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A new kind of entropy will be introduced generalizing both the differential entropy
and the cumulative (residual) entropy. The generalization is twofold. Firstly, we
define the entropy for cumulative distribution functions (cdf) and survivor functions
(sf) simultaneously instead of densities, cdf or sf alone. Secondly, we consider a
general ’entropy generating function’ φ like Burbea & Rao (1982) or Liese & Vajda
(1987) in the context of φ-divergences. Combining the ideas of a φ-entropy and
a cumulative entropy gives the new ’cumulative paired φ-entropy’ (CPEφ). With
some modifications or simplifications this new entropy has already been discussed
in at least four scientific disciplines. In the fuzzy set theory cumulative paired φ-
entropies were defined for membership functions. A discrete version serves as a
measure of dispersion for ordered categorial variables. More recently, uncertainty
and reliability theory considered some variants as a measure of information. With
only one exception the discussions seem to happen independently of each other. We
consider CPEφ only for continuous cdf and show that CPEφ is rather a measure
of dispersion than a measure of information. At first, this will be demonstrated
by deriving an upper bound which is determined by the standard deviation and
by solving the maximum entropy problem under the restriction that the variance
is fixed. We cannot only reproduce the central role of the logistic distribution in
entropy maximization. We derive Tukey’s λ distribution as the solution of an entropy
maximization problem as well. Secondly, it will be shown explicitly that CPEφ
fulfills the axioms of a dispersion measure. The corresponding dispersion functional
can easily be estimated by an L-estimator with all its known asymptotical properties.
CPEφ are the starting point for several related concepts like mutual φ-information,
φ-correlation and φ-regression which generalize Gini correlation and Gini regression.
We give a short introduction into all of these related concepts. Also linear rank
tests for scale can be developed based on the new entropy. We show that almost
all known tests are special cases and introduce some new tests. In the literature
Shannon’s differential entropy has been calculated for a lot of distributions. The
formulas were presented explicitly. We have done the same for CPEφ if the cdf is
available in a closed form.

Keywords: φ-entropy, differential entropy, absolute mean deviation, cumulative residual en-
tropy, cumulative entropy, measure of dispersion, measure of polarization, generalized maximum
entropy principle, Tukey’s λ distribution, power logistic distribution, φ-dependence, φ-regression,
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1 Introduction

Burbea & Rao (1982) introduced the φ-entropy

Eφ(F ) =

∫
R
φ(f(x))dx (1)

with f being a probability density function and φ a strictly concave function. If we set φ(u) =
−u lnu, u ∈ [0, 1], we get Shannon’s differential entropy as the most prominent special case.

Recently, the discussion in Ebrahimi et al. (1999) has shown that entropies can be interpreted
as a measure of dispersion. Shannon (1948) derived the ’entropy power fraction’ and showed
that there is a close relationship between Shannon entropy and variance. Oja (1981) illustrated
that Shannon’s differential entropy holds a ordering of scale and is therefore a proper measure
of scale. In the discrete case, minimal Shannon entropy means maximal certainty about the
random outcome of an experiment. A degenerate distribution minimizes the Shannon entropy.
This is also true for the variance of a discrete quantitative random variable. For this degenerate
distribution, Shannon entropy and variance both take the value 0. However, there is an im-
portant difference between the differential entropy and the variance when discussing a discrete
quantitative random variable with support [a, b]. Differential entropy will be maximized by the
uniform distribution over [a, b] and the variance is maximal if both interval bounds a and b have
the probability mass of 0.5 (cf. Popoviciu (1935)). A similar result holds for a discrete random
variable with a finite number of realizations. Therefore, one can doubt that (1) is a true measure
of dispersion.

We propose to define the φ-entropy for cumulative distribution function (cdf) F and survivor
function (sf) 1− F instead of density functions f . With this modification we get

CPEφ(F ) = −
∫
R

(φ(F (x) + φ(1− F (x))) dx (2)

with an absolutely continuous cdf F . CPE stands for ’cumulative paired entropy’ and φ is the
’entropy generating function’ defined on [0, 1] with φ(0) = φ(1) = 0. Throughout this paper we
will almost always assume that φ is concave on [0, 1]. In particular, we will show that (2) holds
a prominent ordering of scale and attains its maximum if the domain is an interval [a, b] and a, b
occur with probability 1/2. This means that (2) behaves like a proper measure of dispersion. We
want to generalize results from the literature focussing on the Shannon case with φ(u) = −u lnu,
u ∈ [0, 1] (see Liu (2015)) and the cumulative residual entropy

CRE(F ) = −
∫
R+

(1− F (x)) ln(1− F (x))dx (3)

(cf. Wang et al. (2003)) or

CE(F ) = −
∫
R
F (x) lnF (x)dx (4)

(cf. Di Crescenzo & Longobardi (2009 a,b)). In this literature the entropy still has the interpre-
tation as a measure of information rather than dispersion without any clarification what kind
of information has been considered.

As a first general aim this paper wants to shown that entropies can be rather interpreted as
measures of dispersion than as measures of information. The second general aim is to demon-
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strate that entropy generating function φ, the weight function J in L-estimation, the dispersion
function d which serves as a criterion for minimization in robust rank regression, and the scores
generating function ϕ1 are closely related.

Special aims of the paper are:

1. To show that the cdf based entropy (2) has roots in several distinct scientific areas.

2. To demonstrate the close relationship between (2) and the standard deviation.

3. To derive maximum entropy distributions under simple and more complicated restrictions,
and to show that well-known and new distributions solve the maximum entropy principle.

4. To invert the question and to derive the entropy maximized by a given distribution under
some restrictions.

5. To prove formally that (2) is a measure of dispersion.

6. To propose a L-estimator for (2) and to derive its asymptotically properties.

7. To use (2) to get new related concepts measuring the dependence of random variables (like
mutual φ-information, φ-correlation and φ-regression).

8. To apply (2) to get new linear rank tests for the comparison of scale.

The paper is structured parallel to these aims. In the second section we give a short review of the
literature concerned with (2) or related measures. The third section starts with a summary of
the reasons why there is an advantage to define entropies for cdf and sf instead of densities. Some
equivalent characterization of (2) will be given if the derivative of φ exists. In the fourth section
we use the Cauchy-Schwarz inequalitty to derive an upper bound for (2). This upper bound gives
sufficient conditions for the existence of CPE. More stringent conditions for the existence will
be proven directly. In the fifth section the Cauchy-Schwarz inequality allows to derive maximum
entropy distributions if the variance is fixed. For more complicated restrictions we derive the
maximum entropy distributions by solving the Euler-Lagrange conditions. According to the
generalized maximum entropy principle (cf. Kapur (1983)) we change the perspective and ask
which entropy will be maximized if the variance and the population’s distribution is fixed. The
sixth section is of central importance because the properties of (2) as a measure of dispersion
will be investigated in detail. It will be shown that it satisfies an often applied ordering of scale,
is invariant with respect to translations and equivariant with respect to scale transformations.
Additionally, we provide some results concerning the sum of independent random variables. In
the seventh section a L estimator for CPEφ will be proposed. Some basic properties of this
estimator like the influence function, consistency and asymptotic normality are shown. Based on
CPEφ in the eight section we introduce several new statistical concepts generalizing divergence,
mutual information, Gini correlation and Gini regression. Additionally, new linear rank tests
for dispersion can base on CPEφ. The known linear rank tests like Mood- or Ansari-Bradley
test are special cases of this general approach. In this paper we leave off most of the technical
details which will be presented in several accompanying papers. In the last section we compute
(2) for some special generating functions φ and some selected families of distributions.
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2 State of the art – an overview

Entropies are usually defined on the simplex of probability vectors summing up to one (cf.
Hartley (1928), Shannon (1948)). Until now it is rather unusual to calculate the Shannon
entropy not for vectors of probability or probability density functions f but for distribution
functions F . The corresponding Shannon entropy is given by

CPES(F ) = −
∫
R

(F (x) lnF (x) + (1− F (x)) ln(1− F (x))dx. (5)

Nevertheless, we identified at least five scientific disciplines working directly or implicitly with
an entropy based on distribution or survivor functions:

1. Fuzzy set theory,

2. generalized maximum entropy principle,

3. theory of dispersion of ordered categorial variables,

4. uncertainty theory,

5. reliability theory.

Fuzzy set theory

To the best of our knowledge (5) has been introduced the first time by De Luca & Termini (1972).
However, they did not consider the entropy for a cdf F . Instead, they were concerned with a
so-called membership function µA quantifying the degree of which a certain element x of a set Ω
belongs to a subset A ⊆ Ω. Membership functions have been introduced by Zadeh (1968) within
the framework of the ’fuzzy set theory’. It is important, that maximum uncertainty to belong
to a set A should be attained if all elements of Ω will be mapped to the value 1/2. This main
property is one of the axioms for membership functions. In the aftermath of De Luca & Termini
(1972) numerous modifications to the term entropy have been made and axiomatizations of the
membership functions have been stated (see e. g. the overview in Pal & Bezdek (1994)).

Ultimately those modifications proceeded parallel to a long history of extensions and parametriza-
tions of the term entropy for vectors of probability and densities starting with Renyi (1961) up
to Esteban & Morales (1995) or Cichocki & Amari (2010), who provided a superstructure of
those generalizations consisting of a very general form of the entropy, including the φ-entropy
(1) as a special case. Burbea & Rao (1982) introduced the term φ-entropy. If both φ(x) and
φ(1 − x) appear in the entropy as in the Fermi-Dirac entropy (cf. Arndt (2004), p. 191) they
used the term ’paired’ φ-entropy.

Generalized maximum entropy principle

Regardless of the debate in the fuzzy set theory and the theory of measurement of dispersion
Kapur (1983) considered a growth model with logistic growth rate. He showed that this growth
model is yielded as solution of maximizing (5) under two simple constraints. This gives an ex-
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ample for the ’generalized maximum entropy principle’ postulated by Kesavan & Kapur (1989).
The simple maximum entropy principle introduced by Jaynes (1957a,b) derives a distribution
which maximizes an entropy given some constraints. The generalization of Kesavan & Kapur
(1989) consists of determining the φ-entropy which is maximized given a distribution and some
constraints. Ultimately, they used formula (5) with a small modification. The cdf had to be
replaced by a monotone increasing function having a logistic shape.

Theory of dispersion

Independently from the discussion of membership functions in the fuzzy set theory and the
proposals to generalize the Shannon entropy, Leik (1966) discussed a measure of dispersion for
ordered categorial variables with a finite number k of categories x1 < x2 < . . . < xk. His
measure is based on the distance between the k − 1-dimensional vectors of cumulated frequen-
cies (F1, F2, . . . , Fk−1) and (1/2, 1/2, . . . , 1/2). Both vectors coincide if only the both extreme
categories x1 and xk appear with the same frequency. This represents the case of maximal
dispersion. Consider

CPEφ(F ) =
k−1∑
i=1

(φ(Fi) + φ(1− Fi)) (6)

as a discrete version of (2). Setting φ(u) = min{u, 1−u} we get the measure of Leik as a special
case of (6) up to a change of sign. Vogel & Dobbener (1982) considered φ(u) = −uln(u) and the
Shannon variant of (6) as a measure of dispersion for ordered categorial variables. Numerous
modifications of Leik’s measure of dispersion have been published. Kv̊alseth (1989), Berry &
Mielke (1992a,b, 1994) and Blair & Lacy (1996, 2000) implicitly use φ(u) = 1/4 − (u − 1/2)2

or equivalently φ(u) = u(1 − u). The discussion took place mainly in the journal ’Perceptual
and Motor Skills’. For a recent overview on measuring dispersion, including ordered categorial
variables see f.e. Gadrich et al. (2014). Instead of dispersion, some articles are concerned with
related concepts like bipolarization and inequality for ordered categorial variables (cf. Allison &
Forster (2004), Zheng (2008), Abul Naga & Yalcin (2008), Zheng (2011) and Apouey & Silver
(2013)). A class of measures of dispersion for ordered categorial variables with a finite number of
categories that is similar to (6) had been introduced independently of each other by Klein (1999)
and Yager (2001). They were obviously not aware of the discussion in ’Perceptual and Motor
Skills’. Both authors gave axiomatizations to describe which functions φ will be appropriate for
measuring dispersion. However, at least Yager (2001) recognized the close relationship between
those measures and the general term of entropy in the ’fuzzy set’ theory. He introduced the
term ’dissonance’ to characterize more precisely what dispersion for ordered categorial variables
measures. In the language of information theory maximum dissonance means that there is still
some information in this extreme case. But this information is extremely contradictory. Let us
give an example from product evaluation. What can we learn for our decision to buy a product
if 50 percent of the recommendations are extremely good as well as extremely bad? This is an
important difference to the property of the Shannon entropy which is maximal if there is no
information at all. This means that all categories occur with the same probability.

Uncertainty theory

Liu (2015) (first edition 2004) can be considered as the founder of the uncertainty theory. This
theory is concerned with the formalization of data coming from expert opinions and not from
the repetition of a random experiment. Liu modified the Kolmogoroff axioms of probability
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theory slightly to receive an uncertainty measure. Starting with this uncertainty measure he
defined uncertainty variables, uncertainty distribution functions and moments of uncertainty
variables. The experts shall answer questions concerning the uncertainty distribution function.
Liu argued that ’an event is the most uncertain if its uncertain measure is 0.5 because the event
and its complement may be regarded as ”equally likely” (Liu (2015), p. xiv). Liu’s maximum
uncertainty principle states: ’For any event, if there are multiple reasonable values that an un-
certain measure may take, the the value as close to 0.5 as possible is assigned to the event”
(Liu (2015), p. xiv.). Similar to the fuzzy set theory, the distance between the uncertainty
distribution and the value 0.5 will be measured by the Shannon-type entropy (5). Apparently
for the first time in the third edition of 2010 he calculates (5) for several distributions (e. g. the
logistic distribution) explicitly and derived upper bounds. He applied the maximum entropy
principle to uncertainty distributions. The preferred constraint is to predetermine the values of
the mean and the variance (Liu (2015), p. 83ff.). In this case the logistic distribution maximizes
(5). In this sense the logistic distribution plays the same role as the Gaussian distribution in
probability theory. The Gaussian distribution maximizes the differential entropy given values for
mean and variance. Therefore in the uncertainty theory the logistic distribution will be called
”normal distribution”. Dai & Chen (2012) provided (5) as a function of the quantile function.
Dai (2012) chooses φ(u) = u(1 − u), u ∈ [0, 1] as entropy generating function and derives the
maximum entropy distribution as a discrete uniform distribution concentrated on the endpoints
of the compact domain [a, b] if no further restrictions are assumed. Popiviciu (1935) got the same
distribution as a result by maximizing the variance. Chen, Kar & Ralescu (2012) introduced
cross entropies and divergence measures based on general functions φ.

Reliability theory

Entropies also play a prominent role in reliability theory. They were introduced for hazard-
rates and residual lifetime distributions (cf. Ebrahimi (1996)). Rao et al. (2004) and Rao
(2005) introduced the cumulative residual entropy (3), discussed its properties and derive the
exponential and Weibull distribution by a maximum entropy principle given the coefficient of
variation. This work went into detail on the advantage of defining entropy via survivor functions
instead of probability density functions. Rao et al. (2004) were referring to the massive criticism
on the differential entropy by Schroeder (2004). Zografos & Nadaraja (2005) generalize the
Shannon-type cumulative residual entropy to an entropy of the Rényi-type. Drissi et al. (2008)
considered random variables with general support. They also give solutions for the maximization
of (3) if more general restrictions are considered. Similar to Chen & Dai (2011) they identified
the logistic distribution to be of maximum entropy given the mean, the variance and that the
distribution has to be symmetric. Di Crescenzo & Longobardi (2009) analyzed (4) for cdf. They
were engaged in the estimation of (4) and discussed the stochastic properties of the estimators.
Sunoj & Sankaran (2012) plugged the quantile function into the Shannon-type entropy (4) and
yielded expressions for the case that not the cdf but the quantile function has a closed form.
In recent papers an empirical version of (3) is used as a goodness-of-fit test (cf. Zardasht et al.
(2015)).

This brief overview shows that there are different disciplines accessing to an entropy based on
distribution functions. The contributions of the fuzzy set theory, the uncertainty theory and
the reliability theory have all in common that they consider continuous random variables exclu-
sively. The discussion about entropy in reliability theory on the one hand and fuzzy set theory
respectively uncertainty theory on the other hand took place independently without noticing
results of the other disciplines. However, Liu’s uncertainty theory benefits from the discussion
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in the fuzzy set theory. In the theory of dispersion of ordered categorial variables the authors do
not seem to be aware that they implicitly use a concept of entropy. Nevertheless the situation
is somewhat different to the other areas since only discrete variables were discussed. Kiesl’s
dissertation (2003) provides a theory of measures of the form (6) with numerous applications.
However, a intensive discussion of (2) is missing and shall be provided here.

3 Cumulative paired φ-entropy for continuous variables

3.1 Definition

We focus on an absolute continuous cdf F with density function f . The set of all those distribu-
tion functions is called F . We call a function ’entropy generating function’ if it is nonnegative
on the domain [0, 1] with φ(0) = φ(1) = 0. In this case, φ(u) + φ(1− u) is a symmetric function
with respect to 1/2.

Definition 3.1. The functional CPEφ : F → R+
0 with

CPEφ(F ) =

∫
R

(φ(F (x)) + φ(1− F (x))) dx (7)

is called cumulative paired φ-entropy for F ∈ F with entropy generating function φ.

In the next section we will discuss some sufficient criteria ensuring the existence of CPEφ. Until
then we assume that CPEφ exists. If X is a random variable with cdf F we occasionally use
the notation CPEφ(X).

Now, some examples of well established concave entropy generating functions φ and the corre-
sponding cumulative paired φ-entropies will be given.

1. Cumulative paired α-entropy CPEα: Following Havrda & Charvát (1967) let φ be given
by

φ(u) = u
uα−1 − 1

1− α
, u ∈ [0, 1]

for α > 0. The corresponding so-called cumulative paired α-entropy is

CPEα(F ) =

∫
R

(
F (x)

F (x)α − 1

1− α
+ (1− F (x))

(1− F (x))α − 1

1− α

)
dx. (8)

2. Cumulative paired Gini entropy CPEG: For α = 2 we get

CPEG(F ) = 2

∫
R
F (x)(1− F (x))dx. (9)

as a special case of CPEα.

3. Cumulative paired Shannon entropy CPES : Set φ(u) = −u lnu, u ∈ [0, 1] then

CPES(F ) = −
∫
R

(F (x) lnF (x) + (1− F (x)) ln(1− F (x))) dx (10)
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gives the entropy already mentioned in the introduction. It is a special case of CPEα for
α→ 1.

4. Cumulative paired Leik entropy CPEL: The function

φ(u) = min{u, 1− u} =
1

2
−
∣∣∣∣u− 1

2

∣∣∣∣ , u ∈ [0, 1].

represents the limiting case of a linear concave function φ. The measure of dispersion
proposed by Leik (1966) makes implicitly use of φ such that we call

CPEL(F ) = 2

∫
R

min{F (x), 1− F (x)}dx. (11)

cumulative paired Leik entropy.

Figure 1 gives an impression of the mentioned generating functions φ .

Figure 1: Some entropy generating functions φ
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3.2 Advantages of entropies based on the cdf

Rao et al. (2004) and Rao (2005) list several reasons why an entropy should better be defined for
distribution functions rather than density functions. Starting point is the well-known critique of
Shannon’s differential entropy −

∫
f(x) ln f(x)dx by several authors like Jumarie (1990), Kapur

(1994), p. 58f. and Schroeder (2004).

Transferred to cumulative paired entropies the advantages of entropies based on distribution
functions (see Rao et al. (2004)) are:

1. CPEφ is based on probabilities and has a consistent definition for both discrete and con-
tinuous random variables.

2. CPEφ is always non-negative.

3. CPEφ can be estimated easily by the empirical distribution function. This estimation is
strongly consistent due to the strong consistency of the empirical distribution function.

The problems of the differential entropy are occasionally discussed in the case of grouped data,
where the usual Shannon entropy is calculated for the probabilities of each group. As the amount
of groups is growing, the Shannon entropy does not converge to the respective differential entropy
but is even divergent (cf. e. g. Cover & Thomas (1991), p. 239, Kapur (1994), p. 54). In the
next section we will show that the discrete version of CPEφ converges to CPEφ as the number
of groups is growing to infinity.

3.3 CPEφ for grouped data

First we need some notation for characterizing grouped data. The interval [x̃0, x̃k] is divided
into k subintervals with limits x̃0 < x̃1 < ... < x̃k−1 < x̃k. The range of each group is called
∆xi = x̃i−x̃i−1 for i = 1, ..., k. Let X be a random variable with absolute continuous probability
function F which is only known at the limits of each group. The probabilities of each group are
denoted by pi = F (x̃i)− F (x̃i−1), i = 1, ..., k. X∗ states the random variable whose probability
function F ∗ is yielded by linear interpolation of the values of F at the limits of succeeding
groups. Ultimately, X∗ is the result of adding a independent, uniformly distributed random
variable to X. It holds, that

F ∗(x) = F (x̃i−1) +
pi

∆xi
(x− x̃i−1) if x̃i−1 < x ≤ x̃i (12)

for x ∈ R, respectively F ∗(x) = 0 for x ≤ x̃0 and F ∗(x) = 1 for x > x̃k.
Let X∗ denote the respective random variable of F ∗. The probability density function f∗ of X∗

is defined by f∗(x) = pi/∆xi for x̃i−1 < x ≤ x̃i, i = 1, ..., k.

Lemma 3.1. Let φ be a entropy generating function with antiderivative Sφ. The paired cumu-
lative φ-entropy of the distribution function in (12) is given as follows:

CPEφ(X∗) =
k∑
i=1

∆xi
pi

(Sφ(F (x̃i))− Sφ(F (x̃i−1)) + Sφ(1− F (x̃i−1))− Sφ(1− F (x̃i))) (13)
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Proof. For x ∈ (x̃i−1, xi] we have

F ∗(x) = ai + bix with bi = pi
∆xi

and ai = F (x̃i−1)− bix̃i−1

with ai + bix̃i−1 = F (x̃i−1), ai + bix̃i = F (x̃i), 1− ai − bix̃i−1 = 1− F (x̃i−1) and 1− ai − bix̃i =
1− F (x̃i), i = 1, 2, . . . , k. With y = ai + bix and dx = 1/bidy we have

CPEφ(X∗) =
k∑
i=1

∫ x̃i

x̃i−1

(φ(ai + bix) + φ(1− ai − bix)) dx

=

k∑
i=1

1

bi

∫ F (x̃i)

F (x̃i−1)
(φ(y) + φ(1− y)) dy

=
k∑
i=1

∆xi
pi

(∫ F (x̃i)

F (x̃i−1)
φ(y)dy −

∫ 1−F (x̃i)

1−F (x̃i−1)
φ(y)dy

)

=
k∑
i=1

∆xi
pi

(∫ F (x̃i)

F (x̃i−1)
φ(y)dy +

∫ 1−F (x̃i−1)

1−F (x̃i)
φ(y)dy

)

=
k∑
i=1

∆xi
pi

(Sφ (F (x̃i))− Sφ (F (x̃i−1))

+Sφ (1− F (x̃i−1))− Sφ (1− F (x̃i))) .

With this result we can easily prove the convergence property for CPEφ(X∗):

Theorem 3.1. Let φ be a generating function with antiderivative Sφ and F a continuous dis-
tribution function of the random variable X with support [a, b]. X∗ is the corresponding random
variable for grouped data with ∆x = (b− a)/k, k > 0. Then the following holds:

CPEφ(X∗)→
∫ b

a
(φ(F (x)) + φ(1− F (x)) dx for k →∞.

Proof. Consider equidistant classes with ∆xi = ∆x = (b − a)/k, i = 1, ..., k. In this case the
equation (13) results in

CPEφ(X∗) =

k∑
i=1

(
Sφ (F (x̃i))− Sφ (F (x̃i−1))

F (x̃i)− F (x̃i−1)

+
Sφ (1− F (x̃i−1))− Sφ (1− F (x̃i))

F (x̃i)− F (x̃i−1)

)
∆x. (14)

With k → ∞ we have ∆x → 0 such that for F continuous we get F (x̃i) − F (x̃i−1) → 0. The
antiderivative Sφ has the derivative φ almost everywhere such that with k →∞

k∑
i=1

Sφ (F (x̃i))− Sφ (F (x̃i−1))

F (x̃i)− F (x̃i−1)
∆x→

∫ b

a
φ(F (x))dx.

An analogue argument holds for the second term of (14).
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In addition to this theoretic result we get some useful expressions for CPEφ for grouped data
and a special choice of φ as the following corollary shows:

Corollary 3.1. Let φ be s. t.

φ(u) =

{
−u lnu für α = 1

−uuα−1−1
1−α für α 6= 1

with u ∈ [0, 1]. Then for α = 1

CPES(X∗) = −1

2

k∑
i=1

∆xi
pi

(
F (x̃i)

2 lnF (x̃i)− F (x̃i−1)2 lnF (x̃i−1)
)

−1

2

k∑
i=1

∆xi
pi

(
(1− F (x̃i−1))2 ln(1− F (x̃i−1))

−(1− F (x̃i))
2 ln(1− F (x̃i))

)
+

1

2
(x̃k − x̃0)

and for α 6= 1

CPEα(X∗) =
1

1− α

k∑
i=1

∆xi
pi

( 1

α+ 1

(
F (x̃i)

α+1 − F (x̃i−1)α+1
)

+

(1− F (x̃i−1))α+1 − (1− F (x̃i))
α+1
)
− (x̃k − x̃0).

Proof. With the antiderivatives

Sα(u) =

{
−1

2u
2 lnu+ 1

4u
2 für α = 1

1
1−α

(
1

α+1u
α+1 − 1

2u
2
)

für α 6= 1

and with pi = F (x̃i)− F (x̃i−1) it holds that

1

pi

(
F (x̃i)

2 − F (x̃i−1)2 + (1− F (x̃i−1))2 − (1− F (x̃i))
2
)

=
(F (x̃i)− F (x̃i−1))(F (x̃i) + F (x̃i−1))

F (x̃i)− F (x̃i−1)

+
(1− F (x̃i−1)− (1− F (x̃i)))((1− F (x̃i−1) + (1− F (x̃i))))

F (x̃i)− F (x̃i−1)
= 2

for i = 1, ..., k, from which the results follow immediately.

3.4 Alternative representations of CPEφ

If φ(0) = φ(1) = 0 holds and φ is differentiable, one can provide several alternative representa-
tions of CPEφ in addition to (7). Later this alternative representations will be useful to find
conditions insuring the existence of CPEφ and to find some simple estimators.
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Proposition 3.1. Let φ be a non-negative and differentiable function on the domain [0, 1] with
derivative φ′ and φ(0) = φ(1) = 0. Then for F ∈ F with quantile function F−1(u), density
function f and quantile density function q(u) = 1/f(F−1(u)) for u ∈ [0, 1], the following holds:

CPEφ(F ) =

∫ 1

0
(φ(u) + φ(1− u)q(u)) du, (15)

CPEφ(F ) =

∫ 1

0
(φ′(1− u)− φ′(u))F−1(u)du, (16)

CPEφ(F ) =

∫
R
x(φ′(1− F (x))− φ′(F (x)))f(x)dx. (17)

Proof. Apply probability integral transformation U = F (X) and partial integration.

Due to φ(0) = φ(1) = 0 it holds that∫ 1

0
(φ′(1− u)− φ′(u))du = 0.

This property helps to represent CPEφ as a covariance for which the Cauchy-Schwarz inequality
gives an upper bound.

Corollary 3.2. Let φ be a non-negative and differentiable function on the domain [0, 1] with
derivative φ′ and φ(0) = φ(1) = 0. Then, if U is uniformly distributed on [0, 1] and X ∼ F :

CPEφ(F ) = Cov(φ′(1− U)− φ′(U), F−1(U)), (18)

CPEφ(F ) = Cov(φ′(1− F (X))− φ′(F (X)), X). (19)

Proof. Let µ = E[X], then, since E[φ′(1− U)− φ′(U)] = 0,

CPEφ(F ) =

∫ 1

0
(φ′(1− u)− φ′(u))F−1(u)du

=

∫ 1

0
(φ′(1− u)− φ′(u))(F−1(u)− µ)du.

Depending on the context we will switch between this alternative representations of CPEφ.

12



4 Sufficient conditions for the existence of CPEφ

4.1 Deriving an upper bound for CPEφ

The Cauchy-Schwarz inequality for (18) resp. (19) provides an upper bound for CPEφ if the
variance σ2 = E[(F−1(u)− µ)2] exists and∫ 1

0
(φ′(1− u)− φ′(u))2du <∞ (20)

holds. The existence of the upper bound simultaneously ensures the existence of CPEφ.

Proposition 4.1. Let φ be a non-negative and differentiable function on the domain [0, 1] with
derivative φ′ and φ(0) = φ(1) = 0. If (20) holds, then for X ∼ F with V ar(X) < ∞ and
quantile function F−1 we have

CPEφ(F ) ≤
√
E ((φ′(1− U)− φ′(U))2)E ((F−1(U)− µ)2) (21)

CPEφ(F ) ≤
√
E ((φ′(1− F (X))− φ′(F (X)))2)σ2. (22)

Proof. The statement follows from

(
E
(
(φ′(1− U)− φ′(U))(F−1(U)− µ)

))2 ≤
∫ 1

0
(φ′(1− u)− φ′(u))2du

·E
(
(F−1(U)− µ)2

)
.

We consider the upper bound for the cumulative paired α-entropy.

Corollary 4.1. Let X be a random variable having a finite variance. Then

CPEα(X) ≤ σ
∣∣∣∣ α

1− α

∣∣∣∣
√

2

(
1

2α− 1
−B(α, α)

)
(23)

for α > 1/2, α 6= 1 and

CPES(X) ≤ πσ√
3

(24)

for α = 1.

13



Proof. For φ(u) = u(uα−1 − 1)/(1− α) and φ′(u) = (αuα−1 − 1)/(1− α), u ∈ [0, 1] we have∫ 1

0
(φ′(1− u)− φ′(u))2du =

(
α

1− α

)2 ∫ 1

0

(
uα−1 − (1− u)α−1

)2
du

= 2

(
α

1− α

)2(∫ 1

0
u2(α−1)du

−2

∫ 1

0
uα−1(1− u)α−1du

)
= 2

(
α

1− α

)2( 1

2α− 1
−B(α, α)

)
.

α > 1/2 is required for the existence of CPEα(X). For α = 1 we have φ(u) = −u lnu and
φ′(u) = − lnu− 1, u ∈ [0, 1] such that∫ 1

0
(φ′(1− u)− φ′(u))2du =

∫ 1

0

(
ln

(
1− u
u

))2

du =
π2

3
.

In the framework of uncertainty theory the upper bound for the paired cumulative Shannon
entropy has been derived by Chen & Dai (2011) (see also Liu (2015), p. 83). For α = 2 we get
the upper bound for the paired cumulative Gini entropy

CPEG(X) ≤ σ 2√
3
. (25)

This result has already been proved for non-negative uncertainty variables by Dai (2012). Finally,
one yields the following upper bound for the paired cumulative Leik entropy.

Corollary 4.2. Let X be a random variable with existing variance. Then

CPEL[X] ≤ 2σ (26)

Proof. Use ∫ 1

0
(sign(u− 1/2)− sign(1/2− u))2du = 4

to get the result.

4.2 Stronger conditions of existence for CPEα

Up to now we only considered the sufficient condition that the variance exists. Following argu-
ments in Rao et al. (2004) and Drissi et al. (2008) used for the special case of the cumulative
residual and the residual Shannon entropy one can derive stricter sufficient conditions for the
existence of CPEα.
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Theorem 4.1. If E(|X|p) <∞ for p > 1 then CPEα <∞ for α > 1/p

Proof. To prepare the proof first we notice that

u
uα−1 − 1

1− α
≤ −u lnu ≤ uu

β−1 − 1

1− β
≤ 1− u (27)

holds for 0 < β < 1 < α and 0 ≤ u ≤ 1.

The second fact we need for the proof is∫ ∞
0

(1− F (x))dx <∞ und

∫ 0

−∞
F (x)dx <∞ (28)

if E(X) <∞, because of

E(X) =

∫ ∞
0

(1− F (x))dx+

∫ 0

−∞
F (x)dx.

Thirdly it holds that
P (−X ≥ y) ≤ P (|X| ≥ y) for y > 0 (29)

because

P (|X| ≥ y) = 1− P (|X| < y) = 1− (P (X < y)− P (X ≤ −y))

= 1− P (X < y) + P (X ≤ −y)

= 1− P (X < y) + P (−X ≥ y).

CPEα consists of four indefinite integrals

CPEα =

∫ ∞
0

F (x)
F (x)α−1 − 1

1− α
dx+

∫ 0

−∞
(1− F (x))

(1− F (x))α−1 − 1

1− α
dx

+

∫ 0

−∞
F (x)

F (x)α−1 − 1

1− α
dx+

∫ ∞
0

(1− F (x))
(1− F (x))α−1 − 1

1− α
dx

It has to be shown separately that these integrals converge.

The convergence of the first two terms follows directly from the existence of E(X). With (27)
and (28) we have for α > 0∫ ∞

0
F (x)

F (x)α−1 − 1

1− α
dx ≤

∫ ∞
0

(1− F (x))dx <∞

and ∫ 0

−∞
(1− F (x))

(1− F (x))α−1 − 1

1− α
dx =

∫ 0

−∞
F (x)dx <∞.

For the third term we have to show that∫ 0

−∞
F (x)

F (x)α−1 − 1

1− α
dx <∞
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for α > 1/p. If p > 1, there is a β with 1/p < β < 1 and β < α. With (27) it is for −∞ < x ≤ 0

F (x)
F (x)α − 1

1− α
≤ F (x)

F (x)β − 1

1− β
≤ 1

1− β
F (x)β

because 1− β > 0.

With F (x) = P (X ≤ x) = P (−X ≥ −x) it holds

1

1− β
F (x)β

{
≤ 1

1−β für 0 ≤ −x ≤ 1

= 1
β−1P (−X ≥ −x)β ≤ 1

β−1P (|X| ≥ −x)β für 1 < −x <∞

For p > 0 the transformation g(y) = yp is monotone increasing for y > 1. With the Markov
inequality we get

P (|X| ≥ y) ≥ E[|X|p]
yp

.

Putting this results together we get that∫ 0

−∞
F (x)

F (x)α−1 − 1

1− α
dx ≤ 1

1− β
+

1

1− β

∫ ∞
1

E[|X|p]β

ypβ
dy <∞

for β > 1/p (that is pβ > 1) and due to
∫∞

1 1/yqdy <∞ for q > 1.

It remains to show the convergence of the fourth term:∫ ∞
0

(1− F (x))
(1− F (x))α−1 − 1

1− α
dx <∞

for α > 1/p. For p > 1, there is a β with 1/p < β < 1 and β < α. Due to (27) and 1 − β > 0
for 0 ≤ x <∞ it holds that

(1− F (x))
(1− F (x))α − 1

1− α
≤ (1− F (x))

(1− F (x))β − 1

1− β
≤ 1

1− β
(1− F (x))β.

With 1− F (x) = P (X > x) we have

1

1− β
(1− F (x))β

{
≤ 1

1−β für 0 ≤ x ≤ 1

= 1
β−1P (X ≥ x)β ≤ 1

β−1P (|X| ≥ x)β für 1 < x <∞

Now the Markov inequality gives

P (|X| ≥ y) ≥ E(|X|p)
yp

.

To summarize it is∫ 0

−∞
(1− F (x))

(1− F (x))α−1 − 1

1− α
dx ≤ 1

1− β
+

1

1− β

∫ ∞
1

E[|X|p]β

ypβ
dy <∞

for β > 1/p und by
∫∞

1 1/yqdy <∞ for q > 1. This completes the proof.

If the mean or the variance exist theorem 4.1 results in concrete conditions for α in order to
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insure the existence of CPEα:

1. If the variance of X exists (i. e. p = 2), CPEα(X) exists for α > 1/2.

2. E[|X|p] <∞ for p > 1 is sufficient for the existence of CPES (i. e. α = 1).

3. E[|X|p] <∞ for p = 1 is sufficient for the existence of CPEG (i. e. α = 2).

5 Maximum CPEφ distributions

5.1 Maximum CPEφ distributions for given mean and variance

Equality in the Cauchy-Schwarz inequality gives a condition under which the upper bound is
attained. This is the case, if there exists an affine linear relation between F−1(U) resp. X and
φ′(1−U)−φ′(U) resp. φ′(1−F (X))−φ′(F (X)) with probability equal to 1. Since the quantile
function is monotone increasing, such a affine linear function can only exist if φ′(1− u)− φ′(u)
is monotone as well (de- or increasing). This implies that φ needs to be a concave function on
[0, 1]. In order to derive a maximum CPEφ distributions under the restriction that the mean
and the variance are given one may consider only concave generating functions φ.

We summarize this obvious but important result in the following theorem:

Theorem 5.1. Let φ be a non-negative and differentiable function on the domain [0, 1] with
derivative φ′ and φ(0) = φ(1) = 0. F is the maximum CPEφ distribution with prespecified mean
µ and variance σ2 of X ∼ F iff there exists a constant b ∈ R such that

P

(
F−1(U)− µ =

σ√
E ((φ′(1− U)− φ′(U))2)

(φ′(1− U)− φ′(U))

)
= 1,

Proof. The upper bound of the Cauchy-Schwarz inequality will be attained if there are constants
a, b ∈ R such that

P
(
F−1(U) = a+ b(φ′(1− U)− φ′(U))

)
= 1.

The property φ(0) = φ(1) = 0 leads to E ((φ′(1− U)− φ′(U))) = 0 such that

µ =

∫ 1

0
F−1(u)du = a+ b

∫ 1

0
(φ′(1− u)− φ′(u))du = a.

This means that there is a constant b ∈ R with

P
(
F−1(U)− µ = b(φ′(1− U)− φ′(U))

)
= 1.

The second restriction postulates

σ2 =

∫ 1

0
(F−1(u)− µ)2du = b2E

(
(φ′(1− U)− φ′(U))2

)
.
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φ is concave on [0, 1] with

−φ′′(1− u)− φ′′(u) ≤ 0 u ∈ [0, 1].

Therefore φ′(1 − u) − φ′(u) is monotone increasing. The quantile function is also monotone
increasing, such that b has to be positive. This gives

b =
σ√

E ((φ′(1− U)− φ′(U))2)
.

The quantile function of the Tukey λ distribution is given by

Q(u, λ) =
1

λ
(uλ − (1− u)λ) u ∈ [0, 1], λ 6= 0,

mean and variance are

µ = 0 und σ2 =
2

λ2

(
1

2λ+ 1
−B(λ+ 1, λ+ 1)

)
.

The domain is given by [−1/λ, 1/λ] for λ > 0.

Discussing the paired cumulative α-entropy one can prove the new result that the Tukey λ
distribution is the maximum CPEα distribution for prespecified mean and variance. Tukey’s λ
distribution assumes the role of the Student-t distribution if one changes from the differential
entropy to CPEα (c.f. Kapur (1988)).

Corollary 5.1. The cdf F maximizes CPEα for α > 1/2 under the restrictions of a given mean
µ and given variance σ2 iff F is cdf of the Tukey λ distribution with λ = α− 1.

Proof. For φ(u) = u(uα−1 − 1)/(1− α), u ∈ [0, 1] we have∫ 1

0
(φ′(1− u)− φ′(u))2du =

(
α

1− α

)2 ∫ 1

0
((1− u)α−1 − uα−1)2du

= 2

(
α

1− α

)2( 1

2α− 1
−B(α, α)

)
for α > 1/2. As a consequence the constant b is given by

b =
1√
2
σ

∣∣∣∣1− αα
∣∣∣∣ ( 1

2α− 1
−B(α, α)

)−1/2

.

and maximum CPEα distribution results in

F−1(u)− µ =
σ√
2

∣∣∣∣1− αα
∣∣∣∣ ( 1

2α− 1
−B(α, α)

)−1/2

· α

1− α
(
(1− u)α−1 − uα−1

)
= σ

|α− 1|√
2

(
1

2α− 1
−B(α, α)

)−1/2

·
(
uα−1 − (1− u)α−1

)
α− 1

for α > 1/2. F−1 can easily be identified as the quantile function of a Tukey λ distribution with
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λ = α− 1 and α > 1/2.

For the Gini case α = 2 one yields the quantile function of an uniform distribution

F−1(u) = µ+ σ

√
1

2

√
6 (2u− 1) = µ+ σ

√
3(2u− 1), u ∈ [0, 1]

with domain [µ−
√

3σ, µ+
√

3σ]. This maximum CPEG distribution corresponds essentially to
the distribution derived by Dai (2012).

The result that the logistic distribution is the maximum CPES distribution if the mean and the
variance are given was derived by Chen & Dai (2011) in the framework of uncertainty theory
and by Drissi et al. (2008), p. 4 in the framework of reliability theory. Both proved the result
with the help of Euler-Lagrange equations. Only for completeness we provide an alternative
proof via the upper bound of the Cauchy-Schwarz inequality.

Corollary 5.2. The cdf F maximizes CPES under the restrictions of a known mean µ and a
known variance σ2 iff F is the cdf of a logistic distribution.

Proof. Since ∫ 1

0

(
ln

(
1− u
u

))2

du =
π2

3
(30)

one gets

F−1(u)− µ =
σ

π/
√

3
ln

(
1− u
u

)
, u ∈ [0, 1].

Inverting gives the distribution function of the logistic distribution with mean µ and variance 1:

F (x) =
1

1 + exp
(
− π√

3

x−µ
σ

) x ∈ R.

As a last example we consider the cumulative paired Leik entropy CPEL.

Corollary 5.3. The cdf F maximizes CPEL under the restriction of a known mean µ and
known variance σ2 iff for F holds

F (x) =


0 für x < µ− σ

1/2 für µ− σ ≤ x < µ+ σ
1 für x ≥ µ+ σ

Proof. From φ(u) = min{u, 1− u} and φ′(u) = sign(1/2− u), u ∈ [0, 1] it follows

F−1(u)− µ = σsign(u− 1/2), u ∈ [0, 1].
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This means that the maximization of CPEL with given mean and variance leads to a distribution
whose variance is maximal on the interval [µ− σ, µ+ σ].

5.2 Maximum CPEφ distributions for general moment restrictions

Drissi et al. (2008) discusses general moment restrictions of the form∫ ∞
−∞

ci(x)f(x)dx =

∫ 1

0
ci(F

−1(U))du = ki, i = 1, 2, . . . , k, (31)

where the existence of the moments is assumed. By use of the Euler-Lagrange equations they
show, that

1− F (x) =
1

1 + exp(
∑r

i=1 λic
′
i(x))

, x ∈ R

maximizes the residual cumulative entropy −
∫
R(1− F (x) ln(1− F (x)))dx under the constraint

(31) and that the solution needs to be symmetric with respect to µ. λi, i =, ..., k are the Lagrange
parameters determined by the moment restrictions provided a solution exists. Rao (2005) shows
that for distributions with support R+ the maximum entropy distribution is given by

1− F (x) = exp

(
−

r∑
i=1

λic
′
i(x)

)
, x > 0.

if again the restrictions (31) are demanded.

It is an obvious task to examine the shape of a distribution that maximizes the cumulative
paired φ-entropy under the constraints (31). This maximum CPEφ distribution can no longer
be derived by the upper bound of the Cauchy-Schwarz inequality if i > 2. One has to solve the
Euler-Lagrange equations for the objective function∫ 1

0
(φ′(u)− φ′(1− u))F−1(u)du−

k∑
i=1

λi(ci(F
−1(u))− ki) (32)

with Lagrange parameters λi, i = 1, 2, . . . , k. The Euler-Lagrange equations lead to the opti-
mization problem

k∑
i=1

λic
′
i(F
−1(u)) = φ′(1− u)− φ′(u), u ∈ [0, 1] (33)

for i = 1, ..., k. Again, there is a close relation between the derivative of the generating function
and the quantile function, provided a solution of the optimization problem (32) exists.

The following example shows, that the optimization problem (32) leads to useful distribution if
the constraints will be chosen carefully in the case of a Shannon-type entropy.

Example 5.1. The power logistic distribution is defined by the distribution function

F (x) =
1

1 + exp (−λ sign(x)xγ)
, x ∈ R
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for γ > 0. The corresponding quantile function reads as

F−1(u) =

(
1

λ

)1/γ

sign(u− 1/2)

∣∣∣∣ln(1− u
u

)∣∣∣∣1/γ , u ∈ [0, 1].

This quantile function is also the solution of (33) given φ(u) = −u lnu, u ∈ [0, 1] under the
constraint E

[
|X|γ+1

]
= c. The maximum of the cumulative paired Shannon entropy under the

constraint E
[
|X|γ+1

]
= c is given by

CPES(X) =

∫ 1

0
ln

(
1− u
u

)(
1

λ

)1/γ

sign(u− 1/2) ·
∣∣∣∣ln(1− u

u

)∣∣∣∣1/γ du
=

(
1

λ

)1/γ ∫ 1

0

∣∣∣∣ln(1− u
u

)∣∣∣∣/γ+1)/γ

du = λE(|X|γ+1)

Setting γ = 1 leads to the familiar result for the upper bound of CPES given the variance.

5.3 Generalized principle of maximum entropy

Kesavan & Kapur (1989) introduced the generalized principle of maximum entropy problem
which describes the interplay of entropy, constraints and distributions. A variant of this prin-
ciple is to find an entropy which will be maximized by a given distribution and some moment
restrictions.

This problem can be solved easily for CPEφ if the mean and variance are given due to the
linear relationship between φ′(1− u)− φ′(u) and the quantile function F−1(u) of the maximum
CPEφ distribution provided by the Cauchy-Schwarz inequality. However, it is a precondition
for F−1(u) that φ′(1−u)−φ′(u) is strictly monotone on [0, 1] in order to be a quantile function.
Therefore, the concavity of φ(u) and the condition φ(0) = φ(1) = 0 are of central importance.

We demonstrate the solution of the generalized principle of maximum entropy problem for the
Gaussian and the Student-t distribution.

Proposition 5.1. Let ϕ, Φ and Φ−1 be the density, the cdf and the quantile function of a stan-
dard Gaussian random variable. The Gaussian distribution is the maximum CPEφ distribution
given mean µ and variance σ2 for CPEφ with entropy generating function

φ(u) = ϕ(Φ−1(u)), u ∈ [0, 1].

Proof. With

φ′(u) =
ϕ′(Φ−1(u))

ϕ(Φ−1(u))
= −Φ−1(u), u ∈ [0, 1].

the condition for the maximum CPEφ distribution with mean µ and variance σ2 becomes

F−1(u)− µ =
σ√∫ 1

0 (2Φ−1(u))2du
2Φ−1(u), u ∈ [0, 1].
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Substituting
∫ 1

0 (2Φ−1(u))2du = 4 one gets

F−1(u)− µ = σΦ−1(u), u ∈ [0, 1]

such that F−1 is the quantile function of a Gaussian distribution with mean µ and variance
σ2.

An analogue result holds for the Student-t distribution with k degrees of freedom. The main
difference to the Gaussian distribution is that the entropy generating function has no closed
form but is given by numerical integration of the quantile function.

Corollary 5.4. Let tk and t−1
k be the cdf and the quantile function of a Student-t distribution

with k degrees of freedom for k > 2. µ+ k
k−2 t

−1
k is the maximum CPEφ quantile function given

mean µ and variance σ2 iff

φ(u) =

√
k − 2

k

∫ u

0
t−1
k (p)dp, u ∈ [0, 1].

Proof. Starting with

φ′(u) = −
√
k − 2

k
t−1
k (u), u ∈ [0, 1]

and the symmetry of the tk distribution around µ we get the condition

F−1(u)− µ =
σ√∫ 1

0 (2t−1
k (u))2du

2
√
k − 2kt−1

k (u), u ∈ [0, 1].

With
∫ 1

0 (t−1
k (u))2du = k/(k−2) we get the quantile function of the t distribution with k degrees

of freedom and mean µ:

F−1(u)− µ = σ
k − 2

k
t−1
k = t−1

k (u), u ∈ [0, 1]

The following figure 3 gives an impression of the shape of the entropy generating function φ for
several distributions generated by the generalized maximum entropy principle.

6 CPEφ as a measure of scale

6.1 Basic properties of CPEφ

The cumulative residual entropy (CRE) introduced by Rao et al. (2004), the generalized cumula-
tive residual entropy (GRCE) of Drissi et al. (2008) and the cumulative entropy (CE) discussed
by Creszenzo & Longobardi (2009) have always been interpreted as a measure of information.
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Figure 2: Several entropy generating functions φ derived from the generalized maximum entropy
principle

However, all these approaches do not explain what kind of information will be considered. In
contrast to this interpretation as a measure of information, Oja (1981) proved that the differen-
tial entropy holds a special ordering of scale and has some meaningful properties of a measure
of scale. Ebrahimi et al. (1999) discussed the close relationship between differential entropy
and variance. In the discrete case the Shannon entropy has an interpretation of a measure of
diversity, which is a concept of dispersion when there is no ordering and no distance between
the realizations of a random variable. In the last section (see lemma 4.1 and lemma 6.1) we will
clarifying the important role the variance plays for the existence of CPEφ.

Therefore, we want to get a deeper insight in CPEφ as a proper measure of scale. We start by
showing that CPEφ has typical properties of a measure of scale. In detail a proper measure of
scale should always be non-negative and attain its minimal value 0 for a degenerated distribu-
tion. If a finite interval [a, b] will be considered as support a measure of scale should attain its
maximum if a and b occur with probability 1/2. CPEφ has all these properties as will be shown
in the next proposition.

Proposition 6.1. Let φ : [0, 1] → R with φ(u) > 0 for u ∈ (0, 1) and φ(0) = φ(1) = 0. X
shall be a random variable with support D. CPEφ will be assumed to exist. Then the following
properties hold:

1. CPEφ(X) ≥ 0
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2. CPEφ(X) = 0 iff there exists x∗ with P(X = x∗) = 1.

3. CPEφ(X) attains it maximum iff there exist a, b with −∞ < a < b < ∞ such that
P(X = a) = P(X = b) = 1/2

Proof. 1. Follows from the non-negativity of φ.

2. If there is x∗ ∈ R with P(X = x∗) = 1 then FX(x) = 0 and 1 − FX(x) ∈ {0, 1} for all
x ∈ R. Due to φ(0) = φ(1) = 0 it follows φ(FX(x)) = φ(1− FX(x)) = 0 for all x ∈ R.

Let now be CPEφ(X) = 0. Because of the non-negativity of the integrand φ(FX(x)) +
φ(1 − FX(x)) = 0 must hold for x ∈ R. Since φ(u) > 0, 0 < u < 1 it follows FX(x),
1− FX(x) ∈ {0, 1} for x ∈ [0, 1].

3. Let CPEφ(X) have a finite maximum. Since φ(u) + φ(1 − u) has a unique maximum at
u = 1/2, the maximum of CPEφ(X) is

2

∫
D
φ(1/2)du = 2φ(1/2)

∫
D
du.

In order to attain the assumed finite maximum, the support D has to be a finite inter-
val [a, b]. In this case the maximum is 2φ(1/2)(b − a). Now, it suffices to construct a
distribution with support [a, b] that attains this maximum. Set

F (x) =


0 für x < a

1/2 für a ≤ x ≤ b
1 für x ≥ b

Then CPEφ(F ) =
∫ b
a (φ(F (x)) + φ(1− F (x))dx = 2φ(1/2)(b− a). Therefore, F is CPEφ-

maximal.

To prove the other direction of stated we consider a arbitrary distribution G with support
[a, b]. Due to φ(0) = φ(1) = 0 and φ(u) + φ(1− u) ≤ 2φ(1/2) it holds that

CPEφ(G) =

∫ b

a
φ(G(x)) + φ(1−G(x))dx ≤ 2φ(1/2)(b− a) = CPEφ(F ).

6.2 CPEφ and Oja’s axioms for measures of scale

Oja (1981), p. 159 defined a measure of scale as follows:

Definition 6.1. Let F be a set of continuous distribution functions and � an appropriate
ordering of scale on F . T : F → R is called measure of scale, if

1. T (aX + b) = |a|T (X) for all a, b ∈ R, F ∈ F ,

2. T (X1) ≤ T (X2), if X1 ∼ F1, X2 ∼ F2, F1, F2 ∈ F with F1 � F2.
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Oja (1981) discussed several orderings of scale. He showed in particular that Shannon entropy
and variance hold a partial quantile based ordering of scale which has been discussed by Bickel
& Lehmann (1976). Burger (1993) criticized, referencing to Behnen & Neuhaus (1989), that this
ordering and the location-scale family of distributions focused by Oja (1981) were too restrictive.
He discussed a more general nonparametric model of dispersion based on a more general ordering
of scale (see Bickel & Lehmann (1979), Pfanzagl (1985)). Like Ebrahimi et al. (1999) we focus
on the scale ordering proposed by of Bickel & Lehmann (1976).

Definition 6.2. Let F1, F2 be continuous cdf with respective quantile function F−1
1 and F−1

2 .
F2 is called more spread out as F1 (F1 �1 F2) if

F−1
2 (u)− F−1

2 (v) ≥ F−1
1 (u)− F−1

1 (v) for all 0 < u < v < 1. (34)

If F1 resp. F2 is absolute continuous with density functions f1 resp. f2 �1 can be characterized
equivalently by the property that F−1

2

(
F−1

1 (x)
)
− x is monotone non-decreasing or

f1(F−1
1 (u)) ≥ f2(F−1

2 (u)), u ∈ [0, 1] (35)

(cf. Oja, p. 160).

Now, we want to show that CPEφ is a measure of scale in the sense of Oja (1981). This first
lemma investigates the behavior of CPEφ with respect to affine-linear transformations which
refers to the first axiom of definition 6.1.

Lemma 6.1. Let F be the cdf of the random variable X. Then

CPEφ(aX + b) = |a|CPEφ(X)

Proof. Let Y = aX + b, then

∫ ∞
−∞

φ(P (Y ≤ y))dy =


∫∞
−∞ P

(
X ≤ y−b

a

)
dy für a > 0∫∞

−∞ P
(
X > y−b

a

)
dy für a < 0

Substitution of x = (y − b)/a with dy = adx gives∫ ∞
−∞

φ(P (Y ≤ y))dy =

{
a
∫∞
−∞ P (X ≤ x) dx für a > 0

−a
∫∞
−∞ P (X > x) dx für a < 0

At the same time is∫ ∞
−∞

φ(P (Y > y))dy =

{
a
∫∞
−∞ P (X > x) dx für a > 0

−a
∫∞
−∞ P (X ≤ x) dx für a < 0

,

such that
CPEφ(aX + b) = |a|CPEφ(X).

In order to satisfy the second axiom of Oja’s definition of a measure of scale CPEφ has to hold
the ordering of scale �. This is shown by the following lemma.
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Lemma 6.2. Let F1, F2 be continuous cdf of the random variables X1 and X2 with F1 �1 F2.
Then the following holds:

CPEφ(X1) ≤ CPEφ(X2).

Proof. One can show with u = Fi(x) that

CPEφ(Fi) =

∫ 1

0
φ(u)

1

fi(F
−1
i (u))

du+

∫ 1

0
φ(1− u)

1

fi(F
−1
i (u))

du

for i = 1, 2. Therefore,

CPEφ(F1)− CPEφ(F2) =

∫ 1

0
φ(u)

(
1

f1(F−1
1 (u))

− 1

f2(F−1
2 (u))

)
du

+

∫ 1

0
φ(1− u)

(
1

f1(F−1
1 (u))

− 1

f2(F−1
2 (u))

)
du.

If F1 �1 F2 and hence f1

(
F−1

1 (u)
)
≥ f2

(
F−1

2 (u)
)

for u ∈ [0, 1], it follows that CPEφ(F1) −
CPEφ(F2) ≤ 0.

As a consequence of lemma 6.1 and lemma 6.2 CPEφ is a measure of scale in the sense of Oja
(1981). CPEφ shares this properties with the variance, the differential entropy a many other
statistical measures.

6.3 CPEφ and transformations

Ebrahimi et al. (1999), p. 323, considered the cdf F1 resp. F2 on domainD1 resp. D2 and density
functions f1 resp. f2 which are connected via F2(x) = F1

(
g−1(x)

)
, x ∈ D1, a differentiable

transformation g : D1 → D2, that is F2(y) = F1 (g(y)) resp. f2(y) = f1

(
g−1(y)

) ∣∣dg−1(y)/dy
∣∣

for y ∈ D1. Ebrahimi et al. (1999) showed for Shannon’s differential entropy H that the
transformation only affects the difference:

H(f2) = H(f1)−
∫
D2

ln

∣∣∣∣dg−1(y)

dy

∣∣∣∣ f2(y)dy.

For CPEφ one gets a less explicit relationship between CPEφ(F2) and CPEφ(F1):

CPEφ(F2) =

∫
D1

(φ(F1(y)) + φ(1− F1(y)))
dg−1(y)

dy
.

Of special interest are transformations with |g′(y)| ≥ 1, y ∈ D2 since such a transformation does
not diminish a measure of scale. In theorem 1 Ebrahimi et al. (1999) show that F1 �1 F2 holds
if |g′(y)| ≥ 1 for y ∈ D2. Hence, every measure of scale cannot be diminished by this special
transformation. Especially, this is true for the Shannon entropy H and for CPEφ.

Ebrahimi et al. (1999) considered the special transformation g(x) = ax + b, x ∈ D1. They
showed that Shannon’s differential entropy is moved additively by this transformation which is
not what we would expect from a measure of scale. The standard deviation is changed by the
factor |a|, the same is true for CPEφ as we have shown in lemma 6.1.
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6.4 CPEφ for the sum of independent random variables

As is generally known, variance and differential entropy behave additively for the sum of inde-
pendent random variables X and Y . More general entropies like the Rényi or the Havrda &
Charvát entropy are only subadditive (c.f. Arndt (2004), p. 194).

The property of additivity or just subadditivity cannot be shown for cumulative paired φ-
entropies. Instead, they possess a maximum property if φ is a concave function on [0, 1]. This
means for two independent variables X and Y that CPEφ(X+Y ) is bounded from below by the
maximum of the two individual entropies CPEφ(X) and CPEφ(Y ). This result has been shown
by Rao et al. (2004) for the case of the cumulative residual Shannon entropy. The following
theorem generalizes this result. The proof follows partially Rao et al. (2004), theorem 2.

Theorem 6.1. Let X and Y be independent random variables and φ a concave function on the
interval [0, 1] with φ(0) = φ(1) = 0. Then we have

CPEφ(X + Y ) ≥ max {CPEφ(X), CPEφ(Y )} (36)

Proof. Let X and Y be independent random variables with distribution functions FX , FY and
densities fX , fY . With the convolution formula we get immediately

P (X + Y ≤ t) =

∫ ∞
−∞

FX(t− y)fY (y)dy = EY [FX(t− Y )], t ∈ R. (37)

Applying Jensen’s inequality for a concave function φ to formula (37) results in

EY [φ(FX(t− Y ))] ≥ φ (EY [FX(t− Y )]) (38)

and
EY [φ(1− FX(t− Y ))] ≥ φ (EY [1− FX(t− Y )]) . (39)

The existence of the expectation is assumed. To prove the theorem’s statement we start with

CPEφ[X + Y ] =

∫ ∞
−∞

(φ (EY [FX(t− Y )]) + φ (EY [1− FX(t− Y )])) dt.

By using (38) and (39), setting z = t− y and exchanging the order of integration one yields

CPEφ[X + Y ] ≥
∫ ∞
−∞

∫ ∞
−∞

(φ (FX(t− y)) + φ (1− FX(t− y))) dtfY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

(φ (FX(z)) + φ (1− FX(z))) dzfY (y)dy

=

∫ ∞
−∞

(φ (FX(z)) + φ (1− FX(z))) dz = CPEφ[X].

Liu (2015) considered a different definition of independence for uncertainty variables leading to
the simpler additivity property

CPEφ(X + Y ) = CPEφ(X) + CPEφ(Y ) (40)

27



for independent uncertainty variables X and Y .

7 Estimation of CPEφ

Beirlant et al. (1997) gave an overview for estimators of the differential entropy. Ultimately, all
proposals are based on the estimation of a density function f inheriting all typical problems of
non-parametric estimaton of a density function. Among others, those problems are biasedness,
the choice of a kernel and the optimal choice of the smoothing parameter (cf. Büning & Trenkler
(1994), p. 215 ff.). However, CPEφ is based on the cdf F for which several natural estimators
with desirable stochastic properties derived from the theorem of Glivenko & Cantelli (cf. Serf-
fling (1980), p. 61) exist. For a simple random sample sample (X1, ..., Xn) of identically and
independently distributed random variables with common distribution function F Di Crescenzo
& Longobardi (2009a,b) estimate F by the empirical distribution function Fn(x) = 1

n I(Xi ≤ x)
for x ∈ R and They showed for the cumulative entropy CE(F ) = −

∫
R F (x) lnF (x)dx that

the estimator CE(Fn) is consistent for CE(F ) (cf. Di Crescenzo & Longobardi (2009a)). In
particular, if F is the distribution function of a uniform distribution they provided the expected
value of the estimator and showed that the estimator is asymptotically normal. If F is cdf of an
exponential distribution they derived additionally the variance of the estimator.

In the following we generalize the estimation approach of Di Crescenzo & Longobardi by em-
bedding it into the well-established theory of L-estimators (cf. e. g. Huber (1981), p. 55ff.). If
φ is differentiable, CPEφ can be reprsented as the covariance between the random variable X
and φ′(1− F (X))− φ′(F (X))

CPEφ(F ) = E
(
X
(
φ′(1− F (X))− φ′(F (X))

))
. (41)

An unbiased estimator for this covariance is

CPEφ(Fn) =
1

n

n∑
i=1

Xi(φ
′(1− Fn(Xi))− φ′(Fn(Xi)))

=
1

n

n∑
i=1

Xn:i(φ
′(1− Fn(Xn:i))− φ′(Fn(Xn:i)))

=
1

n

n∑
i=1

(
φ′
(

1− i

n+ 1

)
− φ′

(
i

n+ 1

))
Xn:i (42)

=
n∑
i=1

cniXn:i

with

cni =
1

n

(
φ′
(

1− i

n+ 1

)
− φ′

(
i

n+ 1

))
, i = 1, 2, . . . , n.

This results in an L-estimator
∑n

i=1 J(i/(n+ 1))Xn:i with J(u) = φ′(1− u)− φ′(u), u ∈ (0, 1).
Applying known results for the influence function of L estimators (cf. Huber (1981)) we get for
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the influence function of CPEφ

IF (x;CPEφ, F ) =

∫ 1

0

u

f(F−1(u))
(φ′(1− u)− φ′(u))du

−
∫ 1

F (x)

1

f(F−1(u))
(φ′(1− u)− φ′(u))du. (43)

In particular, the derivative is

dIF (x;CPEφ, F )

dx
= φ′(1− F (x))− φ′(F (x))), x ∈ R. (44)

This means that the influence function will be completely determined by the anti-derivative
of φ′(F (x)). The following examples demonstrate that the influence function of CPEφ can be
calculated easily if the underlying distribution F is logistic. We consider the Shannon, the Gini
and the α-entropy case.

Example 7.1. Starting with the derivative

dIF (x;CPES , F )

dx
= φ′(1− F (x))− φ′(F (x)) = ln

(
F (x)

1− F (x)

)
= x, x ∈ R

we arrive at

IF (x,CPES , F ) =
1

2
x2 + C, x ∈ R.

The influence function is not bounded and proportional to the influence function of the variance
which implies that variance and CPES have a similar asymptotical and robustness behavior.
The integration constant C has to be determined such that E [IF (x;CPES , F )] = 0:

C = −1

2
E(X2) = −1

2

π2

3
= −π

2

6
.

Example 7.2. Using the Gini entropy CPEG and the logistic distribution function F we have

dIF (x;CPEG, F )

dx
= φ′(1− F (x))− φ′(F (x))) = 2(F (x)− 1)

= 2
ex − 1

ex + 1
= 2 tanh

(x
2

)
, x ∈ R.

Integration gives the influence function

IF (x,CPEG, F ) = 4 ln
(

cosh
(x

2

))
+ C, x ∈ R.

With numerical integration we get C = −1.2741.

Example 7.3. For φ(u) = u(uα−1− 1)/(1−α) the derivative of the influence function is given
by

dIF (x;CPEα, F )

dx
= φ′(1− F (x))− φ′F (x) =

α

1− α
1− e(α−1)x

(1 + ex)α−1

=
α

1− α

(
1

(1 + ex)α−1
− 1

(1 + e−x)α−1

)
x ∈ R.
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Integration leads to the influence function

IF (x,CPEα, F ) = 2F1(α, α;α+ 1;−e−x)
eαx

α

(
1 +

(
e−x + 1

ex + 1

)α)
+

1

α− 1

(
1 + ex + e(α−1)x

(ex + 1)α
− 1

)

with

2F1(α, α;α+ 1;−e−x) = α

∫ 1

0
tα−1

(
1 + te−x

)−α
dt+ C, x ∈ R.

Under certain conditions (see Jurečková & Sen (1996), p. 143) concerning J , resp. φ and F
L estimators are consistent and asymptotical normal. This means for the cumulative paired
φ-entropy

CPEφ(Fn) ∼asy N
(
CPEφ(F ),

1

n
A(F,CPEφ)

)
.

with the asymptotical variance

A(F,CPEφ) = V ar(IF (X;CPEφ(F ), F ) =

∫ ∞
−∞

(∫ 1

F (x)

φ′(1− u)− φ′(u))

f(F−1(u))
du

)2

f(x)dx.

The following examples consider the Shannon and the Gini case for which the condition, that is
sufficient to guaranty asymptotic normality, can be checked easily. We consider again the cdf F
of the logistic distribution.

Example 7.4. For the cumulative paired Shannon entropy it holds

CPES(Fn) ∼asy N
(
CPES(F ),

4

45
π4

)
since

A(F,L) = V ar(IF (X;CPEφ(F ), F ) =
1

4
V ar(X2) =

1

4

(
E(X4)− E(X2)

)
=

4

45
π4.

Example 7.5. In the Gini-case we get

CPEG(Fn) ∼asy N (CPEG(F ), 2.8405)

since by numerical integration

A(F,L) =

∫ ∞
−∞

(
4 ln(cosh

(x
2

)
− 1.2274

)2 e−x

(1 + e−x)2
dx = 2.8405.

It is known that L-estimators have a remarkable bias for small sample sizes. Following Parr &
Schucany (1982) the bias can be reduced via the Jackknife method. Obviously, the asymptotical
distribution can be used to construct approximate confidence intervals or for a hypothesis tests
in the one or two sample case. Huber (1981), p. 116ff. discussed asymptotically efficient L-
estimators for a parameter of scale θ. In Klein & Mangold (2015a) it will be investigated how
the entropy generating function φ will be determined by the requirement that CPEφ(Fn) has
to be asymptotically efficient.
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8 Related concepts

There are several statistical concepts closely related to cumulative paired φ-entropies. These
concepts generalize some results known from the literature. We start with the cumulative paired
φ-divergence which has been discussed the first time by Chen et al. (2012) under the name
’generalized cross entropy’. They concentrated on uncertainty variables and not on random
variables as we will do. The second concept generalizes mutual information, which is defined for
Shannon’s differential entropy, to mutual φ-information. We consider two random variables X
and Y . The task is to decompose CPEφ(Y ) into two kinds of variation such that the so-called
external variation measures how much of CPEφ(Y ) can be explained by X. This procedure
mimics the well-known decomposition of the variance and allows to define directed measures of
dependence for X and Y . The third concept again has to do with dependence. More precisely,
we introduce a new family of correlation coefficients measuring the strength of a monotone
relationship between X and Y . In this approach well-known coefficients like the Gini correlation
can be imbedded. The fourth concept treats the problem of linear regression. CPEφ can
serve as general measure of dispersion which has to be minimized to estimate the regression
coefficients. This approach will be identified as special case of rank based regression or R
regression. The entropy generating function φ decides about the robustness properties of the rank
based estimator. Asymptotics can be derived from the theory of rank based regression. The last
concept we discuss applies CPEφ to linear rank tests for the difference of scale. Known results,
especially concerning the asymptotics, from the theory of linear rank tests can be transferred to
this new class of tests. In this paper we only sketch the main results and focus on examples. For
a detailed discussion including proofs we refer to a series of papers which are work in progress.

8.1 Cumulative paired φ-divergence

Let φ be a concave function defined on [0,∞] with φ(0) = φ(1) = 0. Additionally we need
0φ(0/0) = 0. In the literature φ-divergences are defined for convex functions φ (see f.e. Pardo
(2006), p. 5). Therefore, in the following we consider −φ with φ concave.

The cumulative paired φ-divergence for two random variables is defined as follows.

Definition 8.1. Let X and Y be two random variables with cdf FX and FY . Then the cumulative
paired φ-divergence of X and Y is given by

CPDφ(X,Y ) = −
∫ ∞
−∞

(
FY (x)φ

(
FX(x)

FY (x)

)
+ (1− FY (x))φ

(
1− FX(x)

1− FY (x)

))
dx. (45)

The following examples introduce cumulative paired φ-divergences for the Shannon, the α-
entropy, the Gini, and the Leik case.

Example 8.1. 1. Consider φ(u) = −u lnu, u ∈ [0,∞). Then we get the cumulative paired
Shannon divergence

CPDS(X,Y ) =

∫ ∞
−∞

(
FX(x) ln

(
FX(x)

FY (x)

)
+ (1− FX(x)) ln

(
1− FX(x)

1− FY (x)

))
dx.
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2. Setting φ(u) = u(uα−1−1)/(1−α), u ∈ [0,∞) leads to the cumulative paired α-divergence

CPDα(X,Y ) =
1

α− 1

(∫ ∞
−∞

(
FX(x)αFY (x)1−α

+(1− FX(x))α(1− FY (x))1−α − 1
)
dx
)
.

3. For α = 2 we get the special case of a cumulative paired Gini divergence

CPDG(X,Y ) =

∫ ∞
−∞

(
FX(x)2

FY (x)
+

(1− FX(x))2

1− FY (x)
− 1

)
dx

=

∫ ∞
−∞

(FX(x)− FY (x))2

FY (x)(1− FY (x))
dx.

4. The choice φ(u) = 1/2−|u− 1/2|, u ∈ [0, 1] leads to the cumulative paired Leik divergence

CPDL(X,Y ) =

∫ ∞
−∞

(∣∣∣∣FX(x)− 1

2
FY (x)

∣∣∣∣+

∣∣∣∣FX(x)− 1

2
(1 + FY (x))

∣∣∣∣− 1

2

)
dx.

CPDS is equivalent to the Anderson-Darling functional (cf. Anderson & Darling (1952)), and
has been used by Berk & Jones (1979) for a goodness-of-fit test if FX represents the empirical
distribution. Also CPDS serves for a goodness-of-fit test (cf. Donoho & Jin (2004)).

Based on work from Csiszár (1963), Ali & Silvey (1966), Cressie & Read (1984) and Liese &
Vajda (1987) Jager & Wellner (2007) discuss a general function φα

φα(u) =


(α− 1− αu+ uα)/(α(1− α)) for α 6= 0, 1

−u(lnu− 1)− 1 for α = 1
lnu− u+ 1 for α = 0.

Up to multiplicative constant φα includes all the above mentioned examples. Additionally, the
Hellinger distance is a special case for α = 1/2 that leads to the cumulative paired Hellinger
divergence:

CPDH(X,Y ) = 2

∫ ∞
−∞

((√
FX(x)−

√
FY (x)

)2
+
(√

1− FX(x)−
√

1− FY (x)
)2
)
dx.

For a strictly concave function φ Chen et al. (2012) proved that CPEφ(X,Y ) ≥ 0 and
CPEφ(X,Y ) = 0 iff X and Y have identical distribution. In this sense the cumulative paired
φ-divergence can serve as a kind of distance between distribution functions. As an application
Chen et al. (2012) mentioned the ”minimum cross-entropy principle”. They proved that X
follows a logistic distribution if CPDS is minimized given that Y is exponentially distributed
and the variance of X fixed. If FY is an empirical distribution and FX has an unknown vector
of parameters θ CPDφ can be minimized to get point estimator for θ (cf. Parr & Schucany
(1980)). The large class of goodness-of-fit tests based on CPDφ discussed by Jager & Wellner
(2007) has already been mentioned.
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8.2 Mutual cumulative φ-information

Let X and Y again be random variables with cdf FX , FY , density functions fX fY and the
conditional distribution function FY |X . DX and DY denote the supports of X and Y . Then,
we have

CPEφ(Y |x) =

∫ ∞
−∞

φ
(
FY |X(y|x)

)
dy +

∫ ∞
−∞

φ
(
1− FY |X(y|x)

)
dy (46)

which is the variation of Y given X = x. Averaging with respect to x leads to the internal
variation

EX(CPEφ(Y |X)) =

∫ ∞
−∞

CPEφ(Y |x)fX(x)dx. (47)

For a concave entropy generating function φ this internal variation cannot be greater then the
total variation CPEφ(Y ). More precisely holds:

1. EX (CPEφ(Y |X)) ≤ CPEφ(Y ).

2. EX (CPEφ(Y |X)) = CPEφ(Y ) if X and Y are stochastically independent.

3. If φ is strictly concave and EX (CPEφ(Y |X)) = CPEφ(Y ), X and Y are stochastically
independent random variables.

We will consider the non-negative difference

MCPIφ(X,Y ) := CPEφ(Y )− EX(CPEφ(Y |X)). (48)

This expression measures the part of the variation of Y that can be explained by the variable
X (= external variation) and shall be named ’cumulative paired mutual φ-information’ MCPIφ
(cf. Rao et al. (2004) using the term ’cross entropy’ and Drissi et al. (2008), p. 3). MCPIφ
is the analogue of the transinformation which is defined for Shannon’s differential entropy (c.f.
Cover & Thomas (1991), p. 20f.) In contrast to the transinformation MCPIφ is not symmetric.
This means that MCPIφ(X,Y ) = MCPIφ(Y,X) must not hold in general.

Cumulative paired mutual φ-information acts as a starting point for two directed measures of the
strength of φ-dependence between X and Y . DCPD means ’directed (measure) of cumulative
paired φ-dependence. The first one is

DCPD1
φ(X → Y ) =

MCPIφ(X,Y )

CPEφ(Y )

and the second one is

DCPD2
φ(X → Y ) =

CPEφ(Y )2 − EX(CPEφ(Y |X)2)

CPEφ(Y )2
.

Both expressions measure the relative decrease of variation of Y if X is known. The domain
is [0, 1]. The lower bound 0 will be taken if Y and X are independent. The upper bound 1
corresponds to EX(CPEφ(Y |X)) = 0. In this case, from φ(u) > 0 for 0 < u < 1 and φ(0) =
φ(1) = 0 we can conclude that the conditional distributions FY |X(y|x) has to be degenerated.
This means that for every x ∈ DX there is exactly one y∗ ∈ DY with P (Y = y∗|X = x) = 1.
In this sense there is a perfect association between X and Y . The next example illustrates the
concepts and shows why it is useful to consider both types of measures of dependence.
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Example 8.2. Let (X,Y ) follow a bivariate standard Gaussian distribution with E(X) =
E(Y ) = 0, V ar(X) = V ar(Y ) = 1 and Cov(X,Y ) = ρ, −1 < ρ < 1. Note that X and Y
follow a univariate standard Gaussian whereas X+Y follows a univariate Gaussian distribution
with mean 0 and variance 2(1 + ρ). From this one can conclude that

F−1
X (u) = F−1

Y (u) = Φ−1(u), F−1
X+Y (u) =

√
2(1 + ρ)Φ−1(u), u ∈ [0, 1].

Plugging this quantile functions into the definition of the cumulative paired φ-entropy one yields

CPEφ(X + Y ) =
√

2(1 + ρ)CPEφ(X) ≤ CPEφ(X) + CPEφ(Y ).

For ρ→ −1 the cumulative paired φ-entropy behaves like the variance or the standard deviation.
All measures approach 0 for ρ → −1. This means that CPEφ can be used as a measure of
risk since the risk can be completely eliminated in a portfolio with perfectly negative correlated
returns of assets.

More precisely, CPEφ behaves more like the standard deviation than the variance. For ρ = 0 the
variance of the sum equals the sum of the variances. But, the standard deviation of the sum is
equal or smaller than the sum of the individual standard deviations. This is also true for CPEφ.

In the case of the bivariate standard Gaussian distribution, Y |x is again Gaussian with mean
ρx and variance 1− ρ2 for x ∈ R and −1 < ρ < 1. The quantile function of Y |x is therefore

F−1
Y |x(u) = ρx+

√
1− ρ2Φ−1(u) u ∈ [0, 1].

With this quantile function the cumulative paired φ-entropy for the conditional random variable
Y |x is

CPEφ(Y |x) =
√

1− ρ2

∫ 1

0
(φ′(1− u)− φ′(u))Φ−1(u)du =

√
1− ρ2CPEφ(Y ).

Like the variance of the Y |x CPEφ does not depend on x in the case of a bivariate Gaussian

distribution. This implies that the internal variation is also
√

1− ρ2CPEφ(Y ). For ρ → 1 the
bivariate distribution becomes degenerated and the internal variation consequently approaches 0.
The mutual cumulative paired φ-information is given by

MCPIφ(X,Y ) = CPEφ(Y )− EY (CPEφ(Y |X)) = (1−
√

1− ρ2)CPEφ(Y ).

MCPIφ takes the value 0 if and only if ρ2 = 0. In this case X and Y are independent.

The two measures of directed cumulative φ-dependence are

DCPD1
φ(X → Y ) =

MCPIφ(X,Y )

CPEφ(Y )
= 1−

√
1− ρ2

and

DCPD2
φ(X → Y ) =

CPEφ(Y )2 − EX(CPEφ(Y |X)2)

CPEφ(Y )2
= ρ2.

This means that ρ completely determines the value for both measures of directed dependence. In
the case that the upper bound 1 will be attained there is a perfect linear relation between Y and
X.
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As a second example we consider the dependence structure of the Farlie-Gumbel-Morgenstern
copula (FGM copula). For the sake of brevity, we define a copula C as a bivariate distribution
function with uniform marginals for two random variables U and V with support [0, 1]. For the
details concerning copulas see f.e. Nelsen (1999).

Example 8.3. Let

CU,V (u, v) = uv + θu(1− u)v(1− v), u, v ∈ [0, 1], θ ∈ [−1, 1]

be the FGM copula (cf. Nelsen (1999), p. 68). With

CU |V (u|v) =
∂C(u, v)

∂v
= u+ θu(1− u)(1− 2v)

for the conditional cumulative φ-entropy of U given V = v holds

CPEφ(CU |V ) =

∫ 1

0
(φ(1− u− θu(1− u)(1− 2v)) + φ(u+ θu(1− u)(1− 2v))) du.

To get expressions in a closed form we consider the Gini case with φ(u) = u(1 − u), u ∈ [0, 1].
After some easy calculations we arrive at

CPEG(CU |V ) =
1

3
− θ2

15
(1− 2v)2, v ∈ [0, 1].

Averaging over the uniform distribution of V leads to the internal variation

E(CPEG(CU |V )) =
1

3
− θ2

45
.

With CPEG(U) = 1/3 the mutual cumulative Gini information and the directed cumulative
measure of Gini dependence are

MCIG(V → U) =
θ2

45
and DCPD1

G(V → U) =
θ2

15
.

It is well-known for the FGM copula that only a small range of dependence can be covered (cf.
Nelsen (1999), p. 129).

Hall et al. (1999) discussed several methods for estimating a conditional distribution. The
results can used for an estimator of the mutual φ-information and for the two directed measures
of dependence. This will be the task of further research.

8.3 φ-correlation

Schechtman & Yitzhaki (1987) introduced Gini correlations of two random variables X and Y
with distribution functions FX and FY as

ΓG(X,Y ) =
Cov(X,FY (Y ))

Cov(X,FX(X))
and ΓG(Y,X) =

Cov(Y, FX(X))

Cov(Y, FY (Y ))
.
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The numerator equals to 1/4 of the Gini mean difference

∆X = EX1EX2 [|X1 −X2|]

where the expectation is calculated for two independent and with FX identical distributed
random variables X1 and X2.

Gini’s mean difference coincides with the cumulative paired Gini-entropy CPEφ(X) in the fol-
lowing sense:

Cov(X,FX(X)) = 4CPEG(X) = 4

∫ ∞
−∞

X(φ′(1− FX(X))− φ′(FX(X)))dx.

Gini correlations can be generalized to φ-correlations based on CPEφ instead of the Gini mean
difference. Let X,Y be two random variables, CPEφ(X) and CPEφ(Y ) are the corresponding
cumulative paired φ entropies. Then

Γφ(X,Y ) =
E(X(φ′(1− FY (Y ))− φ′(FY (Y )))

CPEφ(X)
(49)

and

Γφ(Y,X) =
E(Y (φ′(1− FX(X))− φ′(FX(X)))

CPEφ(Y )
(50)

are called φ-correlations of X and Y . Since E(φ′(1−FY (Y ))− φ′(FY (Y )) = 0 the numerator is
the covariance between X and φ′(1− FY (Y ))− φ′(FY (Y )),

The first example verifies that the Gini correlation is a proper special case.

Example 8.4. The setting φ(u) = u(1− u), u ∈ [0, 1] leads to Gini correlation because

E(X(φ′(1− FY (Y ))− φ′(FY (Y ))) = 2E(X(2FY (Y )− 1) = 4E(X(FY (Y )− 1/2))

= 4E((X − E(X))(FY (Y )− 1/2)) = 4Cov(X,FY (Y )).

and E(X(φ′(1− FX(X))− φ′(FX(X))) = 4Cov(X,FX(X)).

The second example considers the new Shannon correlation.

Example 8.5. Set φ(u) = −u lnu, u ∈ [0, 1] then we get the Shannon correlation

ΓS(X,Y ) =
E(X ln(FY (Y )/(1− FY (Y )))

CPES(X)
.

If Y follows a logistic distribution with FY (y) = 1/(1+e−y), y ∈ R then ln(FY (y)/(1−FY (y)) =
y. Inserting this result leads to

ΓS(X,Y ) =
E(XY )

CPES(X)
.

From (30) we know that CPES(X) = π/
√

3 if X is logistic distributed. In this special case we
get

ΓS(X,Y ) =
√

3
E(XY )

π

In the following example we introduce the α-correlation.
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Example 8.6. For φ(u) = u(uα − 1)/(1− α), u ∈ [0, 1] we get the α-correlation

Γα(X,Y ) =
E(X α

1−α((FY (Y )α−1 − (1− FY (Y )α−1)))

CPEα(X)
.

For FY (y) = 1/(1 + e−y), y ∈ R we get

ΓS(X,Y ) =
α

(1− α)CPES(X)
E

(
X

((
1

1 + e−Y

)α−1

−
(

1

1 + eY

)α−1
)(

.

Schechtman & Yitzhaki (1987), (1999) and Yitzhaki (2003) proved that Gini correlations have
many desirable properties. In the following we give an overview over all properties which can
be transferred to φ-correlations. For proofs and further details we refer to Klein & Mangold
(2015c).

We start with the fact that φ-correlations also have a copula representation since for the covari-
ance holds

Cov(X,FY (Y )) = −
∫ 1

0

∫ 1

0
(C(u, v)− uv)

1

f(F−1
X (u)

(φ′′(1− v) + φ′′(v))dudv.

The following examples show the copula representation for the Gini and the Shannon correla-
tion.

Example 8.7. In the Gini case it is φ′′(u) + φ′′(1− u) = −4. This leads to

Cov(X,FY (Y )) = 4

∫ 1

0

∫ 1

0
(CX,Y (u, v)− uv)

1

fX(F−1
X (u))

dudv.

Example 8.8. In the Shannon case it is φ′′(u) + φ′′(1− u) = −1/(u(1− u)) such that

Cov

(
X, ln

FY (Y )

1− FY (Y )

)
=

∫ 1

0

∫ 1

0

CX,Y (u, v)− uv
u(1− u)

1

fX(F−1
X (u))

dudv.

The following basic properties of φ-correlations can be easily checked with the arguments applied
by Schechtman & Yitzhaki (1987):

1. Γφ(X,Y ) ∈ [−1, 1]

2. Γφ(X,Y ) = 1 (Γφ(X,Y ) = −1) if there is strictly increasing (decreasing) transformation
g such that X = g(Y ).

3. If g is monotone, then Γφ(X,Y ) = Γφ(X, g(Y )).

4. If g is affin-linear, then Γφ(X,Y ) = Γφ(g(X), Y ).

5. If X and Y are independent, then ΓX,Y = Γ(Y,X) = 0.

6. If a+ bX and c+ dY are exchangeable for some constants a, b, c, d ∈ R with b, d > 0 then
Γφ(X,Y ) = Γφ(Y,X).
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In the last subsection we have seen that two directed measures of φ-dependence do not depend
on φ if a bivariate Gaussian will be considered. The same is true for φ-correlations as will be
demonstrated in the following example.

Example 8.9. Let (X,Y ) be a bivariate standard Gaussian random variable with Pearson corre-
lation coefficient ρ. In this case, all φ-correlations coincide with ρ as the following consideration
shows: With E(X|y) = ρy it is

Cov(X,φ′(1− FY (Y ))− φ′(FY (Y )) = EYEX|Y (X|Y )(φ′(1− FY (Y ))− φ′(FY (Y )))

= ρEY (Y (φ′(1− FY (Y ))− φ′(FY (Y )))

= ρCPEφ(Y ) = ρCPEφ(X).

Dividing by CPEφ(X) gives the result.

Weighted sums of random variables appear f.e. in portfolio optimization. The diversification
effect concerns negative correlations between the return of asset. With this effect the risk of
a portfolio can be significant smaller that the sum of the individual risks. It is the question
whether cumulative paired φ-entropies can serve as a risk measure as well. Therefore we have
to investigate the diversification effect for CPEφ.

First we display the total risk CPEφ(Y ) as a weighted sum of the individual risks. Essentially,
the weights are the φ-correlations of the individual returns with the portfolio return: Let Y =∑k

i=1 aiXi then it holds

CPEφ(Y ) =
k∑
i=1

aiΓφ(Xi, Y )CPEφ(Xi). (51)

For the diversification effect the total risk CPEφ(Y ) has to be displayed as a function of the φ
correlations between Xi and Xj , i, j = 1, 2, . . . , k. A similar result was given by Yitzhaki (2003)

for the Gini correlation without proof. Let Y =
∑k

i=1 aiXi and set Diy = Γφ(Xi, Y )−Γφ(Y,Xi),
for i = 1, 2, . . . , k. Then the following decomposition of the square of CPEφ(Y ) holds:

CPEφ(Y )2 − CPEφ(Y )
k∑
i=1

aiDiyCPEφ(Xi)

=
k∑
i=1

a2
iCPEφ(Xi)

2 +
k∑
i=1

∑
j 6=i

aiajCPEφ(Xi)CPEφ(Xj)Γφ(Xi, Xj).

This is similar to the representation for the variance of Y , where Γφ(Xi, Xj) takes the role of the
Pearson correlation and CPEφ(Xi) the role of the standard deviation für i, j = 1, 2, . . . , k.

Schechtman & Yitzhaki (1987) also introduced an estimator for the Gini correlation and derived
its asymptotic distribution. For the proof it is helpful that numerator of the Gini correlation
can be represented as an U -statistic. For the general case of the φ-correlation it is necessary to
derive the influence function and to calculate its variance. This will be done in Klein & Mangold
(2015c).
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8.4 φ-regression

Based on the Gini correlation, Olkin & Yitzhaki (1992) discovered parallels between the tradi-
tional OLS-approach in regressions analysis and the minimization of the covariance between the
error term ε in a linear regression model

Yi = α+ x′iβ + εi, i = 1, 2, . . . , n

and the ranks of ε with respect to α and β. Ranks are the sample analogue of the theoretical
distribution function Fε such that the Gini mean difference Cov(ε, Fε) stands in the center of
this new approach for regression analysis. Olkin & Yitzhaki (1992) noticed that this approach
was already known under the name ’rank based regression’ or shortly ’R regression’ in robust
statistics. In robust regression analysis a more general optimization criteria Cov(ε, ϕ(Fε) has
been considered where ϕ denotes a strictly increasing score function (cf. Hettmansperger (1984),
p. 233). The choice ϕ(u) = 1 − 2u leads to the Gini mean difference. This is the scores
generating function of the Wilcoxon scores. The rank based regression approach with general
scores generating function ϕ(u) = φ′(1− u)− φ′(u), u ∈ [0, 1] is equivalent to the generalization
the the Gini regression to a so-called φ-regression based on the criteria function

CPEφ(ε) = Cov(ε, φ′(1− Fε(ε))− φ′(Fε)) (52)

which has to minimized to get α and β. Therefore, cumulative paired φ-entropies are special
cases of the dispersion function Jaeckel (1972) and Jureckova (1971) proposed as optimization
criteria for R regression. More precisely, R estimation proceeds in two steps. In the first step

dφ(β) = CPEφ(y −Xβ) (53)

has to be minimized with respect to β. Let β̂φ denote this estimator. In the second step, α will
be estimated separately by

α̂φ = medi(yi − x′iβ̂φ). (54)

Kloke & McKean (2012) and McKean & Kloke (2014) gave an overview about recent develop-
ments in rank based regression. We will apply their main results to φ-regression. Hettmansperger
& McKean (2011) showed that for the influence function of β̂φ holds

IF (x0, y0, β̂φ, FY,X) = τφ((X ′X)/n)−1
(
φ′(1− Fε(y0))− φ′(Fε(y0))

)
x0,

where (x′0, y0) represents an outlier. φ′ determines the influence an outlier in the dependent
variable has on the estimator β̂φ.

The scale parameter τφ is given by

τφ = −
(∫

(φ′(1− u)− φ′(u))
f ′ε(F

−1
ε (u))

fε(F
−1
ε (u))

du

)−1

.

From the influence function we can see easily that β̂φ is asymptotically normal in the following
sense:

β̂φ ∼asy N
(
β, τ2

φ(X ′X)−1
)
. (55)

For φ′(1−u)−φ′(u) bounded, Koul et al. (1987) proposed a consistent estimator τ̂φ for the scale
parameter τφ. This asymptotical property can again be used to construct approximate confidence
limits for the regression coefficients, to derive a Wald test for the general linear hypothesis, to
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derive a goodness-of-fit test, and to define an measure of determination (see Kloke & McKean
(2012)).

Gini regression corresponds to CPEG(ε, Fε(ε)). In the same way we can derive from CPES(ε, Fε(ε))
the new Shannon regression, from CPEα(ε, Fε(ε)) the α-regression, and from CPEL(ε, Fε(ε))
the Leik regression.

The R package ”Rfit”) has the option to include own φ functions into rank based regression
(cf. Kloke & McKean (2012)). With the help of this option and the dataset ’telephone’ with
several outliers available in ”Rfit”) we compare the fit of the Shannon regression (α → 1), the
Leik regression, the α-regression for several values of α with the OLS regression. On the left
of figure 3 the original data, the OLS and the Shannon regression are displayed. On the right
side outliers are excluded to get a more detailed impression about the differences between the
φ-regressions.

Figure 3: φ-regression fit for the number of calls in the ’telephone’ data set.

In comparison with the very sensitive OLS regression all rank based regression techniques behave
similar. McKean & Kloke (2014) gave an asymptotic efficient estimator for τφ if the error
distribution is known. This procedure also determines the entropy generating function φ. If the
error distribution is unknown, but some information with respect to skewness and leptokurtosis
is available, a data-driven (= adaptive) procedure was proposed by McKean & Kloke (2014).
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8.5 Two sample rank test on dispersion

Based on CPEφ the linear rank statistics

CPEφ(R) =
n∑
i=1

φ

(
Ri

n+m+ 1

)
+ φ

(
1− Ri

n+m+ 1

)
(56)

can be used as a test statistic for alternatives of scale where R1, R2, . . . , Rn are the ranks of
X1, X2, . . . , Xn in the pooled sample X1, X2, . . . , Xn, Y1, Y2, . . . , Ym. All random variables are
assumed to be independent.

Some of the linear rank statistics well-known from the literature are special cases of (56) as will
be shown in the following examples:

Example 8.10. Let φ(u) = 1/2− |u− 1/2|, u ∈ [0, 1]. Then we have

CPEL(R) = 2
n∑
i=1

(
1

2
−
∣∣∣∣ Ri
n+m+ 1

− 1

2

∣∣∣∣) .
Ansari & Bradley (1960) suggest the statistic

SAB =

n∑
i=1

(
1

2
(n+m+ 1)−

∣∣∣∣Ri − 1

2
(n+m+ 1)

∣∣∣∣) (57)

as a two sample test for alternatives of scale (cf. Hájek et al. (1999), p. 104). Apparently, we
have SAB = 1/2(n+m+ 1)CPEL(R).

Example 8.11. Let φ(u) = 1/4− (u− 1/2)2, u ∈ [0, 1]. Then we have

CPEG(R) =
n

2
− 2

n∑
i=1

(
Ri

n+m+ 1
− 1

2

)2

which is identical to the test statistic suggested by Mood (1954) up to a affine linear relation (cf.
Büning & Trenkler (1994), p. 149f.). This test statistic is given by SM =

∑n
i=1(Ri − (n+m+

1)/2)2, so the resulting relation is given by

CPEφ(R) =
n

2
− 2(n+m+ 1)2SM

Ultimately, the scores of the Mood test are generated by the generating function of CPEG.

Dropping the requirement of concavity of φ, one finds analogies to other well-known test statis-
tics

Example 8.12. Let φ(u) = 1/2− 1/2(sign(|u− 1/2| − 1/4) + 1), u ∈ [0, 1] which is not concave
on the interval [0,1]. Then we have

CPEφ(R) = n−
n∑
i=1

(
sign

(∣∣∣∣ Ri
n+m+ 1

− 1

2

∣∣∣∣− 1

4

)
+ 1

)
,

which is identical to the quantile test statistic for alternatives of scale up to a affine linear
relation (Hájek et al. (1999), p. 105.).
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The asymptotic distribution of linear rank tests based on CPEφ can be derived from the theory
of linear rank test, as discussed in Hájek et al. (1999). The asymptotic distribution under the
null hypothesis is needed to come to an approximate test decision given a significance level α,
the asymptotic distribution under the alternative hypothesis for an approximate evaluation of
the test power respectively the choice of the required sample size in order to reassure a given
effect size.

We consider the centered linear rank statistic

CPEφ(R) = CPEφ(R)− 2n

n+m

n+m∑
i=1

φ

(
i

n+m+ 1

)
.

Under the null hypothesis of identical scale parameters and the assumption that∫ 1

0

(
(φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ),

)
du > 0

where φ =
∫ 1

0 φ(u)du, the asymptotical distribution of CPEφ(R) is given by

CPEφ(R) ∼asy N
(

0,
2nm

n+m

∫ 1

0

(
(φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ)

))
(cf. Hájek et al. (1999), p. 194, theorem 1 and p. 195, lemma 1).

The asymptotic normality of the Ansari-Bradley test and the Mood test are well-known. There-
fore, we provide a new linear rank test based on cumulative paired Shannon entropy CPES
(so-called ’Shannon’-test) with φ(u) = −u lnu, u ∈ [0, 1] in the following example.

Example 8.13. With φ(u) = −u lnu, u ∈ [0, 1] and φ̄ = 1/4 we have∫ 1

0

(
φ(u)− φ

)2
du =

∫ 1

0
φ(u)2du− 1

16
=

∫ 1

0
u2(lnu)2du− 1

16
=

2

27
− 1

16
=

5

432

and ∫ 1

0
(φ(u)− φ)(φ(1− u)− φ)du =

∫ 1

0
φ(u)φ(1− u)du− 1

16

=

∫ 1

0
u(1− u) lnu ln(1− u)du− 1

16

=
37− 3π2

108
− 1

16
=

121− 12π2

432
.

Under the null hypothesis of identical scale the centered statistic linear rank statistic CPES(R)
is asymptotically normal with variance

nm

n+m

63− 6π2

108
.
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If the alternative hypothesis H1 for a density function f0 is given by

f(x1, . . . , xn+m;σ) =
n∏
i=1

1

σ
f0

(xi
σ

) n+m∏
i=n+1

f0(xi) (58)

for σ > 0 and σ 6= 1. Set

ϕ1(u; f0) = −1− F−1
0 (u)

f ′0(F−1
0 (u))

f0(F−1
0 (u))

and assume I(f0) =
∫ 1

0 ϕ1(u; f0)2du > 0. If min(n,m) → ∞ and lnσI(f0)mn/(n + m) → b2

with 0 < b2 <∞, CPEφ(R) is asymptotically normal distributed with mean

− n

n+m
lnσ

mn

n+m

∫ 1

0
(φ(u)ϕ1(u; f0) + φ(1− u)ϕ1(u; f0)) du,

and variance
2nm

n+m

∫ 1

0

(
(φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ)

)
du.

This result follows immediately from Hájek et al. (1999), p. 267, theorem 1 with the remark on
p. 268.

If f0 is a symmetric distribution, ϕ1(u; f0) = ϕ1(1− u; f0), u ∈ [0, 1] holds, such that∫ 1

0
ϕ1(u)ϕ1(u, f0)du = −2

∫ 1

0
φ(u)ϕ1(u; f0)du.

This simplifies the variance of the asymptotic normal distribution.

The asymptotic normality of the test statistic of Ansari-Bradley and the Mood test under the
alternative hypothesis have been examined intensively (cf. i. e. Mood (1954) and Klotz (1961)).
Therefore, we concentrate on the new Shannon test.

Example 8.14. Set φ(u) = −u lnu, u ∈ [0, 1]. Let f0 be the density function of a standard
Gaussian distribution, such that ϕ1(u, f0) = −1 + Φ−1(u)2 and I1(f0) = 1. Then we have

−2

∫ 1

0
(−u lnu)(Φ−1(u)2 − 1)du = 0.240,

and ∫ 1

0
(1/2 + u lnu+ (1− u) ln(1− u))2 du =

63− 6π2

108

where the integrals has been evaluated by numerical integration. Then, under the alternative
(58)

CPES(R) ∼asy N
(

0.240
n

n+m
lnσ

mn

n+m
,
63− 6π2

108

2nm

n+m

)
.

Finally, one can discuss the asymptotic efficiency of linear rank tests based on cumulative paired
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φ-entropy. If f0 is the true density and

ρ1 =

∫ 1
0 (φ(u)ϕ1(u; f0) + φ(1− u)ϕ1(u; f0)) du√∫ 1

0 ϕ1(u; f0)2du
∫ 1

0

(
(φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ)

)
du
,

then ρ2
1 gives the wanted asymptotic efficiency (cf. Hájel et al. (1999), p. 317).

The asymptotic efficiency of the Ansari-Bradley test (respectively the asymptotic equivalent
Siegel-Tukey test) and the Mood test have been investigated by Klotz (1961), Basu & Woodworth
(1967) and Shiraishi (1986). The asymptotic relative efficiency (ARE) with respect to the
traditional F -test for differences in scale for two Gaussian distributions has been discussed by
Mood (1954). This asymptotic relative efficiency between Mood test and F -test for differences in
scale have been derived by Sukhatme (1956). We concentrate again on the new Shannon-test.

Example 8.15. The Klotz test is asymptotically efficient for the Gaussian distribution. With∫ 1
0 (Φ−1(u)2 − 1)2du = 2,

ρ2
1 =

0.242

(63− 6π2)/108 · 2
= 0.823

gives the asymptotic efficiency of the new Shannon test.

Finally, we want to compare the asymptotic efficiency of the Shannon test for a distribution
insuring asymptotic efficiency of the Ansari-Bradley test.

Example 8.16. The Ansari-Bradley test statistic SAB which is asymptotically efficient for the
double log-logistic distribution with density function f0 (cf. Hájek et al. (1999), p. 104). The
Fisher information is given by∫ 1

0
ϕ1(u; f0)2du =

∫ 1

0
(2|2u− 1| − 1)2du = 4

∫ 1

0
(2u− 1)2du− 1 =

1

3
.

Further we have∫ 1

0
ϕ1(u; f0)(2φ− φ(u)− φ(1− u))du =

∫ 1

0
ϕ1(u; f0)

(
1

2
+ u lnu+ (1− u) ln(1− u)

)
du

= 2

∫ 1

0
|2u− 1|(u lnu+ (1− u) ln(1− u))du = 0.102,

such that the asymptotic efficiency of the Shannon-test for f0 is

ρ2
1 =

0.1022

1/3 · (63− 2π2)/108
= 0.892

This two examples show that the Shannon test behaves relatively well even if the underlying
distribution has moderate tails like the Gaussian or heavy tails like the double log-logistic dis-
tribution. An asymptotic efficient linear rank tests corresponds to a distribution and a scores
generating function ϕ1 from which we can derive a entropy generating function φ and a cu-
mulative paired φ-entropy. This relationship will be further investigated in Klein & Mangold
(2015b).
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9 CPEG, CPES and CPEL for selected distribution functions

In the following, we want to derive closed form expressions for some cumulative paired φ-
entropies. In some sense we want to mimic the procedure of Ebrahimi et al. (1999), p. 326.
Table 1 of their paper contains many formulas of the differential entropy for the most popular
statistical distributions. Several of those distributions will also be considered in the following.
Since cumulative entropies depend on the distribution function or equivalently on the quantile
function we concentrate on families of distributions for which these functions have a closed form
expression. Furthermore, we only discuss standardized random variables since the parameter of
scale has only a multiplicative effect on CPEφ and parameter of location has no effect at all.
For the standard Gaussian distribution we provide the value of CPES by numerical integration
rounded to two decimal places since the probability function has no explicit form. For the
Gumbel distribution, however, there is a closed form expression for the distribution function –
nevertheless we could not establish a closed form of CPES and CPEG. Therefore, we applied
numerical integration in this case as well. In the following we use

• the incomplete Gamma function

Γ(x; a) =

∫ x

0
ya−1e−ydy for x > 0, a > 0,

• the incomplete beta function

B(x; a.b) =

∫ x

0
ua−1(1− u)b−1du for 0 < x < 1, a, b > 0,

• the Digamma function

ψ(a) =
d

da
ln Γ(a), a > 0.

Uniform distribution Let X have the standard uniform distribution. Then we have

CPES(X) =
3

2
, CPEG(X) =

1

3
, CPEL(X) =

1

2
, CPEα(X) =

1

α+ 1
.

Power distribution Let X have the beta distribution on [0, 1] with parameter α > 0 and b = 1,
i. e. density function fX(x) = axa−1 for x ∈ [0, 1], then we have

CPES(X) =
a

(a+ 1)2
+ ψ

(
a+ 1

a

)
− a+ 1

a
ψ

(
a+ 2

a

)
+

1

a
ψ(1)

CPEG(X) =
2a

(1 + a)(1 + 2a)
, CPEL(X) =

a

a+ 1

(
1−

(
1

2

)1/a
)

CPEα(X) =
1

a(1− α)
B

(
1

a
, α+ 1

)
− αa

(1− α)(1 + αa)
.
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Triangular distribution with parameter c Let X have a triangular distribution with density
function

f(x) =

{
2/cx für 0 < x < c

2/(1− c)(1− x) für c ≤ x < 1

Then we have

CPES(X) =
π2

6
+ ln 2(1− ln 2)

CPEG(X) =
2

3

(
c2 + (1− c)2

)
− 2

5

(
c3 + (1− c)3

)
CPEL(X) =

1

3
(2− c)− 3−

√
2

3
√

2

√
1− c,

CPEα(X) =
1

1− α

(
2

2α+ 1

(
cα+1 + (1− c)α+1

)
+
√
cB

(
c;

1

2
, α+ 1

)
+
√

1− cB
(

1− c; 1

2
, α+ 1

)
− 2

)
.

Laplace distribution Let X have the Laplace distribution with density fX(x) = 1/2 exp(−|x|)
for x ∈ R, then we have

CPES(X) =
π2

6
+ ln 2(1− ln 2), CPEG(X) =

3

2
, CPEL(X) = 2,

CPEα(X) =
4

α− 1

(
1

2

)α−1( 1

α− 1
− 1

2α

)
.

Logistic distribution Let X have the logistic distribution with probability function FX(x) =
1/(1 + exp(−x)) for x ∈ R, then we have

CPES(X) =
π2

3
, CPEG(X) = 2, CPEL(X) = 4 ln 2

CPEα =
2

α− 1
(ψ(α)− ψ(1)).

Tukey λ distribution Let X have the Tukey λ distribution with quantile function F−1(U) =
1/λ

(
uλ − (1− u)1−λ) for 0 ≤ u ≤ 1 and λ > −1. Then the following holds:

CPES(X) =
2

(λ+ 1)2

(
1 +

(
1 +

1

λ

)
((λ+ 1)ψ(λ+ 1)− ψ(λ+ 2)− ψ(1))

)
,

CPEG(X) =
4

λ+ 1

(
1 +

1

λ

)
,

CPEL(X) = 2

(
1

λ+ 1

(
1

2

)λ+1

+B

(
1

2
; 2, λ

))
,

CPEα(X) = 2
1

1− α

(
λ3 − λα− 2(λ+ α)

λ2(λ+ 1)(λ+ α)
+B(α+ 1, λ)

)
.
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Weibull distribution Let X have the Weibull distribution with probability function FX(x) =
1− e−xc for x > 0, c > 0, then we have

CPES(X) =
1

c
Γ

(
1

c

)(
1 +

∞∑
i=1

1

i!

((
1

i

)1/c

−
(

1

i+ 1

)1/c
))

,

CPEG(X) =
2

c

(
Γ

(
1

c

)
− 1

2
Γ

(
1

2c

))
,

CPEL(X) = 2

(
(ln 2)1/c +

1

c

(
Γ

(
1

c

)
− 2Γ

(
ln 2;

1

c

)))
CPEα(X) =

1

c
Γ

(
1

c

)(
1

α1/c
+

∞∑
i=1

(
α

i

)
(−1)ii−1/c

)
.

Pareto distribution Let X have the Pareto distribution with probability function FX(x) =
1− xc for x > 1, c > 0, then we have

CPES(X) =
1

c− 1
ψ

(
2− 1

c

)
+ ψ

(
1− 1

c

)
− c

c− 1
ψ(1) +

4

c
, c > 1

CPEG(X) =
2c

(c− 1)(2c− 1)
, c > 1

CPEL(X) = 2
1

c− 1
, c > 1

CPEα(X) =
1

1− α

(
c(1− α)

(cα− 1)(c− 1)
− 1

c
B

(
α− 1

c

))
.

Gaussian distribution By means of numerical integration we calculated the following values
for the standard Gaussian distribution:

CPES(X) = 1.806, CPEG(X) = 1.128, CPEL(X) = 1.596.

Figure 4 shows CPEα for α ∈ [0.5, 3] and the standard Gaussian distribution.

Student-t distribution By means of numerical integration and for ν = 3 degrees of freedom
we calculate the following values for the Student-t distribution

CPES(X) = 2.947, CPEG(X) = 3.308, CPEL(X) = 2.205.

As can be seen in figure 4, the heavy tails of the Student-t distribution result in a higher value
for the CPE as in comparison to the Gaussian distribution.
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Figure 4: CPEα, α ∈ [0.5, 3] for the standard Gaussian and the the Student-t distribution

10 Summary

A new kind of entropy has been introduced generalizing the Shannon’s differential entropy. The
main difference to the usual discussion of entropies is that it is defined for distribution functions
and not for densities. It was shown that such a definition has a long tradition in several scientific
disciplines like fuzzy set theory, reliability theory and more recently uncertainty theory. With
only one exception in all disciplines the concepts have been discussed independently. Also the
theory of dispersion measures for ordered categorial variables refers to distribution function based
measures without noticing that at least implicitly a kind of entropy has been used. With the help
of the Cauchy-Schwarz inequality we can show that there is a close relationship between the new
kind of entropy named cumulative paired φ-entropy and the standard deviation. More precisely,
the standard deviation gives an upper limit for the entropy. Additionally, the Cauchy-Schwarz
inequality helps to derive maximum entropy distributions if constraints specify the values of
mean and variance. For the cumulative paired Shannon entropy the logistic distribution adopts
the central role the Gaussian distribution has if one wants to maximize the differential entropy.
As a new result we have shown that Tukey’s λ distribution is a maximum entropy distribution if
the entropy generating function φ is used which is known from the Harvda & Charvát entropy.
Some new distributions can be derived if more general constraints were considered. Changing
perspective allows to determine the entropy that will be maximized by a certain distribution if f.e.
mean and variance are known. In this context the Gaussian distribution gives a simple solution.
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Since cumulative paired φ-entropy and the variance are related that closely we investigated
whether the cumulative paired φ-entropy is a proper measure of scale. We show that it fulfills
the axioms Oja has introduced for a measure of scale. Several further properties concerning the
behavior under transformations or the sum of independent random variables have been proven.
We give a first impression how to estimate the entropy. Based on cumulative paired φ-entropy
we introduce some new concepts like φ-divergence, mutual φ-information and φ-correlation. Also
φ-regression and linear rank tests for scale alternatives can be considered. For some popular
distributions with cdf or quantile function in closed form and for some cumulative paired φ-
entropies formulas have been derived.
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