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Abstract

The serial dependency of multivariate �nancial data will often be �ltered by con-

sidering the residuals of univariate GARCH models adapted to every single series.

This is the correct �ltering strategy if the multivariate process follows a so-called

copula based multivariate dynamic model (CMD). These multivariate dynamic mo-

dels combine univariate GARCH in a linear or nonlinear way. In these models the

parameters of the marginal distribution (=univariate GARCH models) and the de-

pendence parameter are separable in the sense that they can be estimated in two

or more steps. In the �rst step the parameters of the marginal distribution will be

estimated and in the second step the parameter(s) of dependence. To the class of

CMD models belong several multivariate GARCH models like the CCC and the DCC

model. In contrast the BEKK model, f.e., does not belong to this class. If the BEKK

model is correctly speci�ed the above mentioned �ltering strategy could fail from a

theoretical point of view. Up to now, it is not known which dynamic copula is incor-

porated in a BEKK model. We will show that if the distribution of the innovations

(i.e. the residuals) of MGARCH models is spherical the conditional distribution of

the whole MGARCH process belongs to the elliptical distribution family. Therefore

estimating the dependence of a BEKK model by copulas from the elliptical family

should be an appropriate strategy to identify the dependence (i.e. correlation) bet-

ween the univariate time series. Furthermore we will show, that a diagonal BEKK

model can be separated in its margins and a copula, but that this strategy falls short

of investigating full BEKK models.
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1 Introduction

Since the pioneering work of Embrechts et al. (1999), copula models have enjoyed

steadily increasing popularity in �nance. But there is also a lot of criticism concer-

ning the use of copulas for modelling stochastic dependence. Mikosch (2006, p. 12)

states in his famous paper with the title �Copulas: Tales and Facts� as point nine:

�Copulas completely fail in describing complex space-time dependence structures.

Their focus is on spatial dependence and the related statistics (. . .) are aimed at

iid data. It is contradictory that in risk management, where one observes a lot of

dependence through time, copulas are applied most frequently.�

With some exceptions (see f.e. Patton (2006)) copulas are applied to �nancial data

after the serial dependency of this data has been �ltered by adapting univariate

GARCH-processes to each series (see f.e. Poon et al. (2004), Klein & Fischer (2004),

Köck (2008)). Copulas will be �tted to the set of univariate �ltered time series.

Aside the fact that the model used for �ltering could be misspeci�ed there must still

be serial dependency in the cross-relationship of the �ltered time series. Otherwise,

multivariate GARCH models could not be so successful for �tting �nancial data.

On the other side, �ltering the serial dependency by multivariate GARCH models

and using a copula model for the remaining contemporaneous dependency of the

�ltered series is not useful. If the multivariate GARCH model is not misspeci�ed

the standardized residuals necessarily show independence. This means that the only

useful copula for the �ltered vector is the independence copula.

In the following we would like to investigate how these �ltering strategies work. What

we can see from a multivariate GARCH model is the conditional spatial dependency

in the sense of Mikosch. Up to now, there is no method to identify the copula of the

conditional multivariate distribution that is implicitly part of a multivariate GARCH

model. In this article we show, that as long as the innovation process is a spherical

one, an elliptic conditional copula like the Gaussian will be appropriate to recapture

the dependence of a MGARCH model. Therefore, we use a simulation design to

get an impression of the interplay between the serial dependency of multivariate

GARCH models and the spatial dependency of copulas.

Within the framework of the �rst study we draw two series of random observations

from a bivariate copula model with �xed cross dependence. We make the both series

serial dependent by transforming each series using two separate univariate GARCH
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models. Afterwards, we �t several multivariate GARCH models to the generated da-

ta. This design allows to compare the spatial dependence of the copula we start with

and the kind of conditional spatial dependence in the �tted multivariate GARCH

model.

In the second study we generate two serial and cross dependent times series from

a bivariate GARCH model, �tting to each of the series a univariate GARCH mo-

del, �ltering the two series separately and estimate several copula models to the

two �ltered series. This imitates the above mentioned strategy mostly used in the

literature and practice.

The simulation design needs a lot of speci�cation. The considered multivariate

GARCH models are the Constant Conditional Correlation (=CCC) GARCH mo-

del, the diagonal BEKK and the BEKK model. As copula families we alternatively

specify the Gauss copula, the t-copula and the Clayton copula with normally or

t-distributed margins.

Our paper is organized in the following way. After a short introduction into uni-

variate and multivariate GARCH models and the concept of copulas in section 2,

we give a brief description of the BEKK model and their relationship to elliptical

distributions in the third section. The �rst simulation study that generates spatial

dependent data from a copula and �ts a multivariate GARCH model is presented in

section 4. In the �fth section the way of simulation and �tting goes the other way

around. Section six concludes.

2 Basic concepts

2.1 Multivariate GARCH models

Since there exists an abundant literature and investigations on univariate GARCH

models, we just refer to Gourieroux (1997) or Jondeau and Rockinger (2007) just

to mention a few. So we skip right away to the multivariate case and give a brief

introduction to MGARCH models. For further studies we refer to Laurent, Bauwens

(2006) and to McNeil, Frey and Embrechts (2005).

Following McNeil, Frey and Embrechts we start with the de�nition of a strict white

noise process.
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De�nition 1 (Xt)t∈Z is a strict multivariate white noise process (SWN) if it is a
series of stochastic independent and identically distributed (iid) random vectors with
�nite covariance matrix.

Let 1d be the d-dimensional identity matrix. A multivariate GARCH process can be

de�ned as follows.

De�nition 2 Let (Zt)t∈Z be a d-dimensional SWN with mean zero and covariance
matrix 1d. The process (Xt)t∈Z is said to be a multivariate GARCH process if it is
strictly stationary and satis�es equations of the form

Xt = Σ
1/2
t Zt, ∀t ∈ Z

where Σ
1/2
t ∈ Rd×d is the Cholesky decomposition of a positive-de�nite matrix Σt,

which is measurable with respect to Ft−1 = σ({Xs : s ≤ t− 1}), the �ltration of the
process up to time t− 1.

In most applications the innovation process follows a multivariate normal distribu-

tion, but especially for modeling daily returns a multivariate t-distribution or other

distributions with fatter tails than the normal one would be preferable, as long as

it has zero mean and the covariance matrix takes the form 1d.

There exist various di�erent characterizations of multivariate GARCH models like

the Vech-model of Kraft and Engle (1982) or the EGARCH of Nelson (1991). We just

consider two di�erent very popular GARCHmodels for our investigations: The CCC-

GARCH model of Bollerslev because of its simplicity and in contrast the BEKK-

model of Baba, Engle, Kraft and Kroner (1995), which involves many parameters

to be estimated.

De�nition 3 The process (Xt)t∈Z is a CCC-GARCH process if it is a process with
the general structure given in De�nition 2, such that the conditional covariance
matrix is of the form Σt = DtPcDt, where

• Pc is a constant positive-de�nite correlation matrix

• Dt is a diagonal volatility matrix with elements σt,k satisfying:

σ2
t,k = αk0 +

pk∑
i=1

αkiX
2
t−i,k +

qk∑
j=1

βkjσ
2
t−j,k, k = 1, ...d

where αk0 > 0, αki ≥ 0, i = 1, ..., pk, βkj ≥ 0, j = 1, ..., qk.
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There are some advantages of this approach, like the reduced number of parameters.

Another one is, if the conditional variances of Dt are all positive then Σt is, too.

The main problem of the CCC-GARCH model, however, lies in the assumption of

constant correlations between e.g. two �nancial assets, which is rejected by empirical

studies.

A di�erent speci�cation of Σt leads to the very �exible and very popular BEKK

model described by Engle and Kroner (1995) that overcomes the disadvantage of

constant correlations.

De�nition 4 The process (Xt)t∈Z is a BEKK-GARCH process if it is a process with
the general structure given in De�nition 2, and if the conditional covariance matrix
Σt is given by:

Σt = C +

p∑
i=1

A′iXt−iX
′
t−iAi +

q∑
j=1

B′jΣt−jBj (1)

where C is a (d, d) positive de�nite and symmetric matrix and Ai and Bj are some
(d, d)-matrices.

As long as C is positive de�nite Σt also is. Though the BEKK model is one of the

most �exible multivariate GARCH models its main disadvantage is the huge amount

of parameters to specify. For a simple BEKK(1,1) model dealing with two time series,

11 parameters have to be estimated. To reduce this problem one constrains the model

to the diagonal BEKK, where A′is and B′is are diagonal matrices or to the scalar

BEKK model, where the A′s and Bs are simply scalars.

Another constraint which is often used in practice is to replace the matrix C by the

long-run covariance matrix equal to the sample covariance matrix.

2.2 Copulas

In order to deal with the di�culties of de�ning joint distributions with arbitrary

margins and to receive a new possibility to measure the dependency between time

series, one draws back to the copula concept �rst introduced by Sklar (1959).

In the following we consider the bivariate case. Note that a d-dimensional genera-

lization could be made. However, our simulation design does not su�er from the

restriction to the bivariate case.
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De�nition 5 A copula is a bivariate function C : [0, 1] × [0, 1] → [0, 1] with the
following properties:

• C(0, v) = C(u, 0) = 0, and C(u, 1) = u, C(1, v) = v

• C(u, v) is two-increasing, that is:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≤ 0, ∀u1, u2, v1, v2 ∈ [0, 1]

where u1 ≥ u2, v1 ≥ v2.

The importance of copulas is summarized in the well-known theorem of Sklar:

Theorem 1 Let FX and FY be the marginal distributions of some real valued, con-
tinuous random variables X and Y and G the joint distribution function of (X, Y ).
Then there exists a copula C such that, for all (x, y) ∈ R2:

G(x, y) = C(FX(x), FY (y)). (2)

Moreover, if FX and FY are continuous, then C is unique.
Conversely, if FX and FY are the distributions of X and Y , respectively, the function
G de�ned by (2) is a joint distribution function with marginal distributions FX and
FY .

The theorem says that we can decompose a bivariate cumulative distribution func-

tion into its marginal distributions and an unique copula if the marginal cumulative

distribution functions are continuous. The second assertion is the more important

one for our context. By de�ning two marginal distributions and taking one copula

we are capable to create any bivariate cumulative distribution function. As indicated

above the main target of the copula approach is to model dependencies beyond the

correlation. A popular measure involving copulas is Kendall's τ (see Nelsen 2006)

as a measure of concordance.

Theorem 2 Let X and Y be continuous random variables whose copula is C. Then
Kendall's tau is de�ned as:

τ(X, Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1 = 4E[C(U, V )]− 1 (3)

Note that τ(X, Y ) is bounded between [−1, 1]. As there exists an abundant literature

dealing with copula we just refer to Joe (1997) and Nelson (2006) for further details.

We now present three copulas we are dealing with in our simulation: The Gaussian,

the Student-t (t-copula for short) and the Clayton copula. The �rst two belong to

the so called elliptical family and the third to the Archimedean family.
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De�nition 6 The Gaussian copula is de�ned by the following cumulative distribu-
tion function :

Cρ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
−s

2 − 2ρst+ t2

2(1− ρ2)

)
dsdt.

The parameter ρ ∈ [−1, 1] is Pearson's correlation coe�cient. Kendall's τ can be

achieved by the following formula:

τ(Cρ) =
2

π
arcsin(ρ). (4)

Note that (4) holds true also for the t-copula and for other members of the elliptical

family (see Lindskog et al. (2004)).

De�nition 7 The t-copula is de�ned by:

Cρ,ν =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

Γ
(
ν+2
ν

)
Γ
(
ν
2

)
πν
√

1− ρ2

(
1 +

ψ′R−1ψ

ν

)− ν+2
2

dψ,

where ψ = (t−1
ν (u), t−1

ν (v)), and R is the correlation matrix with correlation coe�-
cient ρ and ν are the degrees of freedom.

Among the class of non-elliptical copulas, archimedean copulas enjoy great popula-

rity.

Theorem 3 Let φ be a continuous, strictly decreasing function from [0, 1] to [0,∞)
such that φ(1) = 0 and let φ−1 be the inverse of φ. Then, the function from [0, 1]2 →
[0, 1] given by:

C(u, v) = φ−1(φ(u) + φ(v))

is a copula if and only if φ is convex.

Moreover, if φ−1 is twice continuous di�erentiable Kendall's tau is given by

τ(C) = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt

The function φ is called the generator of the copula.

De�nition 8 For φ(t) =
(
t−θ − 1

)
/θ, with θ ∈ [−1,∞)\{0}, the Clayton copula is

obtained:
Cθ = max

(
(u−θ + v−θ − 1)−1/θ, 0

)
Kendall's tau is given by

τ(Cθ) =
θ

θ + 2
.
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2.3 Connecting copulas and GARCH models

Hu (2005), Jondeau and Rockinger (2006) and Patton (2000a,b) suggest to replace

the unconditional margins of a copula with conditional margins coming from uni-

variate GARCH models. This leads to a special case of the so-called copula based

multivariate dynamic (CMD) model.

Starting with Sklar's theorem for conditional distributions Chen characterizes a

CMD model by

FXt.Yt(x, y|Ft−1;λ) = C(FXt(x|Ft−1; γX), FYt(y|Ft−1; γY )|Ft−1; θ),

where λ := (γ′X , γ
′
Y , θ

′)′ is the parameter vector. γX and γY contain f.e. the GARCH

parameters of the marginal distributions and θ is the dependence parameter. Due to

Chen (2007) the key feature of a CMD model is the separability of γX and γY . This

separability insures that the parameters of the condtional marginal distribtuions can

be estimated separately before estimating the copula parameter in a second step.

The above introduced CCC model and the dynamic conditional correlation (=DCC)

model of Engle (2002) and Tse and Tsui (2002) are special cases of the CMD model

where a normal copula and GARCHmargins with normal innovations are considered.

Other models, like the VEC model of Bollerslev, Engle and Wooldridge (1988) and

the BEKK model, don't have separable parameters and are not members of the class

of CMD models.

3 BEKK models and elliptical Distributions

In this section we show, that the unconditional distribution of multivariate GARCH

models belongs to the elliptical family. We further show under which circumstan-

ces a BEKK model can be decomposed into its margins and common dependency

part. First following McNeil, Frey and Embrechts we give the basic de�nitions and

properties of elliptical distributions.

De�nition 9 A random vector X = (X1, ..., Xd) is spherically distributed if for
every orthogonal map U ∈ Rd×d:

UX
d∼ X

and we write X ∼ Sd(ψ) with ψ the generator function of the distribution.
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It is known that the multivariate normal distribution and the multivariate t-distribution

belongs to the spherical family.

De�nition 10 X has an elliptical distribution if:

X
d∼ µ+ AY

with Y ∼ Sd(ψ) and A some non-stochastic d×k matrix with Σ = AA′ and we write
X ∼ Ed(µ,Σ, ψ).

It follows from this de�nition that Σ−1/2(X − µ) ∼ Sd(ψ). Elliptical distributed rv

have some interesting features as following corollary shows:

Corollary 1 If X has an elliptical distribution then:

• The margins are also elliptically distributed with Xi ∼ E1(µi,Σii, ψ) ∀i.

• The conditional distribution Xt|Ft−1, where Ft−1 indicates the information set
up to time t − 1 (i.e. Filtration) is also elliptic but with a possibly di�erent
generator.

• Let (X1, X2) ∼ E2(µ,Σ, ψ) then the rank correlation τ is given for all members
of the elliptic family by the formula:

τ(X1, X2) = 2/π arcsin(ρ).

With those results we are able to show that MGARCH models like the BEKKmodels

are conditionally elliptically distributed.

Theorem 4 Let Xt follow a MGARCH model, then Xt|Ft−1 is elliptically distributed
if and only if Zt is spherically distributed.

Proof:

Write Xt = µ(Θ)t + Σ
1/2
t (Θ)Zt. Without any loss of generality we set µt ≡ 0 and

check the conditions for elliptically distributed rv:

• Σt is measurable with respect to Ft−1 and non stochastic.

• Σt is positive de�nite a.s. ∀t ∈ Z and thus the Cholesky-decomposition is

possible. We now set Σ
1/2
t = A.

• Zt ∼ Sd(ψ)∀t ∈ Z and thus Xt|Ft−1 ∼ Ed(0,Σ, ψ).
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The way back is straightforward, as Xt ∼ Ed. Then according to the de�nition of

an elliptical distributed rv Zt must be a spherical rv.

�

The theorem also shows, that the generator ψ is the same for the innovation process

and the conditional cdf of Xt. For example let Zt be iid and Zt ∼ N(0, 1d), ∀t ∈ Z
then Xt|Ft−1 is also normally distributed and so the margins.

We now use these properties to examine the class of BEKK models. Though they

are �exible and popular MGARCH models, their main disadvantage lies in the huge

amount of parameters to estimate. Thus in practice the margins of a (multivariate)

times series are estimated in a �rst step, and then, in the second step, the dependency

parameters will be estimated. This two step estimation leads to reasonable results

for example for CCC or DCC models. So, if the true process follows a BEKK model,

this procedure will be inaccurate as the BEKK model can not be separated into its

margins and a dependency function, like the CCC or DCC models. But if one does

nonetheless, the error that occurs might be appraised.

In the following discussion we just refer to the BEKK(1,1) model for notation sim-

plicity. For a BEKK(1,1) we have the following variance and covariance equations:

σ2
t,1 = c2

0,11 + a2
1,11X

2
t−1,1 + b2

11σ
2
t−1,1 + 2a1,11a1,12Xt−1,1Xt−1,2

+ a2
1,12X

2
t−1,2 + 2b11b12σt−1,12 + b2

12σt−1,2

σ2
t,2 = c2

0,22 + a2
1,22X

2
t−1,2 + b2

22σ
2
t−1,2 + 2a1,22a1,21Xt−1,1Xt−1,2

+ a2
1,21X

2
t−1,1 + 2b22b21σt−1,12 + b2

21σt−1,1

σt−1,12 = c2
0,12 + (a1,11a1,22 + a1,12a1,21)Xt−1,1Xt−1,2 + a1,11a1,21X

2
t−1,1

+ a1,22a1,21X
2
t−1,2 + (b11b22 + b12b21)σt−1,12 + b11b21σ

2
t−1,1 + b22b12σ

2
t−1,2.

Considering the above mentioned properties it is essential that Xt,1|Ft−1 ∼ E(0, σ2
t,1)

and Xt,2|Ft−1 ∼ E(0, σ2
t,2). If one tries to approximate the true marginal distribution

denoted by E0 with a standard univariate GARCH(1,1) model the question arises

'how far' the elliptic distribution is away from E0.

To answer this question we introduce the so-called Kullback-Leibler information

(relative entropie) for measures.

De�nition 11

D(P ‖ Q) =

∫
p log

p

q
dx

where p and q are the densities of the probability measures P and Q, respectively.
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The Kullback-Leibler information has the interesting property of being equal to zero

if p equals q a.s. and for every other measure being strictly positive. Let P denote

the distribution function of an estimated univariate GARCH(1,1) model and Q the

distribution function of the true marginal model. We then have following assertion.

Theorem 5 If Xt follows a diagonal BEKK(1,1) process, the margins can be consis-
tently estimated by an univariate GARCH(1,1) model, with the following parameter
equations for the i-th model:

α0i = c2
0,ii

α1i = a2
1,ii

β1i = b2
1,ii

Furthermore the correlation ρt will be time-varying with the formula:

ρt =
c2

0,12√
α01 + α11X2

t−1,1 + β11σt−1,1

√
α02 + α12X2

t−1,2 + β12σt−1,2

Proof: The density function of an elliptical distribution is given by:

f(x) =
1

|Σ|1/2
g((X − µ)′Σ−1(x− µ))

In our case this formula reduces to:

f(x) =
1

σt,i
g(x2

tσ
−2
t,i )

where i is the i−th marginal GARCH model of the diagonal BEKK(1,1) model. The

Kullback-Leibler information is then:

D(P ‖ Q) =

∫
p log

p

q
dx =

∫
p log

(
σt,i
σt
· g(x2

t/σ
2
t )

g(x2
t/σ

2
t,i)

)
dx

where p is the density of an elliptical distributed rv, with generator function g

and variance σ2
t , which is characterized by an univariate GARCH model. Thus Q

is the unknown conditional distribution of a diagonal BEKK model and P is the

conditional distribution of an univariate GARCH model. The only expression of

interest now is the log expression, since if it equals 1 both densities are the same

apart from a constant and D(P ‖ Q) = 0 i.e. both distribution functions agree. We

get:

log
σt,i
σt

+ log

(
g(x2

t/σ
2
t )

g(x2
t/σ

2
t,i)

)
12



The second expression equals zero only if σ2
t,i = σ2

t as both densities have the same

density generator, and consequently σt,i = σt, as σt,i has to be positive. We now get:

c2
0,ii + a2

1,iiX
2
t−1,i + b2

iiσ
2
t−1,1 = α0 + α1X

2
t−1,i + β1σ

2
t−1

Comparison of the two sides leads to the result. The consistency follows from the

properties of (Q)ML estimation of the parameters.

The second result is trivial since σt,12 = c0,12, ∀t, as a1,12 = a1,21 = b1,12 = b1,21 = 0.

�

This result is quite general for all density generator g of a spherically distributed rv.

One of the main disadvantages of the BEKK speci�cation is that one has to estimate

all unknown parameters simultaneously. This may be a source of bias, see Baur

(2007). Thus some two step procedure would be grateful. But unfortunately this can

be done only for the diagonal or scalar BEKK models. With the results obtained so

far, we propose for the following estimation method for diagonal BEKK models:

• Estimate the margins with an univariate GARCH(1,1)-model. With the for-

mula given in theorem 5 we get the parameter for the coe�cients.

• In a second step, estimate the conditional Kendall's tau resp. the correlation

coe�cient from the data and get the parameter c0,12.

4 First simulation study

We now present the general setup for our Monte-Carlo-Simulation. In a �rst simula-

tion study we investigate what happens, when two univariate GARCH(1,1) models

with di�erent innovations processes are simulated and (contemprarily) connected via

di�erent copulas, and then a bivariate CCC-GARCH(1,1) model or a BEKK(1,1)

model are estimated also with di�erent innovation processes.

4.1 Simulation design

In a �rst step a bivariate 2 × 2500-matrix of random numbers generated from one

of the three copulas is simulated. Afterwards the two 1 × 2500 vectors with the
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random numbers are transformed with the quantile function of a standard normal,

respectively of a t(5)-distribution.

Then, an univariate GARCH(1,1) with normal N(0, 1) or t(5)-innovations is adap-

ted. Finally both time series are merged again.

We repeat this procedure 1000 times. Then at �rst a bivariate CCC-GARCH, a

diagonal BEKK (=Diag-BEKK) and a full BEKK2 model is estimated. We look

if all three models are capable to re-�nd the dependency induced by the di�erent

copulas and we look at, how sensitive the bivariate GARCH models react if, for

instance, the true innovation process is t(5) distributed and the we estimate ne-

vertheless with normal distributed innovations, i.e. the classical QML method like

in Bollerslev and Wooldridge (1992), for instance. To make the results compara-

ble we let the coe�cients of the univariate GARCH (1,1) models constant, i.e.

α0 = 0.05, α1 = 0.1, β = 0.80. We choose di�erent parameters for the three co-

pulas; for Gauss ρ = 0.1, 0.4, 0.7, the t ρ = 0.1, 0.4, 0.7, df = 5 and the Clayton

θ = 0.1362, 0.7099, 1.9497 and which corresponds approximately to the Kendall's

tau of a Gaussian/t-copula with ρ = 0.1, 0.4 respectively ρ = 0.7. The results are

summarized in the next section.

e refer to the three di�erent simulation designs as:

• case 1: N(0, 1) distributed univariate innovations and N(0, 1) bivariate inno-

vations

• case 2: t(df = 5) distributed univariate innovations and N(0, 1) bivariate in-

novations

• case 3: t(5) distributed univariate innovations and t(5) bivariate innovations

The results are summarized in table 1. The table contains the estimated value of the

linear correlation coe�cient ρ, the value of the maximum log-likelihood value LL.

As it can be easily seen, the CCC, the Diag-BEKK and the BEKK models estima-

te the constant correlations induced by the Gaussian copula and the t-copula very

well. As a �rst result it can be seen, that misspeci�cation of the univariate GARCH

models doesn't e�ect the estimation of the correlation between the two time series,

which is a quite reasonable result, as it stands in a line with the results of Bollerslev

2from now on just BEKK
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and Wooldridge (1992) for dynamic models for conditional means and covariances.

As one can see, as long as the copulas belong to the elliptical family, all bivariate

GARCH models specify the correlation and the degrees of freedom quite well, where

the Kendall's tau induced by the Clayton copula is estimated worse, if the innovati-

on processes change from the classical normal-normal approach to case 2 and 3 with

θ = 0.7099 or θ = 1.9497. The CCC nearly re-�nd the Kendall's tau induced by

the Clayton Copula even though this CMD approach generates a process with more

probability mass in the lower tails. Remember that we choose the parameter of the

Clayton copula in such a way, that it is equal to the Kendall's tau of a Gaussian re-

spectively t-copula with correlation parameter ρ = 0.1, 0.4 resp. 0.7. As it should be

expected the CCC model, as it is nested in the CMD context performs throughout

the simulation quite well and even under misspecifcation (case 2) re-�nd the corre-

lation no matter which copula was chosen. Note that even the degrees of freedom of

the univariate innovation process in case 3 were correctly speci�ed, except the data

came from a Clayton-copula-GARCH model. On the other side the both BEKK

models were not able to specify the degrees of freedom correctly and it seems as the

models were getting more extensive from case 2 to case 3 for the gaussian copula-

GARCH simulation, the BEKK model failed completely to re-�nd correlation resp.

Kendall's tau. This failure may due to numerical instabilities when the both BEKK

models estimate all parameters simultaneously and didn't disappear even after some

additional simulations. Interestingly, when the data came from a t-copula-GARCH

simulation, the error didn't occur. In the Clayton-copula-GARCH context there is

also a considerable underestimation of the simulated correlation resp. Kendall's tau,

but this error is much smaller than in the gaussian copula-GARCH simulation. Also

quite obvious is the decrease of the LL of the both BEKK models from case 1 to

case 2 , which is at �rst sight not surprising as case 2 is the misspeci�ed one. But

in scenario 3 the LLs are much lower than in scenario 2, when the Parameters of

the copulas are high (ρ = 0.7 resp. θ = 1.9497). Another quite astonishing result is

the dramatic decrease of the LL from case 2 to 3 for a CCC model, even though

the Kendall's τ and the df of the t-distributed innovations were correctly speci�ed.

This might due to the numerical problems a minimization routine is facing when

the negative of a log-likelihood of an extensive GARCH model has to be evaluated,

estimating all parameters simultaneously.
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Innovations N(0,1)&N(0,1)

GARCH CCC Diag-BEKK BEKK
Copula ρ LL ρ LL ρ LL

G:ρ = 0.1 0.102 403.9 0.102 404.0 0.102 403.3
t:ρ = 0.1 0.103 406.2 0.100 405.6 0.100 406.4
C:θ = 0.1362 0.1185 688.7 0.118 688.2 0.118 688.2

G:ρ = 0.4 0.401 608.4 0.401 608.4 0.401 607.9
t:ρ = 0.4 0.396 606.0 0.396 605.4 0.396 606.1
C: θ = 0.7099 0.441 848.3 0.441 847.9 0.441 847.9

G:ρ = 0.7 0.700 1233.1 0.700 1232.7 0.700 1233.1
t:ρ = 0.7 0.695 1215.3 0.695 1215.4 0.694 1214.8
C:θ = 1.9497 0.716 1419.1 0.716 1414.5 0.716 1414.5

Innovations t(df=5)&N(0,1)

CCC Diag-BEKK BEKK
ρ LL ρ LL ρ LL

G:ρ = 0.1 0.098 -868.0 0.097 -868.6 0.097 -869.3
t: ρ = 0.1 0.102 -863.1 0.101 -864.7 0.101 -862.6
C: θ = 0.1362 0.127 -314.9 0.127 -315.6 0.127 -315.7

G:ρ = 0.4 0.390 -671.1 0.390 -672.5 0.390 -671.1
t:ρ = 0.4 0.402 -663.6 0.402 -665.1 0.401 -663.25
C:θ = 0.7099 0.464 -230.0 0.465 -230.9 0.465 -230.8

G:ρ = 0.7 0.689 -76.0 0.688 -76.0 0.688 -77.1
t:ρ = 0.7 0.701 -38.0 0.701 -38.9 0.701 -37.6
C:θ = 1.9497 0.723 299.15 0.724 298.76 0.724 298.84

Innovations t(df=5)& t(df=5)

CCC Diag-BEKK BEKK
ρ/df LL ρ/df LL ρ/df LL

G:ρ = 0.1 0.097 / 5.0 -4998.3 0.089/11.1 -692.8 0.090/11.1 -693.4
t:ρ = 0.1 0.100/5.2 -4961.7 0.096/11.1 -636.7 0.095/11.1 -636.1
C:θ = 0.1362 0.126/9.4 -5398.4 0.109/11.1 -266.0 0.109/11.1 -266.0

G:ρ = 0.4 0.389/5.0 -4963.2 0.380/11.1 -507.3 0.378/11.1 -507.1
t:ρ = 0.4 0.401/5.2 -4904.9 0.399 /11.1 -453.3 0.399/11.1 -452.9
C:θ = 0.7099 0.466/6.4 -5110.1 0.401/11.1 -168.4 0.402/11.1 -168.1

G:ρ = 0.7 0.688/5.0 -4945.9 -0.485/11.1 -1676.1 -0.475/11.1 -1676.1
t:ρ = 0.7 0.700/5.3 -4906.8 0.705/11.1 -214.8 0.720/11.1 -245.8
C:θ = 1.9497 0.723/6.2 -5074.2 0.365/11.1 -634.22 0.360/11.1 -620.44

Table 1: Fitting a multivariate GARCH model to data from a copula with

unvariate GARCH margins



5 The second simulation study

In the second step we come the other way around: A bivariate CCC-GARCH(1,1)

and a BEKK(1,1) are simulated, then decomposed in two univariate GARCH(1,1)-

models and the dependence between the two series is �nally estimated by the three

copulas mentioned above.

5.1 Simulation design

At �rst we simulate a bivariate CCC-GARCH(1,1) process of length 2500 with either

normally or t(5) distributed innovations, then split the 2×2500 matrix into two time

series vectors and �t for each vector an univariate GARCH(1,1) process with also

normally and t distributed innovations, respectively. Afterwards we estimate the

parameters of our three copulas one by one and look, if the copula-GARCH models

are able to re-�nd the constant correlation of the CCC-GARCH(1,1) model.

We do this also for a Diag-BEKK(1,1) and a BEKK(1,1) model. As in step one we

repeat the procedure 1000 times. As the CCC-GARCH induces constant correlation

we again choose three di�erent correlation coe�cients

• Model 1: ρ = 0.1

• Model 2: ρ = 0.4

• Model 3: ρ = 0.7

For the two BEKK models the situation is slightly di�erent, as the correlation can

only be determined indirectly via di�erent parameter models. We refer to the follo-

wing parameters as model 1 to 3. For the Diag-BEKK we have:

• Model 4: C =

(
1.1 0.3

0 0.9

)
, A =

(
0.25 0

0 0.05

)
, B =

(
0.9 0

0 0.05

)

• Model 5: C =

(
0.6 0.3

0 0.4

)
, A =

(
0.15 0

0 0.01

)
, B =

(
0.5 0

0 0.1

)

• Model 6: C =

(
0.1 0.3

0 0.05

)
, A =

(
0.25 0

0 0.05

)
, B =

(
0.7 0

0 0.05

)
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And for the BEKK(1,1) models we have in analogy to Hafner & Herwartz (2008):

• Model 7: C =

(
1.1 0.3

0 0.9

)
, A =

(
0.25 −0.05

0.05 0.25

)
, B =

(
0.9 −0.05

0.05 0.9

)

• Model 8: C =

(
0.6 0.3

0 0.4

)
, A =

(
0.15 −0.01

0.01 0.15

)
, B =

(
0.5 −0.1

0.1 0.5

)

• Model 9: C =

(
0.1 0.3

0 0.05

)
, A =

(
0.25 −0.05

0.05 0.25

)
, B =

(
0.9 −0.05

0.05 0.9

)

The di�erent models induce di�erent correlations resp. rank correlations. As men-

tioned above the Clayton copula is unable to measure correlation we just refer to

Kendall's tau and convert the coe�cient of all three copulas to Kendall's tau. We

get following taus for our simulation scenarios:

Innovations N(0,1)

M1 M2 M3 M4 M5 M6 M7 M8 M9

τ 0.07 0.28 0.52 0.077 0.36 0.49 0.07 0.40 0.49

Innovations t(df=5)

M1 M2 M3 M4 M5 M6 M7 M8 M9

τ 0.70 0.28 0.51 0.42 0.44 0.88 0.07 0.40 0.49

Table 2: Kendalls τ values for the simulation scenarios

5.2 Results

We now present the results of the simulation. In all simulation circumstances it can

be seen that a CMD model with Gaussian or t-copula re-�nds the (rank) correlation

of the simulated data regardless whether a CCC, Diag-BEKK or BEKK model is

used. The CMD model with a Clayton copula in contrast isn't able to capture the

assumed Kendall's tau. This underlines the importance of a correct copula speci�-

cation within a model. As shown by Chen (2007) moment-based speci�cation tests

for copulas are able to detect mispeci�cation of a selected copula model.

As the t-copula in the most cases has a huge number of degrees of freedom, it

di�ers not really from a Gaussian copula. The degrees of freedom reduce when
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the simulated correlation resp. Kendall's tau is increased. Through all the di�erent

simulation designs it can be seen that a QML estimation does not perform worse

than the estimation with the correct innovation process, when one is interested in the

dependency between time series. The asymptotic properties shown be White (1994)

and Bollerslev, Wooldridge (1992) for the QML resp. a two step QML (2SQML)

estimation of GARCH can be re-�nd even in relatively small sample sizes as shown

by our work. Of course further studies have to be made to investigate the di�erences

and the advantages of CMD-models with di�erent error distributions but in our

study the misspeci�ed ones perform well against the background of the additional

computational burden a complicate error distribution implicates.

The copula-GARCH models seems also suitable for BEKK and Diag-BEKK models

even though these are in a di�erent class of GARCHmodels. For the Diag-BEKK this

is the result of the section 3, where the estimation method used in this simulation

study is proposed. For the general BEKK model this is due to the assertion of

theorem 4, that because of the spherical error distribution, we stay in an elliptic

world, so that the both elliptic copulas perform very well in re-�nding the correlation

induced by the BEKK model.
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Innovations N(0,1)&N(0,1)

Copula/GARCH CCC-GARCH (1,1) Diag-BEKK(1,1) Full-BEKK(1,1)

Model M1 M2 M3 M4 M5 M6 M7 M8 M9

Gauss: τ 0.069 0.261 0.493 0.078 0.359 0.486 0.071 0.401 0.487
sd 0.019 0.016 0.008 0.019 0.012 0.009 0.019 0.011 0.009
LL -0.5 -107.9 -537.1 -13.4 -313.6 -611.6 -0.5 -320.4 -530.0

t: τ 0.062 0.260 0.492 0.076 0.358 0.485 0.066 0.399 0.488
sd 0.020 0.016 0.009 0.020 0.013 0.009 0.009 0.012 0.020
df 29.69 29.73 29.87 29.80 29.89 29.80 29.05 29.84 26.94
LL 1.2 -160.3 -728.6 -17.6 -422.4 -815.8 2.0 -428.9 -715.4

Clayton: τ : 0.045 0.195 0.382 0.048 0.271 0.376 0.048 0.304 0.380
sd 0.024 0.031 0.043 0.024 0.035 0.042 0.024 0.037 0.042
LL -0.5 -107.9 -537.1 -13.4 -313.6 -611.6 -0.5 -320.4 -530.0

Innovations t(df=5)&N(0.1)

Copula/GARCH CCC-GARCH (1.1) Diag-BEKK(1.1) Full-BEKK(1.1)

Model M1 M2 M3 M4 M5 M6 M7 M8 M9

Gauss: τ 0.070 0.270 0.502 0.408 0.432 0.880 0.071 0.413 0.493
sd 0.019 0.015 0.008 0.011 0.010 0.0 0.019 0.011 0.008
LL 5.3 -156.2 -474.0 -557.1 -630.9 -4200.5 1.1 -479.6 -753.0

t: τ 0.065 0.271 0.504 0.412 0.434 0.881 0.067 0.414 0.494
sd 0.020 0.016 0.008 0.012 0.011 0.001 0.020 0.011 0.009
df 29.61 28.95 26.89 9.61 25.680 18.554 29.788 28.091 27.106
LL 2.2 -155.1 -469.3 -577.3 -633.5 -4218.3 -1.0 -483.6 -756.3

Clayton: τ : 0.047 0.203 0.391 0.322 0.332 0.816 0.047 0.315 0.382
sd 0.024 0.032 0.044 0.038 0.039 0.175 0.024 0.038 0.043
LL -0.1 -93.1 -337.0 -436.1 -471.7 -3429.4 -1.3 -343.9 -543.3

Innovations t(df=5)&t(df=5)

Copula/GARCH CCC-GARCH (1,1) Diag-BEKK(1,1) Full-BEKK(1,1)

Model M1 M2 M3 M4 M5 M6 M7 M8 M9

Gauss: τ 0.071 0.271 0.503 0.407 0.432 0.880 0.070 0.413 0.493
sd 0.008 0.015 0.019 0.011 0.010 0.001 0.019 0.011 0.008
LL 0.8 -140.5 -476.8 -554.9 -631.3 -4195.2 0.1 -489.4 -756.8

t: τ 0.504 0.272 0.067 0.411 0.434 0.881 0.067 0.414 0.494
sd 0.002 0.016 0.008 0.012 0.011 0.001 0.020 0.011 0.009
df 29.680 28.931 26.876 9.788 26.036 18.312 29.779 28.106 27.474
LL -1.0 -139.2 -471.7 -574.6 -633.7 -4214.0 0.2 -492.0 -763.0

Clayton: τ : 0.048 0.204 0.392 0.322 0.332 0.816 0.046 0.315 0.383
sd 0.024 0.032 0.044 0.038 0.039 0.175 0.020 0.011 0.009
LL -1.2 -102.0 -338.8 -434.3 -472.2 -3427.2 -1.5 -347.2 -544.1

Table 3: Fitting a copula with univariate GARCH margins to data ste-

ming from a multivariate GARCH model



6 Conclusion

In our study it can be seen, that CMD models are �exible tools for investigating

di�erent times series with GARCH structure for the squared residuals. This holds

even under misspeci�cation and in situations where GARCH models are simulated

which are direct generalization of the univariate ones like the simulated BEKK and

Diag-BEKK. We proved that as long as the error distribution of a GARCH model

belongs to the spherical distribution family, the conditional distribution of such a

model follows an elliptical distribution. Moreover a two step estimation procedure

for diagonal BEKK models is established.

In praxis one may be interested in the dependency of di�erent time series and

therefore have an eye for the Kendall's tau or correlation between the two series.

In this situation a CMD model can be a helpful tool to investigate the dependency

structure and estimate coevally less parameters than in a BEKK model. The other

way around instead shows that when data where simulated from a CMD model the

only GARCH model which seems to �t the data in all circumstances were the CCC-

GARCH, which isn't surprising as it is a subclass of the CMD models. Moreover

the importance of a correct copula speci�cation is essential for the application of

a CMD model as can be seen in our study. Thus, copula (mis-)speci�cation should

play a key role before the adaption of a CMD model.
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