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Abstract

The problem of selecting a prior distribution when it comes to Bayes
estimation often constitutes a choice between conjugate or noninformative
priors, since in both cases the resulting posterior Bayes estimator (PBE)
can be solved analytically and is therefore easy to calculate. Nevertheless,
some of the implicit assumptions made by choosing a certain prior can be
di�cult to justify when a concrete sample of small size has been drawn.
For example, when the underlying distribution is assumed to be normal,
there is no reason to expect that the true but unknown location parameter
is located outside the range of the sample. So why should a distribution
with a non-compact domain be used as a prior for the mean? In addition,
if there is some skewness in a sample of small size due to outliers when
a symmetric distribution is assumed, this �nding can be used to correct
the PBE when determining the hyperparameters. Both ideas are applied
to an empirical Bayes approach called plausible prior estimation (PPE)
in the case of estimating the mean of a normal distribution with known
variance in the presence of outliers. We propose an approach for choosing
a prior and its respective hyperparameters, taking into account the above
mentioned considerations. The resulting in�uence function as a frequen-
tistic measure of robustness is simulated. To conclude, several simulation
studies have been carried out to analyze the frequentistic performance of
the PPE in comparison to frequentistic and Bayes estimators in certain
outlier scenarios.

Keywords: Bayes Statistics, Objective Prior, Robustness.

1 Introduction and summary

There are many ways of selecting an adequate prior distribution, when con-
structing a Bayes estimator. The type of the prior distribution can be derived

∗Benedikt.Mangold@fau.de
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from previous experiments or logical considerations. When there is no prior
knowledge, noninformative priors can be an appropriate choice. Those distri-
butions do not require any parameters, but they sometimes neglect information
about properties of the parameter of interest. Another possibility which is fre-
quently used when investigating standard distributions is to use so called con-
jugate distributions, for which the Bayes estimators can be derived analytically.
Employing a nonconjugate distribution often results in a numerical optimization
problem, which brings its own di�culties during calculation.

This paper introduces a new way of choosing the prior distribution and its
parameters. Determining the distribution of the underlying sample not only
de�nes the likelihood function, but also implies certain properties as skewness
of the distribution. Those properties, in addition to bounds that satis�y speci�c
objectives that can be derived for most types of parameters, are used for a unique
identi�cation of the prior distribution and its parameters.

This paper is organized as follows: Sections 2.1 - 2.3 give a short overview
to the Bayes estimation framework, including an introduction to two Bayesian
methods in which the plausible prior estimator (PPE) can partially be inte-
grated. Section 2.4 brie�y describes the idea behind the PPE, and Section 3
applies the PPE approach to symmetric distributions. In Section 4, asymptotic
and �nite-sample properties of the PPE are shown in the case of estimating
the mean of a Gaussian distribution with known variance. Those properties are
compared with the results from the Princton study from Andrews (1972) among
others in Section 4.2 - 4.4. Section 5 gives a short outlook on the multivariate
case and concluding remarks.

2 Bayes Estimation

2.1 Classical Bayes Estimation

In Bayes estimation, the posterior distribution π(θ) summarizes the information
about an unknown distribution parameter θ from a parameter space Θ ⊆ R,
considering the prior knowledge and the information given in the data x. By
the Bayes formula, one yields for the posterior distribution

f(θ|x) =
f(x|θ)π(θ)∫

x
f(x|θ)π(θ)dθ

,

where f(x|θ) denotes the likelihood function. In order to get a point estimation

θ̂, a certain value of f(θ|x) has to be chosen. This usually happens through a
decision function d : X 7→ Θ, where d ∈ D from the set of possible decisions.
A functional L(θ, θ̂) : Θ×Θ 7→ R+ represents some positive 'distance' between
the estimated value, given the true θ, where L(θ, θ) = 0. There are several loss
functions, one of them is the mean squared error (MSE)

L(θ, θ̂) = (θ − θ̂)2 (1)
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The risk function

R(θ, d) := Eθ[L(θ, d(x))] =

∫
x

L(θ, d(x))f(x|θ)dx,

is used to calculate the Bayes risk given the prior distribution π(θ)

rπ(d) = Eπ[R(θ, d)] =

∫
Θ

R(θ, d)π(θ)dθ.

The decision function d that minimizes the Bayes risk rπ is called Bayes esti-
mator.

In the following, just the squared loss function MSE will be considered � one
can show quickly that the resulting Bayes estimator is the mean of the posterior
distribution:

θBE = E[θ|x] =

∫
x

θ
f(x|θ)π(θ)∫

x
f(x|θ)π(θ)dθ

dθ. (2)

There are certain strategies in determining the type of the prior distribution
when it is unknown. Typically, one �rst determines the support of the unknown
parameter, then one selects the prior distribution from a class of distributions
with that very support. For example, for a scale parameter no one would use a
distribution with unbounded support since the variance is never less than zero,
so R as support would be unreasonable. In the following, we brie�y describe
two common approaches to select a prior distribution.

Noninformative Prior When there is no knowledge about the type of prior
distribution, one could use a noninformative prior. Implicitly one would give
the same probability to each possible value of the parameter of the sample
distribution. In certain cases, this results in a prior distribution which is called
an improper distribution since its integral does not sum to 1. Nevertheless, in
some cases using an improper prior results in a proper posterior distribution.

Example 2.1. Let X be a univariate random variable which follows N (µ, σ2),
σ2 is known and µ is to be estimated. Since there is no additional information
about µ, one could use a uniform distribution π(µ) ∝ 1 on the support of µ
as prior, which would be an improper prior distribution. Deriving the posterior
distribution given a sample x yields

µ|x ∼ N
(
x̄,
σ2

n

)
,

which is a proper posterior distribution. For the MSE as risk function, the Bayes
estimator is then

µBE = E[µ|x] = x̄, (3)

so the functional form of the maximum-likelihood estimator (MLE) x̄ can be seen
as a marginal case of the Bayesian framework when we estimate the location pa-
rameter of a normal distribution with known variance, the uniform distribution
is used as a prior and the MSE as loss function.
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Conjugate prior In many cases, although there is no speci�c justi�cation,
one chooses the prior distribution from the class of conjugate priors related to
the sample distribution. This allows an analytically closed calculation of the
Bayes estimator

Example 2.2. Let X be a univariate random variable which follows N (µ, σ2),
σ2 is known and µ is to be estimated. If one chooses µ ∼ N (τ, γ2), one yields
the posterior distribution

µ|x ∼N

(
γ2

σ2

n + γ2
x̄+

σ2

n
σ2

n + γ2
τ,

1
σ2

n + γ2

)
. (4)

Using the MSE as error function, the Bayes estimator for the posterior distri-
bution (4) of µ is a weighted average of the prior mean τ and the MLE x̄,

µBE =
γ2

σ2

n + γ2
x̄+

σ2

n
σ2

n + γ2
τ. (5)

Those methods su�er from defects: �rst, both give probability to potential
values of µ which are unreasonable since it is compelling to assume that the
location parameter lies between the minimum and maximum of the sample,
see Section 2.4. Further, no information about the shape of the underlying
distribution of the data has been taken into account so far. For example, by
assuming a sample to be from a normal distribution one already expects the
skewness to be zero.

In addition to that, the procedure of choosing a conjugate prior is subjective
and tends to be sensitive to the choice of the prior parameters, especially when
the sample size is small. This can be seen in example 2.2, where the choice of
the prior parameter τ directly in�uences the Bayes estimator.

The proposal given in this paper deals with these defects by choosing a prior
distribution from a family of distributions that neglect values contradicting rea-
sonable considerations about the range of the parameter. Further, information
about skewness in the sample will be transmitted through the prior distribu-
tion to the �nal estimation process when one is expecting a symmetric sample
distribution with skewness zero.

One approach that takes care of the mentioned defects can be found in
robust Bayes estimation (Section 2.3) combined with elements of empirical Bayes
estimation (Section 2.2) and is implemented in Section 2.4. Here those two
defects will be considered during the introduced procedure of choosing the prior
distribution. This will be called plausible prior estimation (PPE), and will be
applied in Section 3 to the estimation of the location parameter of a normal
distribution with known variance.

2.2 Empirical Bayes Estimation

The classical Bayes approach distinguishes strictly between the process of spec-
ifying a prior and the information in the actual sample. This prevents using
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the information given in the data twice. Empirical Bayes means estimating
hyperparameters of the prior distribution from the data (cf. Maritz (1970)).
This is justi�ed since this process implies an approximation to the hierarchical
Bayes approach (cf. Bernardo and Smith (2004)). A possible con�ict with this
approximation is the missing variability of the hyperparameters (cf. Casella
(1985)).

2.3 Robust Bayes Estimation

Instead of one single distribution in classical robust Bayes statistics a wide
class Γ of prior distributions is used (see Berger (1990) and references therein).
The quantity of interest κ of the posterior distribution is computed for every
prior in Γ to establish lower and upper bounds for κ. On the one hand, the
PPE approach deploys the class Γ of possible prior distributions, formed by
ful�lling some formal objectives � on the other hand the parameters of the �nal
prior distribution are chosen in concordance with the gained information from
speci�cs of the sample, justi�ed from the empirical Bayes approach. According
to Berger (1990), when composing the class of prior distributions Γ the following
four sometimes exclusionary objectives have to be complied:

1. Calculation of the range of κ has to be as easy as possible;

2. Γ should contain as many 'reasonable' prior distributions as possible to
ensure robustness;

3. Γ should not contain unreasonable prior distributions, or robustness may
be erroneously judged to be absent;

4. Γ should correspond to easily eliciTable prior information.

The introduced approach combines the idea of empirical Bayes (a plug-in esti-
mator for the range of the sample) with a new approach while taking care of
the mentioned objectives:

deriving information concerning the hyperparameters due to devi-
ation between theoretical properties of the underlying distribution
and the properties of the actual sample.

2.4 Plausible Prior Estimation (PPE)

We assume the following holds for the parameter of location µ:

x(1) := min(x) < µ < max(x) =: x(n), (6)

which is a minimum requirement for a sample x of size n. The introduced
PPE approach consists of three parts: First, distributions with unreasonable
parameter values are banned from Γ (Objectives 2 and 3). Since values of µ
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outside of the range of the sample are not reasonable according to assumption
(6), we yield for Γ:

Γ := {Distributions on a compact domain [a; b] : −∞ < a < b <∞} (7)

with a = x(1), b = x(n) In concordance with the objectives 1 and 2 we decrease
Γ to

Γp,q := {Beta distributions on domain [a; b] : −∞ < a < b <∞, p, q > 1}.
(8)

Note that the last inequality is strict, since we want to assume that the sample
x is nontrivial - that is there are at least two di�erent observations - with the
implication that we will not expect µ to be positioned at a or b itself. The mode
of a distribution from the family (8) therefore is always located in the open
interval (a, b). This is equivalent to p, q > 1.

In the introduced robust Bayes approach from Section 2.3 one would compute
the quantity τ for each distribution from Γp,q to identify the lower and upper
bounds. However, it is essential for the PPE approach that the objectives 1, 2
and 3 can only be veri�ed after taking into account the actual sample. Therefore,
in the second part of the PPE approach the hyperparameters a and b of the
prior distributions in Γ are getting estimated using the information given in the
sample (complying to objective 4) � a procedure known from empirical Bayes
theory in Section 2.2.

The third part of the PPE approach involves choosing the hyperparameters
of shape p and q. Those parameters shall now be used to correct the estimated
value of the PBE for some deductions of a discrepancy between empirical and
expected theoretical moments.

In the case of a symmetric distribution, one could try to consider a correc-
tion of a (highly probable) nonzero skewness in the sample by using the prior
distribution as a weighting function of the likelihood. Since a high value of the
sample skewness could have been established by asymmetric contamination in
the data (c.f. Heymann et al. (2012)), we hope to get good robust properties
for �nite sample sizes as a side e�ect of applying this correction.

Again, this drawing of information from information of sample for deriving
hyperparameters of the prior distribution is used in the �eld of empirical Bayes
estimation in Section 2.2. Berger stated in Finetti et al. (1986) that among the
�sins� which seems to be necessary to practice are the following:

Delaying at least some of the prior speci�cation until the likeli-
hood function (for the observed data) is available (or alternatively
allowing data-based choice of the prior if class of the priors).

In the following Section 3, the PPE is applied to the problem of estimating
the location parameter from a symmetrical distribution with known variance.
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3 PPE for symmetric distributions

If one speci�es a symmetric distribution as the distribution of the population,
one implicitly expects the skewness to be zero. It is not surprising that one would
not �nd the sample skewness to be zero in a sample, say of minor size. Objective
2 will now be implemented in the Bayesian approach. A �exible distribution on
a bounded support [a, b] is for example the generalized beta distribution with
density function

f(x; a, b, p, q) =

{
1

B(a,b,p,q) (µ− a)p−1(b− µ)q−1, a ≤ x ≤ b
0, elsewhere,

(9)

where

B(a, b, p, q) = B(p, q)(b− a)p+q−1 =
Γ(p)Γ(q)

Γ(p+ q)
(b− a)p+q−1,

see Figure 1.

Example 3.1. Note that assuming the normal distribution for the population,
for p = q = 1 the generalized beta distribution is the uniform distribution on
[a; b], and as n tends to in�nity, the length of [x(1);x(n)] becomes arbitrarily
large (see David and Nagaraja (2003)) since

E [[a; b]] ≤ n

√√√√ 2

2n− 1

(
1−

(
2n− 2
n− 1

)−1
)
∼
√
n.

This implies that −x(1), x(n) →∞, as n goes to in�nity. Therefore, in this case
the noninformative prior introduced in example 2.1 is a marginal case of the
PPE.

Given a sample x of size n, one advantage of using a beta distribution as
prior is that if one would choose a := x(1) and b := x(n) the objective 2 would
automatically be ful�lled as the prior distribution weights values outside of the
range of the sample with 0.
Assuming that the sample distribution is normal with known variance σ2 and
using a prior distribution as in (9) for µ with a := x(1) and b := x(n), (2) can
be estimated by∫

µ
∏n
i=1

(
1√

2πσ2
e−

1
2

(xi−µ)2

σ2

)
11[a,b]

1
B(a,b,p,q) (µ− a)p−1(b− µ)q−1dµ

∫ ∏n
i=1

(
1√

2πσ2
e−

1
2

(xi−µ)2

σ2

)
11[a,b]

1
B(a,b,p,q) (µ− a)p−1(b− µ)q−1dµ

. (10)

Lemma 3.2. The integral in 10 is bounded by the limits a and b from the beta
distribution and can therefore be rewritten as

θPPE =
EY
[
µ(µ− a)p−1(b− µ)q−1

]
EY [(µ− a)p−1(b− µ)q−1]

, (11)
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Figure 1: Density function of the beta distribution for certain parameters p and
q.

with Y ∼ N (x̄, σ
2

n )ab � a truncated normal distribution on the interval [a, b],
where x̄ denotes the arithmetic mean of the sample x.

Proof. cf. appendix 6.

Given (p, q) ∈ N2, the PPE from equation (11) can be derived by evaluating
the polynomial moments using the moment generating function of the truncated
normal distribution. Since these steps can be done analytically, no elaborated
optimization routine has to be applied.

Here is a crucial point since normally the parameters of the prior distribution
must be speci�ed before collecting the data � the choice of the parameters can
either be made based on former repetitions of the experiment or the approaches
introduced in chapter 2. In classical Bayes statistics it is strictly forbidden to
analyze the data �rst and then draw conclusions concerning the parameters
of the prior distribution. One interpretation of the PPE approach could be a
violation of this interdiction since the minimum and maximum of the sample
will be used as bounds for the support of the prior distribution.

On the other hand, as mentioned in the beginning of Section 2, the actual
domain of the prior's support is always derived from plausible considerations
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due to the nature of some parameter types � e.g. the scale parameter � to lie
in prede�ned regions.

So far, only the assumption (6) played a role in the considerations. Assuming
the data to be from a symmetric distribution, one would expect the sample
skewness to be near zero. In the absence of contamination, deviations from zero
are random and converge to 0 a.s. by the law of large numbers as the sample
size n goes to in�nity. For �nite n in a range of, say, 20 the empirical skewness
is almost surely not zero.

In the presence of asymmetric outliers, the deviation of the skewness from
zero becomes more and more systematic, and the credibility of an observation
that induces skewness is the lower the larger the deviation. Note that the PPE
in (11) has two parameters p and q, which have not been speci�ed so far. As can
be seen in Figure 1, the beta distribution is able to model skewness, when p 6= q.
So when the empirical skewness is not zero (e.g. due to outliers in the data), one
could try to make a correction by adequately choosing p and q. Again, those
two parameters are not speci�ed when the sample is already available, but since
the assumption that the data is from a symmetric population has already been
made, a correction induced by a nonzero sample skewness is justi�ed since this
is the value one would expect under a symmetric distribution.

In the absence of outliers when estimating the mean from a normal popu-
lation, a correction via the prior distribution is not expected to perform well
since in this case the sample mean (cf. example 1, Section 2.1) is an UMVUE
(cf. Lehmann and Casella (1998)). On the other hand, if the deviation of
the skewness is systematic, i.e. due to outliers, the sample skewness contains
information about the direction of the contamination in the data. By intro-
ducing a correction factor in the way of choosing the parameters p and q of the
prior distribution adequately, one can transmit this information to the posterior
distribution.

One sided outliers have an impact on the skewness of the sample, νn, as
well as on the sample mean in that very direction (cf. Heymann et al. (2012))
�therefore, a nonzero sample skewness can be used as an indicator for the pres-
ence of asymmetric outliers when a symmetric distribution is assumed for the
population. To counteract the e�ect of an outlier, one could use the prior dis-
tribution to give values on the diametrically opposite side a higher weight by
setting the prior parameters adequately.

When using the class of beta distributions as a prior, their skewness can be
calculated directly since the skewness ν is a function of p and q, see Johnson
et al. (1994):

ν(p, q) =
2(q − p)

√
p+ q + 1

(p+ q + 2)
√
pq

. (12)

One proposal is to choose (p, q) in a way that the skewness of the prior
distribution is the negative of νn, the sample skewness, in order to counteract
the e�ect of an outlier on the sample mean. An outlier that pushes the sample
skewness systematically further away from zero has two e�ects on the parameters
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of the prior distribution � in this case the support of the prior distribution is
expanded and at the same time the combination of (p, q) gives more plausibility
to values that are on the diametrically opposite side of the sample mean. Figure
2 illustrates the in�uence of a single value, increasing from x = 1.944 to x = 4.
The sample skewness gets larger, which results in a shift of the mode of the
prior distribution to the opposite side.

Figure 2: Choice of p and q of the prior distribution according to the sample
skewness. The skewness induced by one single outlier can be used to correct the
mean of the sample in the opposite direction.

The �rst approach of the choice of (p, q) was made by solving (12) directly
for the values (p∗, q∗), such that

νn = ν(p∗, q∗), (13)
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but since in general p∗, q∗ /∈ N, and the fractional derivative ∂MGF
∂tα of the

moment generating function (MGF) is zero for α 6= N, no further e�ort has
been taken in this direction. Instead, a grid search for p, q ≤ 50, (p, q) ∈ N2 has
been examined and the tuple (p∗, q∗), for which |νn − ν(p∗, q∗)| was minimal,
has been used to set the parameters for the PPE approach.

The implications of this choice are as follows: If there are no outliers, νn
randomly diverges from zero and the resulting choice from (13) is p∗ ≈ q∗. The
bigger the impact of the outlier, the bigger the induced correction by the prior
distribution in the other direction.

4 Properties of the PPE

As shown in O'Hagan et al. (2004), under mild conditions the PBE is consistent
and asymptotically normal because the prior distribution is essentially irrelevant
as n→∞ and the PPE is asymptotically equivalent to the resulting maximum
likelihood estimator (MLE). In the following we show explicitly that the PPE
and the PBE with a conjugate Gaussian prior dirstibution are asymptotically
equivalent when estimating a normal mean µ with known variance.

Lemma 4.1. As n→∞, the PPE approach chooses q → p→∞

Proof. cf. appendix 6.

Lemma 4.2. Let X ∼ Beta(a, b, p, q) as in (9). For p = q → ∞ the following
holds:

X − p
p+q (b− a) + a

(b− a)
√

p q
(p+q)2 (p+q+1)

d→ N (0, 1)

Proof. cf. appendix 6.

Resulting from the lemmas 4.1 and 4.2 we can state the following

Theorem 4.3. For p → q → ∞, the asymptotic prior distribution of the PPE
aproach is

µ
a∼ N

(
τPPE =

b+ a

2
, γ2

PPE =
(b− a)

2

4 (2 p+ 1)

)
, p ≈ q >> 0, (14)

the resulting PBE is (cf. example 2.2)

θPPE =
γ2

PPE
σ2

n + γ2
PPE

x̄+
σ2

n
σ2

n + γ2
PPE

τPPE.

From the lemma 4.1 follows that

θPPE
a
= x̄ = θMLE

holds true as n→∞.
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In the case of n < 10, the in�uence given by the prior distribution is severe
which can be seen in the simulation results in Table 2 and 3, Section 4.2 -
4.4. The simulation results for larger sample sizes in Section 4.2 prove that the
PPE estimator seems to have desirable properties in the presence of moderate
contamination in the data in the sense of a smaller MSE by comparison with
the MLE, and in some settings even with the median of the sample. This fact
is supported by Section 4.1 � here the sensitivity curve has been simulated, and
in a neighborhood of zero this curve seems to be descending within a symmetric
interval around zero, which is a typical indicator for b-robustness in the M-
estimator Framework, see Hampel (1986).

Another desirable property of the PPE is the absence of tuning parameters
� all necessary parameters are set satisfying the objectives 1 to 4 that have been
derived from robust Bayes statistics and take into account certain properties
of the assumed distribution of the data. As a consequence, it can be tricky to
compare the results from the simulations with e.g. Hampel's three-part esti-
mator cf. Hampel (1986), where three tuning parameters have to be speci�ed.
Depending on the choice of these parameters, the result of the estimation can
be arbitrarily good or bad.

4.1 Robustness results

One instrument to measure robustness is the in�uence curve, c.f. Huber (1981).
It measures the impact of a change in sample distribution F , modeled as a
contaminated version of F ,

Fε,x := (1− ε)F + εδx,

where δx denotes the Dirac measure at a point x. Formally, the in�uence curve is
a Gâteaux derivative of an estimator functional θ(·) at F in direction x, de�ned
as

IF(x; θ, F ) := lim
ε→0

θ(Fε,x)− θ(F )

ε
.

If the in�uence curve is bounded, an arbitrarily large observation can only have
a limited in�uence on the value of the estimator. This property is called b-
robustness. One example for a b-robust estimator is the median, one for a non-
b-robust estimator the mean (c.f. Figure 3). The in�uence curve of the PPE
for n = 20 and σ = 1 was simulated according to Huber (1981) and is shown
in Figure 3. As can be seen, in a neighborhood of zero, the curve drifts away
from the one of the ML estimator towards the x-axis, which can be interpreted
as down weighting of observations that do not �t the model. This shape of
the sensitivity curve can often be seen in redescending M-estimator framework.
Outside of this neighborhood, however, the curve slowly bends back to the ML-
curve, which implies that if the value of contamination is too huge, it cannot
be handled by the PPE model. This understanding is supported in Section 4.2,
where moderate contamination in the data can be handled well in the sense of
a smaller MSE, whereas the model fails in the case of extreme contamination.
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Figure 3: Simulated (N=10,000 repetitions) in�uence function for the PPE for
n = 20 and σ = 1.

For moderate contamination ε, the trend of the sensitivity curve is similar
to the one of the median, which can be seen in Figure 3. So it is not surprising
to �nd the simulated performance results near those of the median, which can
be seen in the following Section.

4.2 Simulation results � PPE vs. estimators from An-
drews (1972)

In this Section, the performance of the PPE in comparison to other classes of
estimators is investigated. The Princton study in Andrews (1972) was an early
work which compared over 50 estimators in several scenarios, mostly estimating
the location parameter of a Gaussian distribution, where the sample is from a
mixture of Gaussian and heavy-tailed distributions, both symmetric and asym-
metric.

Table 1 shows an excerpt of this study � in this case the pollution of the
sample was from a Gaussian distribution with deviating mean µε but identical
variance. There are several estimators that perform better in the sense of a
smaller average deviation from the true value, in most cases with a decreased
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Table 1: Asymmetric pollution scenario from Andrews (1972), p. 110. Mean of
the estimated value (Av) and variances (in relation to the variance of M, Var) of
certain estimators, corrected by the sample size n = 20. 2 out of 20 observations
from N (µε, 1), 18 from N (0, 1). The highlighted estimators values were not
simulated.

µε = 2 µε = 4
Abbr. Av Var Av Var

Mean M 0.903 1.000 1.798 1.000
10% symmetric trimmed mean 10% 0.752 1.092 0.893 1.153

Median 50% 0.592 1.607 0.626 1.651
Huber proposal 2, k = 0.7 H07 0.656 1.266 0.683 1.308
Huber proposal 2, k = 2.0 H20 0.859 1.023 1.258 1.115

1-Step Huber, k = 0.7, start = median D07 0.663 1.233 0.699 1.273
1-Step Huber, k = 2.0, start = median D20 0.838 1.042 1.143 1.159
M-estimator, ψ bends at (1.2,3.5,8.0) 12A 0.635 1.291 0.452 1.417
M-estimator, ψ bends at (2.5,4.5,9.5) 25A 0.770 1.103 0.785 1.346

Plausible prior estimator PPE 0.758 1.092 1.288 1.068

average variance of the estimator. However, most of the compared estimators
have several tuning parameters which make the performance sensitive to the
choice of those parameters. One speci�cation of each � the Huber 2 estimators
H07, H20, the 1-Step Huber estimators D07, D20 and the Three-part M-
estimator 12A, 25A � performs worse than or similar to the PPE. The other
constellation performs better than the PPE in the sense of a smaller MSE.
All in all, the PPE yields comparable performance results to other, established
estimators in the setting given by Andrews (1972). The next Section 4.3 will
compare the PPE to the mean and a simple robust estimators without any
tuning parameters.

4.3 Simulation results � PPE vs. tuning parameter free
estimators

The Tables 2 and 3 show the performance of the PPE in relation to comparable,
tuning-parameter-free estimators � the mean and the median. Here one can
observe that the PPE outperforms the mean and the median in the sense of a
smaller MSE when there is moderate asymmetric pollution in the data and the
sample size is between n = 20 and n = 35.

Merely when the sample size is n ≤ 10, the in�uence of the prior distribution
is too strong which results in numerical problems as the denominator in (11) is
getting to small. The bigger n, the smaller is the in�uence of the prior distri-
bution on the posterior distribution in comparison to the likelihood function.
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Table 2: MSE from N = 10000 repetitions for µ̂ from sample of size n drawn
from N (0, 1) with 10% contamination from N (µε, 1).

µε = 2 µε = 5

n Mean Median PPE Mean Median PPE
10 0.1426 0.1657 · · · · · · 0.2645 0.1721 0.2121
20 0.0898 0.0953 0.0816 0.2087 0.0996 0.1339
30 0.0739 0.0726 0.0664 0.1947 0.0762 0.1382
40 0.0665 0.0594 0.0601 0.1877 0.0630 0.1432
50 0.0609 0.0514 0.0556 0.1814 0.0547 0.1455

Table 3: MSE from N = 10000 repetitions for µ̂ from sample of size n drawn
from N (0, 1) with 10% contamination from N (0, σε).

σε =
√

3 σε =
√

5

n Mean Median PPE Mean Median PPE
10 0.1215 0.1519 · · · · · · 0.1422 0.1567 · · · · · ·
20 0.0613 0.0806 0.0609 0.0716 0.0828 0.0653

30 0.0397 0.0559 0.0397 0.0463 0.0575 0.0429
40 0.0304 0.0416 0.0300 0.0355 0.0428 0.0328

50 0.0245 0.0333 0.0242 0.0285 0.0343 0.0266
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Therefore it is not surprising that the values of the MSE of the mean and the
PPE are getting close to each other when n is increasing.

4.4 Simulation results � PPE vs. classical Bayes estima-
tors

In this Section, we compare the PPE with several other classical Bayes estima-
tors when estimating a normal mean with known variance σ2 = 1 and several
sample sizes n. The following estimators are used:

• Mean, Median (Med) and PPE from Section 4.3,

• Bayes estimators with a conjugate prior: centered normal prior distribu-
tion with σCN = 1, 3, 5 (CN1, CN3 and CN5, resp.),

• Bayes estimator with noninformative prior: uniform prior on the interval
[−10; 10] (UNNI),

• Bayes estimator with noninformative prior, but taking into account ob-
jective 2: uniform prior on the interval [x(1);x(n)] (UNAS),

• Bayes estimator with heavy-tailed prior: student-t prior with ν = 1, 3, 5, 10
(AT1, AT3, AT5 and AT10 resp.),

• ML estimator: given the bounds [x(1) and x(n)], an MLE for a truncated
normal distribution has been calculated (MLTR).

Resultsare given in Table 4 for n = 10, in Table 5 for n = 20 and in Table 6 for
n = 30.

Generally, as mentioned before, the PPE performs well when the sample
size n is below 50 and the contamination is moderate. As can be seen in the
Tables 4 - 6, there are scenarios where the MSE is comparable or better than
the MSE of the median and any other Bayes estimator. In addition to that,
when contamination is absent, the PPE outperforms the median by a lot since
the correction induced by the PPE is small.

When the sample size is small (n = 10), a single observation has a huge
impact on both sample skewness (and thus the PPE-prior) and the likelihood.
Therefore, when n is increasing the impact of a single outlier is declining and
the correction made by the PPE is getting smaller. This e�ect can be seen
in Table 4 � in three scenarios the PPE is the estimator with the lowest MSE
when samples of size n = 10 are used and a moderate contamination is in the
sample. For no or weak contamination, a Bayes estimator with a Cauchy prior
is performing best. For heavy contamination, the median should be used since
it has the smallest MSE.

When n is increasing, the following e�ects can be seen in Table 5 and 6: The
PPE is still performing well in comparison to the other Bayes estimators or the
MLE with a truncated normal distribution, but it is getting outperformed by
the median when the contamination is strong.
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Di�erence in MSE between the mean and the PPE gets smaller with in-
creasing n, which is in agreement with the asymptotic behavior of the PPE as
mentioned in Section 4.

Table 4: MSE of N = 10000 repetitions of the estimation of µ with known
variance σ2 = 1. Sample size n = 10, (1− ε)n from N (0, 1), εn from N (µε, σε)
with degree of contamination ε = 0.1.

µε 0 2 4 5 0 0 0 2

σε 1 1 1 1
√

5
√

9
√

15
√

5

Mean 0.0993 0.1447 0.2581 0.3473 0.1380 0.1804 0.2417 0.1855
Med 0.1392 0.1712 0.1696 0.1678 0.1552 0.1580 0.1633 0.1628
PPE 0.1087 0.1408 0.1635 0.1820 0.1279 0.1413 0.1717 0.1457

CN1 0.0821 0.1196 0.2133 0.2870 0.1141 0.1491 0.1997 0.1533
CN3 0.0971 0.1415 0.2524 0.3397 0.1350 0.1765 0.2364 0.1815
CN5 0.0986 0.1436 0.2562 0.3447 0.1371 0.1791 0.2399 0.1842

UNAS 0.0994 0.1447 0.2581 0.3473 0.1381 0.1805 0.2417 0.1856
UNNI 0.0993 0.1447 0.2581 0.3473 0.1380 0.1804 0.2417 0.1855
AT1 0.0763 0.1125 0.2039 0.2771 0.1073 0.1420 0.1933 0.1458
AT3 0.0799 0.1169 0.2099 0.2837 0.1115 0.1466 0.1978 0.1506
AT5 0.0807 0.1179 0.2113 0.2851 0.1125 0.1476 0.1987 0.1517
AT10 0.0814 0.1187 0.2123 0.2861 0.1133 0.1484 0.1993 0.1525
MLTR 0.1890 0.1638 0.1963 0.2663 0.1795 0.1971 0.2432 0.1903

5 Concluding remarks and outline

This paper deals with an approach of determining the parameters of a prior
distribution which is exempli�ed by the problem of estimating the mean of a
univariate normal distribution with known variance. Simulation studies show
that the introduced method of choosing the necessary prior parameters leads to
good statistical properties in the presence of asymmetric pollution in the under-
lying data. Especially when the sample size is around n = 20 and the pollution
is moderate, the PPE yields results that are even better in the sense of a smaller
MSE than the median, which is often used as a simple robust estimator. In com-
parison with other estimators, the PPE performs comparably to worse � but in
most of the cases, the compared estimators have several parameters to specify
before it comes to actual estimation. Depending on the parameter constellation,
those estimators performed well or badly. So an advantage of the PPE is the
way of parameter determination derived from the �eld of robust Bayes statistics,
which takes away the in�uence of the arbitrary choice of the prior parameters
and type of distribution on the posterior distribution and therefore the PBE.
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Table 5: MSE of N = 10000 repetitions of the estimation of µ with known
variance σ2 = 1. Sample size n = 20, (1− ε)n from N (0, 1), εn from N (µε, σε)
with degree of contamination ε = 0.1.

µε 0 2 4 5 0 0 0 2

σε 1 1 1 1
√

5
√

9
√

15
√

5

Mean 0.0500 0.0901 0.2109 0.2992 0.0714 0.0900 0.1218 0.1107
Med 0.0740 0.0958 0.1029 0.1002 0.0845 0.0828 0.0878 0.0896
PPE 0.0537 0.0825 0.1359 0.1814 0.0648 0.0714 0.0896 0.0837

CN1 0.0453 0.0817 0.1913 0.2714 0.0648 0.0816 0.1105 0.1004
CN3 0.0494 0.0892 0.2086 0.2959 0.0707 0.0890 0.1205 0.1095
CN5 0.0498 0.0899 0.2103 0.2984 0.0712 0.0897 0.1215 0.1104

UNAS 0.0500 0.0901 0.2109 0.2992 0.0714 0.0900 0.1218 0.1107
UNNI 0.0500 0.0901 0.2109 0.2992 0.0715 0.0900 0.1218 0.1107
AT1 0.0428 0.0777 0.1840 0.2627 0.0615 0.0778 0.1060 0.0959
AT3 0.0443 0.0802 0.1885 0.2680 0.0635 0.0801 0.1088 0.0987
AT5 0.0447 0.0808 0.1895 0.2693 0.0640 0.0807 0.1094 0.0993
AT10 0.0450 0.0813 0.1904 0.2703 0.0644 0.0811 0.1100 0.0999
MLTR 0.0731 0.0852 0.1671 0.2552 0.0763 0.0841 0.1102 0.0971

Table 6: MSE of N = 10000 repetitions of the estimation of µ with known
variance σ2 = 1. Sample size n = 30, (1− ε)n from N (0, 1), εn from N (µε, σε)
with degree of contamination ε = 0.1.

µε 0 2 4 5 0 0 0 2

σε 1 1 1 1
√

5
√

9
√

15
√

5

Mean 0.0334 0.0728 0.1960 0.2825 0.0473 0.0594 0.0793 0.2123
Med 0.0505 0.0701 0.0758 0.0758 0.0574 0.0575 0.0574 0.0691

PPE 0.0351 0.0652 0.1394 0.1973 0.0436 0.0489 0.0606 0.1511
CN1 0.0313 0.0682 0.1836 0.2646 0.0443 0.0556 0.0742 0.1988
CN3 0.0332 0.0723 0.1946 0.2804 0.0470 0.0590 0.0787 0.2107
CN5 0.0333 0.0727 0.1958 0.2822 0.0472 0.0592 0.0791 0.2120

UNAS 0.0334 0.0728 0.1960 0.2825 0.0473 0.0594 0.0793 0.2123
UNNI 0.0334 0.0728 0.1960 0.2825 0.0473 0.0594 0.0793 0.2122
AT1 0.0299 0.0655 0.1779 0.2577 0.0425 0.0534 0.0716 0.1935
AT3 0.0308 0.0672 0.1814 0.2619 0.0436 0.0548 0.0732 0.1967
AT5 0.0310 0.0676 0.1822 0.2629 0.0439 0.0551 0.0736 0.1975
AT10 0.0311 0.0679 0.1829 0.2637 0.0441 0.0553 0.0739 0.1981
MLTR 0.0433 0.0659 0.1668 0.2540 0.0454 0.0543 0.0716 0.1883
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The multivariate case will be the target for further investigation since the
calculation of the multivariate median is cumbersome (Oja (1983)) and the
derived PPE-framework seems to be extended easily to the multivariate case,
by using the generalized Dirichlet distribution Kotz et al. (2000) as an extension
of the beta distribution in the multivariate case.

6 Appendix

Proof of lemma 3.2.

µBE =

∫
µ
∏n
i=1

(
1√

2πσ2
e−

1
2

(xi−µ)2

σ2

)
11[a,b]

1
B(a,b,p,q) (µ− a)p−1(b− µ)q−1dµ

∫ ∏n
i=1

(
1√

2πσ2
e−

1
2

(xi−µ)2

σ2

)
11[a,b]

1
B(a,b,p,q) (µ− a)p−1(b− µ)q−1dµ

=

=

∫ b
a
e−

1
2σ2 (
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i=1 (xi−x̄)2+n(x̄−µ)2)µ(µ− a)p−1(b− µ)q−1dµ∫ b

a
e−

1
2σ2 (

∑n
i=1 (xi−x̄)2+n(x̄−µ)2)(µ− a)p−1(b− µ)q−1dµ

=

=
e−

∑n
i=1 (xi−x̄)2

2σ2
∫ b
a
e−

1
2σ2 n(x̄−µ)2

µ(µ− a)p−1(b− µ)q−1dµ

e−
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i=1

(xi−x̄)2

2σ2
∫ b
a
e−

1
2σ2 n(x̄−µ)2

(µ− a)p−1(b− µ)q−1dµ

=

=

∫ b
a
e−

1
2σ2 n(x̄−µ)2

µ(µ− a)p−1(b− µ)q−1dµ∫ b
a
e−

1
2σ2 n(x̄−µ)2

(µ− a)p−1(b− µ)q−1dµ
,

which can be expanded to

EY
[
µ(µ− a)p−1(b− µ)q−1

]
EY [(µ− a)p−1(b− µ)q−1]

,

with Y ∼ N (x̄, σ
2

n )ab , the truncated normal distribution on the interval [a, b],
where x̄ denotes the arithmetic mean of the sample x.

Proof of lemma 4.1. p, q ∈ N, are chosen in the manner of the PPE approach
according to (13).

Since in a sample from a symmetric distribution of �nite size n the skewness
of the sample νn is deviating from the true value zero with probability 1, p = q is
not admissible, since this would result in a skewness of the prior distribution of
exactly zero. The further p diverges from q, the higher the value of the resulting
skewness of the prior distribution will be. Therefore, for small deviations from
νn of zero (which become more probable as n increases) p and q need to get
as close as possible to each other. Since p = q is not admissible, the smallest
resulting skewness given p would be obtained by setting q = p+ 1 for a positive
and q = p − 1 for a negative sign of the sample skewness. This results in a
skewness of the prior distribution of

ν+(p) =
2

3
2
√
p+ 1√

p (p+ 1) (2 p+ 3)
and ν−(p) =

2
3
2
√
p√

(p− 1) p (1− 2 p)
(15)
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for positive (negative)sample skewness.
As νn is tending to zero when n is increasing, the PPE approach has to

choose an increasing p in order to minimize the distance between ν±(p) and νn.
Therefore, for n → ∞, it is necessary that p → ∞ (and implicitly q → ∞),
which means that ν±(p)→ 0 (according to (15)).

Proof of Lemma 4.2. Let fX(x) be a density function of the generalized beta
distribution of (9) for q = p, p > 0. This leads to

fX(x) =
Γ(2p)

Γ(p)2

((x− a)(b− x))
p−1

(b− a)2p−1
, a < b, a ≤ x ≤ b

with

E[X] =
a+ b

2
, Var(X) =

(b− a)2

4(2p+ 1)
.

Then the density function of a random variable Y := T (X) with

T (x) =
x− a+b

2
(b−a)

2
√

2p+1

can be derived via univariate variable transformation:
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√
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Applying (Gradshtein et al., 2007, p. 895, 8.327.1) for Γ(z) and (Gradshtein
et al., 2007, p. 26, 1.211.4) for the limit in b one yields

fY (y) =
1

2
√

2p+ 1

√
2π(2p)2p− 1

2 e−2p

2π(2p)2p−1e−2p

(
1 + o(p−1)

)(1

4
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4(2p+ 1)
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=

=
1√
2π

(
1− y2
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)p−1 √
2p√

2p+ 1

(
1 + o(p−1)

) p→∞
=

1√
2π
e−

y2

2

where o() denotes the Landau little-o. Therefore, for all y ∈ R fY (y) converges
pointwise to the standard Gaussian density function. Applying the theorem
of Sche�é, Y converges in distribution to a random variable with the standard
Gaussian density as density function.

20



Proof of Theorem 4.3. (14) is a consequence of Lemma 4.1 and Lemma 4.2 when
the continuous mapping theorem is applied and p = q.
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