sets and their sample likelihood as criteria we are able to give some empirical
evidence for this method.

Appendix

For the Box/Tiao-Error distributions holds that

E(|X|γ) =
∫
R

|v|γfBT (v)dv =
∫
R

|v|γ e
− 1
γ (

|v|
σ )γ

c(γ)σ
dv =

1
c(γ)σ

∫
R

|v|γe−
1
γ (

|v|
σ )γdv =

=
1

c(γ)σ

∫
R

σγ
|v|γ

σγ
e−

1
γ (

|v|
σ )γ =

σγ−1

c(γ)

∫
R

|v|γ

σγ
e−

1
γ (

|v|
σ )γdv,

setting z = v
σ ,

=
σγ−1

c(γ)

∫
R

|z|γe−
1
γ |z|

γ

σdz =
σγ

c(γ)

∫
R

|z|γe−
1
γ |z|

γ

dz = σγ
c(γ)
c(γ)

= σγ ,

furthermore the distribution is scalable, as

Z = g(Z) =
X

σ
with fX(x;σ) =

e−
1
γ (

|x|
σ )γ

c(γ)σ

⇒ fZ(z) = fg(X)(z) = fX(g−1(z))|dg
−1(z)
dz

| = e−
1
γ (z)γ

c(γ)
= fX(x; 1).
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