
_____________________________________________________________________ 
 

Friedrich-Alexander-Universität 
IWQW 

Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung 

 
 

IWQW 
 

Institut für Wirtschaftspolitik und Quantitative 
Wirtschaftsforschung 

 
 

Diskussionspapier 
Discussion Papers 

 
No. 11/2015 

 
 
 
 
 

 
On the power and size properties of cointegration tests in the 

light of high-frequency stylized facts 
 
 
 
 

Christopher Krauss 
University of Erlangen-Nürnberg 

 
Klaus Herrmann 

University of Erlangen-Nürnberg 
 

Stefan Teis 
Deutsche Börse AG 

 
 
 
 
 

ISSN 1867-6707 



On the power and size properties of cointegration tests

in the light of high-frequency stylized facts

Christopher Krauss

Department of Statistics and Econometrics

University of Erlangen-Nürnberg, Nürnberg

Klaus Herrmann

Department of Statistics and Econometrics

University of Erlangen-Nürnberg, Nürnberg

Stefan Teis

Deutsche Börse AG, Eschborn∗

Wednesday 30th September, 2015

Abstract

This paper first establishes a selection of stylized facts for high-frequency cointegration pro-

cesses in the European equity market. Empirical evidence is given by one minute-binned trans-

action data of all DAX 30 constituents as traded on Deutsche Börse’s Xetra market in 2014.

A methodology is introduced to simulate cointegrated stock pairs, following none, some or all

of the discussed stylized facts. In particular, AR(1), AR(1)-GARCH(1,1) and multiple regime

STAR(1)-GARCH(1,1) processes are used to model the cointegration relationship. Further-

more, this cointegration relationship is contaminated with jumps. Based on these processes,

the power and size properties of ten contemporary cointegration tests are assessed. We provide

an economic interpretation of our approach by relating cointegration to relative-value arbitrage

strategies in near-efficient markets. Quintessentially, we find that in a high-frequency setting

typical for stock price data, selected cointegration tests still exhibit high power. Especially the

Phillips-Perron and the Pantula, Gonzalez-Farias and Fuller tests perform best at very limited

size distortions.

Keywords: Cointegration testing, high-frequency, stylized facts, power analysis, conditional

heteroskedasticity, smooth transition autoregressive models
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1. Introduction

The concept of cointegration has been empirically applied to a wide range of financial and macroe-

conomic data. In recent years, interest has surged in identifying cointegrating relationships also in

high-frequency financial market data [see, among others, Elyasiani and Kocagil (2001), Hasbrouck

(2003), Dunis et al. (2010), Pati and Rajib (2011), Yang et al. (2012)]. However, it remains unclear

whether standard cointegration tests applied in these studies are truly robust against the specifics

of high-frequency settings. In our data set, we find several stylized facts with potential impact

on power and size properties of contemporary cointegration tests. Most notably, the one minute

return data are highly non-normal, exhibit ARCH effects with intraday seasonalities and jumps.

Additionally we find evidence for nonlinear dependencies - even after applying AR(1)-GARCH(1,1)

filtrations, see section 2.

Monte Carlo studies of power and size properties of cointegration tests are no novelty to the

literature. Existing approaches may be clustered as follows: The first group uses vector autore-

gressive (VAR) models with Gaussian innovations as data generating processes (DGPs). These are

in line with the assumptions of the commonly applied Johansen procedure, see Johansen (1988),

Johansen and Juselius (1990), and Johansen (1991). The objective is to compare power and size

properties across a wide range of different cointegration tests. Common references are Kremers

et al. (1992), Haug (1996) and Hubrich et al. (2001). The latter study constitutes the most com-

prehensive contribution and provides an excellent literature review. The second group analyzes

the effect of non-Gaussian innovations on power and size properties. Boswijk et al. (1999) consider

Student’s t-distributions with 3 degress of freedom, a truncated Cauchy distribution, Gaussian

mixtures and others. Furthermore, bivariate ARCH and GARCH processes are also used to model

the innovations. Rahbek et al. (2002) analyze the impact of ARCH innovations from a multivariate

BEKK-ARCH DGP on the trace test. Cavaliere et al. (2010a) and Cavaliere et al. (2010b) follow

a similar approach. The third group covers the concept of threshold cointegration. The seminal

reference is by Balke and Fomby (1997), who were the first to introduce threshold nonlinearities

in cointegrating relationships and analyze the power of conventional and enhanced tests in this

setting. Further studies and improved tests followed by Hansen and Seo (2002) and Seo (2006).

However, none of these studies has considered the joint impact of high-frequency stylized facts on
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the power and size properties of contemporary cointegration tests. In this respect, the contribution

of this paper is threefold. First, a procedure is developed to simulate high-frequency stock prices

from actual market data, while retaining most of their idiosyncrasies. Second, suitable DGPs

are considered to simulate cointegrating relationships, reflecting different stages of high-frequency

stylized facts, i.e., non-normality, GARCH effects, threshold nonlinearities, jumps and regime shifts.

Third, ten contemporary cointegration tests are examined in a Monte Carlo simulation with respect

to their power and size properties for sample sizes of 510 minutes, i.e., one trading day at Xetra.

We find that (1) non-normal innovations and GARCH effects have only limited impact on the

tests, (2) threshold nonlinearities lead to significant distortions with increasing threshold levels and

abruptness of regime shifts and (3) reversible jumps increase and regime shifts strongly deteriorate

the power. We give an economic interpretation of the models and derive that in the settings to

be expected for stock data, the power - especially of Phillips-Perron and Pantula, Gonzalez-Farias

and Fuller tests - is still very high.

The remainder of this paper is organized as follows: Section 2 covers the high-frequency sample

provided by Deutsche Börse AG. Section 3 reviews the four step approach for simulating a cointe-

grated stock pair and assessing the power and size properties of the different cointegration tests.

Section 4 presents the results and discusses the key findings in the light of the existing literature.

An economic interpretation of our results is provided in section 5. Finally, section 6 concludes and

summarizes directions for further research.

2. Data sample and its stylized facts

The data applied in this study consists of all transactions of the DAX 30 constituents traded on

Xetra in continuous trading throughout the year 2014. Transaction data is aggregated to one-minute

bins, so we have more than 3.8 million data points at hand. The total value of all transactions

amounts to EUR 910 billion, representing a major share of all trades in the respective stocks.

Corporate actions data is available as well. We have sanitized the returns by the approximate

amount of their corporate actions, i.e., by setting the largest return in absolute value within a ten

minute window around the exact time of the corporate action to zero.

In a first step, we analyze the data in the light of well-known stylized facts for financial data.
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For each of the 249 trading days, we perform a set of tests1 for each of the 30 constituents. These

tests are first run on the raw returns, and then on the residuals of adequately fitted AR(1) and

AR(1)-GARCH(1,1) processes2. Table 1 summarizes the results and depicts the share of tests

with p-values less than 0.05. The raw and the filtered returns are highly non-normal, as indicated

by the Jarque-Bera tests. ARCH effects are present in the raw returns, but largely filtered out

by the AR(1)-GARCH(1,1) processes. The raw returns are highly nonlinear, as indicated by the

BDS test, the Tsay test, the Luukkonen test and the Teräsvirta test. Even after the GARCH

filter, there remains evidence of nonlinearity in the data. Volatility does not only show strong

GARCH(1,1) effects, but exhibits significant intraday seasonality, as discussed e.g., in Engle and

Sokalska (2012). Specifically, we observe the typical U-shaped pattern across all constituents. The

clock time dependency of this seasonality pattern for each individual stock strongly resembles the

pattern identified for the DAX index in Herrmann et al. (2014), see figure 1.

Furthermore, the Barndorff-Nielsen and Shephard test indicates jumps. These findings are in

line with the existing literature, see for example Cont (2001) for an account of relevant stylized

facts in financial markets.

Type Test Raw returns AR(1) AR(1)-GARCH(1,1)

Nonnormality Jarque-Bera test 1.00 1.00 1.00

Box test 0.57 0.55 0.03
ARCH effects Engle’s ARCH test 0.71 0.69 0.04

BDS test 0.84 0.76 0.24
Tsay test 0.50 0.45 0.23
Luukkonen test 0.41 0.40 0.08

Nonlinearity Teräsvirta test 0.37 0.36 0.07

Jumps BNS test 1.00 0.99 1.00

Table 1: Stylized facts stock return data. 249 · 30 processes analyzed. Share of tests with p-value
less than 0.05.

In a second step, we check if the stylized facts of the cointegration processes of potentially

1The Jarque-Bera test, the BDS test and the Teräsvirta test are implemented in the R package tseries by Trapletti
and Hornik (2013). The Box test is part of the R package stats by the R Core Team (2014). Engle’s ARCH test
is implemented in the R package FinTS by Graves (2014). The Barndorff-Nielsen and Shephard test of Barndorff-
Nielsen and Shephard (2006) is implemented in the R package highfrequency by Boudt et al. (2014). The Tsay test
is implemented in the R package TSA by Chan and Ripley (2012). The Luukkonen test of Luukkonen et al. (1988)
is implemented in the R package twinkle by Ghalanos (2014b).

2We use the R package rugarch of Ghalanos (2014a) to fit AR(1)-GARCH(1,1) models.
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Figure 1: Average realized volatility per one minute of the trading day (in CET) for selected stocks
in 2014.

cointegrated stock pairs differ from the results above. We identify the cointegration processes

with the Johansen trace test at the five percent significance level. This is delicate, since one of

the objectives of this paper is to examine the power of cointegration tests. However, we do not

claim that the price time series are really cointegrated, but much rather identify processes that are

typically identified as cointegrated by one of the most commonly used cointegration tests. We use

the implementation of the Johansen procedure by Pfaff (2008) to examine all 30 · 29/2 = 435 pairs

of stocks for each of the 249 full trading days (this amounts to a total of 108315 tests). First, we

use the Augmented Dickey-Fuller test of Dickey and Fuller (1979) to check if the individual series

are I(1) at the 1 percent significance level. If yes, the lag order of the VAR models is selected

with the Bayesian information criterion (BIC). Next, the test statistic of the Johansen trace test

is calculated and the p-values are approximated with the routine described in Doornik (1998) and

implemented in R by Yang (2013). A total of 435 · 249 = 108315 processes are analyzed and 41069

are identified as cointegrated at the 5 percent significance level. Finally, we run the same set of

tests to see if the stylized facts of the cointegration processes differ from the results of table 1.

The results are summarized in table 2. We see that the cointegration processes exhibit similar
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stylized facts as the return data, i.e., non-normality, ARCH effects, jumps and further evidence of

nonlinearities.

Type Test Raw data AR(1) AR(1)-GARCH(1,1)

Nonnormality Jarque-Bera test 0.89 0.99 0.99

Box test 1.00 0.49 0.05
ARCH effects Engle’s ARCH test 1.00 0.76 0.07

BDS test 1.00 0.66 0.49
Tsay test 0.45 0.60 0.27
Luukkonen test 0.55 0.39 0.15

Nonlinearity Teräsvirta test 0.55 0.36 0.16

Jumps BNS test 1.00 0.98 1.00

Table 2: Stylized facts cointegration processes. 41069 processes analyzed. Share of tests with
p-value less than 0.05.

3. Methodology

The suggested methodology to assess the power and size properties of ten cointegration tests is

based on four steps. In the first step, we simulate high-frequency stock price data while retaining

their stylized facts. In the second step, we simulate the cointegration process, exhibiting different

stylized facts. In the third step, the cointegrating relationship and hence the price of the second

stock are defined. In the fourth step, a Monte Carlo simulation is performed to obtain the power

and size properties of the tests.

3.1 Simulation of stock prices

For the Monte Carlo simulation of cointegration processes in the third step, the 249 · 30 = 7470

daily price time series in our data set are not sufficient. Hence, already in step one, we need a

methodology to effectively simulate high-frequency price time series, while retaining their stylized

facts as accurately as possible. We suggest a variant of the stationary bootstrap developed by

Politis and Romano (1994):

1. Set the start index st equal to one, i.e., to the first return of the day. Initialize a vector v

with length 509 with zeros.
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2. Draw one stock s out of the 30 DAX 30 constituents.

3. Draw one day d out of 249 full trading days.

4. Draw random block length l from a geometric distribution with expected value of four. This

value is chosen ad hoc, as a compromise between partially preserving serial dependence in

returns or squared returns and sufficient randomization. The latter refers to the fact that

setting large block lengths leads to the risk of creating the simulated time series just on the

basis of a few selected stocks. We prefer introducing a higher level of diversity.

5. Choose block of length l, consisting of returns from stock s from day d for indices i ∈

[st, ..., st+ l]. Copy these returns in vector v at positions [st, ..., st+ l].

6. Update st with st+ l + 1. Go back to step 1, until vector v consists of 509 returns.

7. Draw a random starting price between 5 and 40 from a uniform distribution.3 Accumulate

the return vector v to a price time series.

This procedure has several advantages. First, it ensures that the return time series remains sta-

tionary, see Politis and Romano (1994). Second, since blocks of a random length with expected

value of four are drawn, volatility clusters are partially preserved. Third, considering that the

time ordering within a trading day is retained, intraday volatility seasonalities, i.e., the U-shaped

pattern, are also reflected in the simulated prices. Fourth, also all further stylized facts can be

observed in simulated price paths. For example, jumps in the raw input data are drawn with some

positive probability corresponding to the actual occurrence of jumps in high-frequency financial

market data. Subsuming all of these advantages justifies the ad hoc nature of this nonparametric

approach.

3.2 Simulation of cointegration processes

In order to reflect the identified stylized facts, five DGPs are considered for the simulation of

the cointegration processes: A simple AR(1)-process, an AR(1)-GARCH(1,1) process, an MR(3)-

STAR(1)-GARCH(1,1)4 process, an MR(3)-STAR(1)-GARCH(1,1) process with jumps and an

MR(3)-STAR(1)-GARCH(1,1) process with jumps in mean. Each of these processes can be gener-

ated either with normally or t-distributed innovations. Tables 5 provides an overview of all models

3The starting price has no impact on power as all cointegration tests are invariant towards the absolute price level.
4Multiple regime smooth transition autoregressive process
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and parameters applied, section 5 gives an economic interpretation of models and argues for the

plausibility of chosen parameters. In the following, we will briefly discuss the relevant statisticial

properties of each DGP.

3.2.1 Autoregressive model: Let ut denote the cointegration residual at time t, such that the

AR(1) process of returns with coefficient φ1 and scale parameter σ may be defined as

ut = φ1ut−1 + σεt, with εt ∼ N (0, 1) or εt ∼ t

(
0, ω =

√
ν − 2

ν
, ν

)
, (1)

such that the innovations are either normally distributed with mean zero and standard deviation

of 1 or t-distributed with mean zero, ν degrees of freedom and a shape parameter ω. Following

Azzalini and Capitanio (2014), the shape parameter ω is chosen in such a way, that the standard

deviation of the t-distribution equals 1. For this purpose, ν must be strictly greater than 2. For all

numerical implementations involved, a lower bound of 2.1 for ν is applied. Clearly, this process is

stationary if |φ1| is less than one. In case the normal distribution is chosen, this process does not

reflect any of the high-frequency stylized facts. The t-distribution introduces non-normality.

3.2.2 Generalized autoregressive conditional heteroscedasticity model: The GARCH

model of Bollerslev (1986) generalizes equation (1) to an AR(1)-GARCH(1,1) model, accounting

for time-dependency in the scale parameter as

ut = φ1ut−1 + σtεt, with σ2t = α0 + α1ε
2
t−1 + β1σ

2
t−1, (2)

where the time-dependency is determined by parameters α0, α1 and β1. The innovations εt may

again be either normally or t-distributed in the same manner as for the autoregressive model. The

mean follows the same stationarity condition. The variance is stationary, if α1 + β1 < 1. This

process models the stylized facts of non-normality and of ARCH effects.

3.2.3 Multiple regime smooth transition autoregressive model: Terasvirta (1994) has

first introduced STAR models, which have been extended by van Dijk and Franses (1999) to three

regimes. For our purpose, we use a simplified version of the latter model, i.e., a MR(3)-STAR(1)
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process defined as

ut = φ1ut−1 + φ2ut−1F12 (γ1, c1) + φ3ut−1F23 (γ2, c2) + σtεt. (3)

Thereby, φi, i ∈ [1, 2, 3] are the AR(1) coefficients of the three regimes and F denotes the logistic

transition function as suggested in van Dijk and Franses (1999) with smoothness parameter γ and

threshold c. σt is again dependent on time and follows a GARCH(1,1) process as in equation (2).

With three regimes, threshold nonlinearities and GARCH effects, the model may be denoted as

MR(3)-STAR(1)-GARCH(1,1). Its variance follows the same stationarity condition as above. Re-

garding the mean equation, to our knowledge, no comprehensive stationarity conditions have been

developed yet. However, for our purposes, we will just discuss the following simplified parameter

constellations:

Case A: Let φ1 be equal to one, and c1 < c2. If φ2 and φ3 are equal to zero, we wind up having

only one regime - a random walk, which clearly is nonstationary.

Case B: If φ1 is element of [0.95, 0.90, 0.85], φ2 is element of [0.05, 0.10, 0.15] and φ3 is element

of [−0.05,−0.10,−0.15], the middle regime corresponding to φ2 is nonstationary, but the outer

regimes become stationary. The latter is due to a mix effect. For values sufficiently5 less than c1,

the logistic functions F12 and F23 equal to zero, so the lower regime is stationary with a mixed

coefficient φL element of [0.95, 0.90, 0.85]. For values sufficiently greater than c1 but sufficiently

smaller than c2, the logistic function F12 is equal to one but F23 is still at zero. Hence, the mixed

coefficient for the middle regime φM is element of [1.00, 1.00, 1.00], indicating nonstationarity. For

values sufficiently greater than c2, F23 also equals to one, leading to a mixed coefficient φU equal

to [0.95, 0.90, 0.85]. Let us assume that we choose symmetric threshold levels, i.e., c1 = −c2, with

c2 > 0. The farther the thresholds are apart, the larger the nonstationary share of the process

becomes. Also, the smaller the parameter γ, the smoother the logistic function and the larger the

influence of the lower and upper regimes.

This process fulfills the stylized facts of non-normality, ARCH effects and further nonlinear

dependencies. The latter is related to the fact that the MR-STAR model ”nests several other

nonlinear time-series models (...), [f]or example, an artificial neural network”, as van Dijk and

5The point at which F12 becomes zero depends on the choice of γ.
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Franses (1999, p. 317) point out.

3.2.4 Multiple regime smooth transition autoregressive model with reversible jumps:

We define reversible jumps as extreme events that are reversed over time after their initial occur-

rence, meaning they only have a temporary effect on the cointegration process. We model them

by successively drawing waiting times wi from an exponential distribution with parameter λW , so

that the cumulative sum of the waiting times is less than or equal to 510 minutes (we round to the

next full integer). The cumulative sum over the waiting times wi provides the time index t of the

current jump. A jump is then simply defined as multiplying the scale parameter σt with a fixed

factor, in case a jump occurred. In consequence, this model fulfills all the stylized facts outlined in

section 2.

3.2.5 Multiple regime smooth transition autoregressive model with nonreversible

jumps: We define nonreversible jumps as extreme events that have a permanent effect on the

time series, i.e., a mean shift. We model this series with a compound poisson process defined in

Ross (1996), p. 87 ff., as

jt =

nt∑
i=1

Di, with nt ∼ Pois(λP ), Di ∼ t
(

0, ωP = σP

√
νP − 2

νP
, νP

)
, (4)

such that Di is defined as a sequence of t-distributed random variables independent from nt, i.e., a

poisson process with rate λP . The cointegration process u∗t is then a superposition of the MR(3)-

STAR(1)-GARCH(1,1) model of equation (3) and the compound poisson process in equation (4),

i.e.,

u∗t = ut + jt. (5)

In consequence, this model fulfills all the stylized facts outlined in section 2. Note that the com-

pound poisson process has an expected value of zero as well, but its variance increases over time.

3.2.6 Determination of AR(1)-GARCH(1,1) parameters: The above models require var-

ious parameters that we have introduced in equations (1) through (4). We implement the following

routine to estimate these parameters based on actual high-frequency data: In section 2, we have

obtained a total of 41069 cointegration processes. We use the R package rugarch of Ghalanos
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(2014a) to fit AR(1)-GARCH(1,1) models to all of these cointegration processes. We use the spec-

ification as given in equation 1 with t-distributed innovations. We log all 41069× 5 coefficients in

a matrix of these dimensions, notably, the AR(1) coefficient φ1, the intercept α0 of the GARCH

model, the ARCH parameter α1, the GARCH parameter β1 and the degrees of freedom of the

t-distribution ν. We add an additional column for the unconditional standard deviation σG of the

process, which can be calculated. Next, we sanitize the coefficient matrix by eliminating the 99-th

percentile of values as well as a handful of cases with σG < 0. The latter cases usually correspond

to processes, where the solver does not find a proper optimum. This sanitization eliminates a total

of 424 cases, reducing the number of observations to 40644. In figure 2, we show a histogramm for

the above mentioned process parameters and in table 3 their summary statistics. We see that α1

is close to zero (mean of 0.064), β1 is close to one (mean of 0.875) and α1 + β1 even closer to one

(mean of 0.940), i.e., close to variance nonstationarity. The t-distributed innovations exhibit low

degrees of freedom - most of the probability mass is concentrated to the left of ν = 10. The latter

observations are typical for financial data. The unconditional standard deviation is very low - most

of the probability mass is left of 0.1, which is in line with the short time period of one minute

returns.

For simulation purposes, we perform a core density estimation for all six parameters, with

the bandwith chosen according to the approach suggested by Sheather and Jones (1991). We

now sample from the 40644 sanitized cointegration processes with replacement, to obtain the five

raw parameters. Following Silverman (1986), we add a Gaussian error term with mean zero and

standard deviation equal to the bandwidth of the Sheather-Jones method to each parameter. We

ensure that the error term does not violate general assumptions about the process parameters, e.g.,

among others, α1 + β1 < 1 or σG > 0. This routine allows for effective resampling from realistic

cointegration processes, while introducing additional flexibility for the Monte Carlo Simulations

through the Gaussian error terms.

3.3 The cointegration relation

Once the prices of the first stock are simulated according to the approach in subsection 3.1 and

the cointegration process according to the approach in subsection 3.2, we can finally determine the
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Figure 2: Distribution of parameter estimates.

cointegrating relationship. The latter is defined as

p2t = α+ βp1t + ut, (6)

where p2t is the price of the second stock, p1t is the price of the first stock as simulated with the

approach outlined in subsection 3.1 and ut is the cointegration processes as simulated with one of

the processes suggested in subsection 3.2. The coefficient α is the intercept, which is drawn from a

uniform distribution between −2 and 2. The parameter β is the coefficient of cointegration, which

is drawn from a uniform distribution between 1 and 5. The latter parameters are chosen ad hoc,

as they have no impact on the power and size properties of cointegration tests.

3.4 Analysis of power and size properties

3.4.1 Unit root tests: In order to assess the power and size properties of ten different coin-

tegration tests, we have adapted the R implementation of the package egcm of Clegg (2014) to
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φ1 α0 α1 β1 α1 + β1 ν σG

Minimum 0.7519 0.0000 0.0000 0.0000 0.0000 2.1000 0.0000
1st Quartile 0.9582 0.0084 0.0224 0.8491 0.9344 3.7480 0.0003

Median 0.9737 0.0355 0.0449 0.9212 0.9688 4.6280 0.0012
Mean 0.9690 0.1620 0.0641 0.8754 0.9396 5.0560 0.0059

3rd Quartile 0.9852 0.1215 0.0813 0.9527 0.9828 5.6960 0.0031
Maximum 1.0000 39.8200 0.9290 0.9990 0.9990 99.9940 0.2710

Table 3: Summary statistics process parameters

our setting. This packages provides p-values for ten different unit root tests that are adjusted for

cointegration testing. All tests are listed in table 4 together with their implementation. Details

about their functionality can be obtained from the references.

3.4.2 Definition of size and power: We aim for analyzing the size and power properties of

these tests. In the bivariate setting, all the above tests have a null hypothesis of ”no cointegration”.

In this context, size and power are defined as follows:

Size: The size of a test is the probability that the null hypothesis is rejected, when the null

hypothesis is true. In other words, the pair is falsely identified as being cointegrated by the test,

even though it is not. Hence, we obtain the size of these tests by repeatedly applying them to

pairs, that are linked by nonstationary cointegration processes with an AR(1)-coefficient equal to

one. The share of pairs with a p-value less than the significance level αS = 5% relative to all pairs

is the size of the test. If no distortions occur, this value should be equal to the significance level

αS , i.e., the type I error of falsely rejecting the null hypothesis.

Power: The power of a test is the probability that the null hypothesis is rejected, when the null

hypothesis is false. In other words, the pair is correctly identified as being cointegrated by the test.

Hence, we obtain the power of these tests by repeatedly applying them to pairs that are linked by

stationary cointegration processes. The share of pairs that are correctly identified as cointegrated

(i.e., with p-value less than the significance level αS = 5%) relative to all pairs gives the power of

the test.

3.4.3 Setup of Monte Carlo simulations: There are two categories of parameters to be set.

The first group is determined at random upon every Monte Carlo replication. The underlying logic

is described in subsection 3.1 for the parameters affecting p1t and in subsection 3.2 for α0 of the
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Unit root test R implementation

Augmented Dickey-
Fuller test

Dickey and Fuller (1979) and
Dickey and Fuller (1981)

tseries Trapletti and Hornik
(2013)

Phillips-Perron test Perron (1988) tseries Trapletti and Hornik
(2013)

Pantula, Gonzales-
Farias and Fuller test

Pantula et al. (1994) egcm Clegg (2014)

Breitung’s variance ra-
tio test

Breitung (2002) and Breitung
and Taylor (2003)

egcm Clegg (2014)

Johansen’s eigenvalue
test

Johansen (1988), Johansen
and Juselius (1990) and Jo-
hansen (1991)

urca, vars Pfaff (2008)

Johansen’s trace test Johansen (1988), Johansen
and Juselius (1990) and Jo-
hansen (1991)

urca, vars Pfaff (2008)

Elliott, Rothenberg and
Stock point optimal test

Elliott et al. (1996) urca Pfaff (2008)

Elliott, Rothenberg and
Stock DF-GLS test

Elliott et al. (1996) urca Pfaff (2008)

Schmidt and Phillips
rho statistic

Schmidt and
Phillips, C. B. Peter (1992)

urca Pfaff (2008)

Based on Hurst expo-
nent

- fArma Wuertz and Taqqu
(2013)

Table 4: Unit root tests.

GARCH model, the ARCH parameter α1, the GARCH parameter β1 the degrees of freedom of

the t-distribution ν, the cointegration intercept α and the coefficient of cointegration β. All other

parameters are controlled according to table 5. In particular, we conduct six types of Monte Carlo

simulations, each with 10000 replications for each fixed parameter constellation. Each type is based

on a different cointegration process, gradually incorporating stylized facts discussed in section 2.

Type I: An AR(1) process with normally distributed innovations is used to model the cointe-

gration relationship. We test different values for φ1. This setting reflects none of the stylized facts

and should return largely undisturbed size and power properties for all tests. As mentioned before,

φ1 = 1 returns the size of the tests, and φ1 = [0.95, 0.90, 0.85] returns the power for different AR(1)

coefficients. Hence, in total, four simulations are performed, each with 10000 replications.

Type II: An AR(1) process with t-distributed innovations is applied in the same configuration
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as above, thereby reflecting the stylized fact of non-normality and its influence on size and power.

Type III: An AR(1)-GARCH(1,1) process with t-distributed innovations introduces non-

normality and ARCH effects to the cointegration relationship. As in the scenarios above, we

iterate through four different values for φ1, accounting for four simulations.

Type IV: A MR(3)-STAR(1)-GARCH(1,1) model with t-distributed innovations is the workhorse

for a cointegration process exhibiting non-normality, ARCH effects and nonlinear dependencies.

Type IV is split in 36 simulations. We experiment with a total of three different, symmetric thresh-

old levels, i.e., |ci| = [1.00, 5.00, 10.00], with i = 1, 2. For each threshold level, three different

values of γi are tested, i.e., γi = [1.00, 5.00, 10.00]. For each set of threshold and gamma, we

jointly vary φ1, φ2 and φ3 through a total of four combinations, i.e., φ1 = [1.00, 0.95, 0.90, 0.85],

φ2 = [0.00, 0.05, 0.10, 0.15] and φ3 = −φ2. The latter leads to φL = [1.00, 0.95., 0.90, 0.85] = φU

and φM = 1. As before, each core simulation has 10000 replications. Note: The threshold levels |ci|

are a multiple of the unconditional standard deviation of the mixed process, assuming a constant

average AR coefficient of φ = 0.95.6 This auxiliary metric is used to define fixed thresholds, even

in the light of potential nonstationarities.

Type V: A MR(3)-STAR(1)-GARCH(1,1) model with t-distributed innovations is extended

by reversible jumps. Type V consists of 12 simulations. We set |ci| = 1 and γi = 5. We iterate

through three different values for λW , notably λW = [1.00, 5.00, 10.00], which corresponds to an

expected value of one, five or ten jumps per trading day. Each jump is implemented by multiplying

the original scale parameter at the time index of the jump with a factor of 25, which was set ad

hoc. For each parameter value of λW , we iterate through four combinations of φj , with j = 1, 2, 3,

as in Type IV. This scenario reflects the stylized facts of non-normality, the ARCH effects, further

nonlinearities and reversible jumps.

Type VI: A MR(3)-STAR(1)-GARCH(1,1) model with t-distributed innovations is extended

by nonreversible jumps. Type VI consists of 36 simulations. As before, we set |ci| = 1 and γi = 5.

We iterate through three different values for λP , notably λP = [1.00, 5.00, 10.00], which corresponds

to an expected value of one, five or ten jumps per trading day. For each parameter setting of λW ,

we test three different values for the standard deviation of the t-distributed innovations for the

6Clearly, the mixed AR coefficient varies with the parameters φ1, φ2, φ3, but for simplicity reasons and better com-
parability it was fixed ad hoc at 0.95.
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compound poisson process, notably σP = [0.01, 0.10, 1.00]. The degrees of freedom νP are set to

five in order to create a leptokurtic distribution with fat tails, thus making larger jumps more

probable. For each combination of λP and σP , we iterate through three combinations of φj , as

in Type IV. This scenario reflects the stylized facts of non-normality, the ARCH effects, further

nonlinearities and nonreversible jumps.

MC Type Type I Type II Type III

Process AR(1) AR(1) AR(1)-GARCH(1,1)
Distribution Normal t t

φ1 1.00 0.95 0.90 0.85 1.00 0.95 0.90 0.85 1.00 0.95 0.90 0.85

MC Type Type IV Type V Type VI

Process STAR(1)-GARCH(1,1) STAR(1)-GARCH(1,1) STAR(1)-GARCH(1,1)
Regimes 3 3 3

Jumps - reversible nonreversible
Distribution t t t

φL 1.00 0.95 0.90 0.85 1.00 0.95 0.90 0.85 1.00 0.95 0.90 0.85
φM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
φU 1.00 0.95 0.90 0.85 1.00 0.95 0.90 0.85 1.00 0.95 0.90 0.85

c1 -1.00 -5.00 -10.00 -1.00 -1.00
c2 1.00 5.00 10.00 1.00 1.00

γ1 1.00 5.00 10.00 5.00 5.00
γ2 1.00 5.00 10.00 5.00 5.00

λW 1.00 5.00 10.00
Multiplier 25.00 25.00 25.00

λP 1.00 5.00 10.00
σP 0.01 0.10 1.00

Table 5: Parameter settings for the Monte Carlo simulations.

4. Results

4.1 Results Type I through Type III

Size: The Type I simulation unveils the undisturbed size properties of the cointegration tests.

All simulations are run at a significance level of five percent. Since Type I does not violate any

assumptions of any of the tests, the size should amount to five percent as well, as long as the tests

are properly calibrated. We see in table 6 that only very limited size distortions occur for Type
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I, i.e., the normally distributed innovations. When running the original routines of Clegg (2014)

with 10000 replications, we also obtain very slight size distortion at the level of one percentage

point. Whereas Clegg (2014) uses a standard deviation of one, we simulate the standard deviation

as described in subsection 3.2.6, with a mean value of 0.006 and a first quartile of 0.0003. The

latter should not make any difference for the considered cointegration tests, so we attribute the

fluctuations around the five percent level to chance alone.

For t-distributed innovations, the size remains unchanged to the second decimal across all tests.

Hence, t-distributed innovations have no effect whatsoever on the size of these tests. The latter is

expected, given the strong asymptotics for a sample size of n = 510. For Type III, the size increases

on average by 0.01, meaning that GARCH models on the brink of variance nonstationarity, as

incurred by high-frequency data, only lead to very limited size distortions. We note at this stage,

that for types IV through VI, no further size distortions beyond those of the AR(1)-GARCH(1,1)

process occur, compare table 11 in the appendix. The size properties are an important finding.

They suggest that the stylized facts of high-frequency financial data have virtually no impact on

the type I error of these tests.

Test φ1 Type I Type II Type III

pp 1.00 0.06 0.06 0.07
adf 1.00 0.05 0.05 0.06
jo-e 1.00 0.06 0.06 0.06
jo-t 1.00 0.06 0.06 0.07

ers-p 1.00 0.05 0.05 0.06
ers-d 1.00 0.05 0.05 0.05
sp-r 1.00 0.05 0.05 0.05

hurst 1.00 0.05 0.05 0.06
bvr 1.00 0.05 0.05 0.05
pgff 1.00 0.06 0.06 0.06

Table 6: Size Type I, Type II, Type III.

Power: The Type I simulation shows undisturbed power properties, see table 7. We see that

the power is above 0.80 for all tests for φ1 equal to 0.85. With the AR(1) coefficient moving

towards a random walk, the power deteriorates. For φ1 equal to 0.95, the Phillips-Perron (PP),

and the Pantula, Gonzalez-Farias and Fuller (PGFF) test still have excellent power of 0.84 and 0.87

respectively. This result confirms the widespread opinion of practitioners, that the PP test performs
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better on financial data, see Alexander (2008). Their reasoning is based on the fact that the PP

test allows for dependent errors with heteroscedastic variance by introducing a correction term

to the Dickey-Fuller statistic. This correction evidently translates to improved power properties

vis-a-vis the ADF test. Also, we confirm the findings of Pantula et al. (1994) in a cointegration

setting, who affirm higher power of their alternative estimators compared to OLS. Along those

lines, it makes sense that the Augmented Dickey-Fuller (ADF) test does not perform as good as

the PGFF test with a power of 0.64. However, it is surprising to see that the well-established

Johansen procedure with the Johansen eigenvalue (JO-E) and the Johansen trace test (JO-T)

shows unfavorable power properties at φ1 equal to 0.95. Even though the Johansen test is still

comparable to PP and PGFF for φ1 = [0.90, 0.85], it significantly deteriorates when moving closer

towards nonstationarity, exhibiting powers of 0.56 and 0.52 respectively. As Elliott et al. (1996)

point out, the Elliot-Rothenberg-Stock (ERS-P, ERS-D) tests perform well in small samples and

in case the series has an unknown mean or linear trend compared to the standard ADF test. Here,

we face large sample sizes of 510 minutes and linear trends are not considered. Hence, the power of

these tests vacillates compared to the ADF test. At φ1 equal to 0.95, the ERS tests show slightly

better power, but for more stationary values the ADF test dominates. The Schmidt-Phillips test

(SP-R) performs almost equivalently to the ADF, with slight disadvantages at the most critical

case of φ1 equal to 0.95. The Hurst exponent and Breitung’s nonparametric variance ratio test

(BVR) disappoint.

For Type II, this picture remains unchanged. The t-distributed innovations lead to fluctuations

of the power of approximately 0.01 to 0.02, which seem random and go in both directions. The

same applies to GARCH effects in Type III. So far, we conclude that non-normality and ARCH

effects, as present in high-frequency financial data, still allow for cointegration testing with very

respectable size and power properties. We can particularly recommend the PGFF and the PP tests.

The very commonly applied ADF test also exhibits adequate power.
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Test φ1 Type I Type II Type III

pp 0.95 0.84 0.85 0.83
pp 0.90 1.00 1.00 1.00
pp 0.85 1.00 1.00 1.00

adf 0.95 0.64 0.63 0.64
adf 0.90 0.98 0.98 0.98
adf 0.85 1.00 1.00 1.00

jo-e 0.95 0.56 0.56 0.58
jo-e 0.90 1.00 1.00 0.99
jo-e 0.85 1.00 1.00 1.00

jo-t 0.95 0.52 0.53 0.54
jo-t 0.90 0.99 0.99 0.98
jo-t 0.85 1.00 1.00 1.00

ers-p 0.95 0.69 0.70 0.70
ers-p 0.90 0.91 0.91 0.90
ers-p 0.85 0.97 0.96 0.96

ers-d 0.95 0.65 0.67 0.68
ers-d 0.90 0.86 0.86 0.87
ers-d 0.85 0.92 0.92 0.92

sp-r 0.95 0.63 0.62 0.62
sp-r 0.90 0.97 0.97 0.96
sp-r 0.85 1.00 1.00 0.99

hurst 0.95 0.43 0.44 0.44
hurst 0.90 0.73 0.72 0.73
hurst 0.85 0.84 0.85 0.85

bvr 0.95 0.53 0.53 0.54
bvr 0.90 0.81 0.81 0.81
bvr 0.85 0.91 0.91 0.91

pgff 0.95 0.87 0.89 0.87
pgff 0.90 1.00 1.00 1.00
pgff 0.85 1.00 1.00 1.00

Table 7: Power Type I, Type II, Type III.
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4.2 Results Type IV

Type IV introduces threshold nonlinearities as additional stylized fact. Results on power are given

in table 8. Overall, we see that the ranking order of the tests remains as in subsection 4.1, with

PGFF and PP performing best, albeit with reduced power. We observe two dominant effects that

negatively affect the power. First, increasing threshold levels significantly reduce the power. Take

the PP test as an example. A threshold level of ±1 leads to a power of 0.78 for φL = φU = 0.95

and γi = 1.00. A threshold of ±5 reduces that power to 0.54 and a threshold of ±10 to 0.38. This

behavior is easy to understand: With increasing threshold levels, a larger share of the total number

of observations fall in the nonstationary middle regime. Hence, it is natural for the cointegration

tests to exhibit lower power with the nonstationary share of the process gaining in weight. Speaking

in relative terms, the decline in power driven by higher thresholds is approximately similar across all

tests. For example, for γi = 1.00, increasing the threshold from ±1 to ±10 leads to a deterioration

in power of on average 50 percent for φL = φU = 0.95, 36 percent for φL = φU = 0.90 and of

approximately 25 percent for φL = φU = 0.85. Surprisingly, this decline is similar across all tests,

so the originally established ranking from table 7 remains intact. Also, we see that threshold effects

are getting strong with AR-coefficients approaching nonstationarity. Nonparametric tests, such as

BVR, that should perform well in light of nonlinear dynamics, see Breitung (2002), do not gain the

upper hand.

The second effect stems from the parameter γ of the logistic function in the STAR model.

Increasing values of γ lead to more abrupt regime shifts and have an adverse effect on the power.

The latter can be explained as follows: If γ is small, the logistic function is very smooth and ”drags”

the stationary behavior far into the otherwise nonstationary middle regime. In other words, the

stationary outer regimes gain in weight at the expense of the nonstationary inner regime. The

opposite is true for large values of γ. Then, the logistic function approaches a heaviside function

and induces very abrupt regime changes. In that case, the outer regimes lose weight relative to the

inner regime. Logically, more realizations fall in the nonstationary inner regime, with a negative

effect on the power. Speaking in relative terms, the decline in power driven by higher γ is also

similar across all tests, so the ranking remains unchanged once again.
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1.00 1.00 1.00 5.00 5.00 5.00 10.00 10.00 10.00 ci
Test φL = φU 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 γi

pp 0.95 0.78 0.65 0.59 0.54 0.23 0.16 0.38 0.13 0.10
pp 0.90 0.99 0.97 0.95 0.90 0.41 0.27 0.70 0.22 0.13
pp 0.85 1.00 0.98 0.97 0.95 0.51 0.34 0.81 0.28 0.16

adf 0.95 0.58 0.46 0.42 0.39 0.17 0.13 0.28 0.11 0.09
adf 0.90 0.96 0.87 0.81 0.80 0.33 0.20 0.58 0.18 0.11
adf 0.85 1.00 0.95 0.93 0.92 0.43 0.27 0.74 0.23 0.13

jo-e 0.95 0.50 0.38 0.34 0.33 0.13 0.11 0.22 0.09 0.08
jo-e 0.90 0.97 0.89 0.84 0.80 0.30 0.18 0.55 0.16 0.10
jo-e 0.85 1.00 0.97 0.95 0.92 0.40 0.25 0.74 0.22 0.11

jo-t 0.95 0.48 0.36 0.32 0.31 0.13 0.10 0.21 0.09 0.08
jo-t 0.90 0.96 0.85 0.79 0.76 0.28 0.18 0.52 0.15 0.09
jo-t 0.85 0.99 0.96 0.94 0.90 0.38 0.23 0.71 0.20 0.11

ers-p 0.95 0.67 0.58 0.55 0.52 0.24 0.17 0.36 0.13 0.10
ers-p 0.90 0.88 0.82 0.79 0.78 0.39 0.26 0.61 0.21 0.13
ers-p 0.85 0.95 0.91 0.88 0.87 0.47 0.31 0.73 0.25 0.16

ers-d 0.95 0.65 0.57 0.53 0.50 0.23 0.16 0.35 0.13 0.09
ers-d 0.90 0.86 0.79 0.75 0.74 0.36 0.24 0.60 0.20 0.13
ers-d 0.85 0.92 0.86 0.83 0.84 0.46 0.30 0.70 0.25 0.14

sp-r 0.95 0.57 0.47 0.43 0.41 0.18 0.13 0.28 0.10 0.08
sp-r 0.90 0.94 0.85 0.78 0.78 0.32 0.20 0.57 0.18 0.11
sp-r 0.85 0.99 0.95 0.91 0.90 0.41 0.26 0.72 0.21 0.13

hurst 0.95 0.41 0.34 0.32 0.31 0.14 0.11 0.22 0.09 0.08
hurst 0.90 0.69 0.61 0.55 0.56 0.25 0.17 0.42 0.15 0.09
hurst 0.85 0.83 0.74 0.69 0.71 0.32 0.22 0.55 0.19 0.11

bvr 0.95 0.51 0.43 0.41 0.39 0.19 0.14 0.29 0.12 0.08
bvr 0.90 0.77 0.70 0.63 0.65 0.31 0.20 0.49 0.17 0.11
bvr 0.85 0.90 0.81 0.76 0.78 0.38 0.25 0.63 0.22 0.12

pgff 0.95 0.81 0.68 0.64 0.58 0.23 0.17 0.39 0.14 0.10
pgff 0.90 1.00 0.97 0.96 0.91 0.42 0.28 0.71 0.23 0.14
pgff 0.85 1.00 0.98 0.97 0.95 0.52 0.35 0.82 0.28 0.17

Table 8: Power Type IV.
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4.3 Results Type V

Type V introduces reversible jumps as additional stylized fact. Results on power are given in table

9. We see that the power increases with λW , i.e., the expected number of jumps per 510 minutes

trading day. For example, the PP test exhibits a power of 0.65 for φL = φU = 0.95 and λW = 0,

which increases to 0.78 for λW = 5 and 0.80 for λW = 10. This result is not surprising. A reversible

jump is defined as an innovation with much higher variance. However, the mechanics of the MR(3)-

STAR(1)-GARCH(1,1) process still apply. As such, depending on the sign, there is a given chance

that a jump boosts the process from the nonstationary middle regime to one of the stationary outer

regimes. Then, mean-reversion occurs, driving the cointegration process back towards the middle

regime. Of course, the contrary may occur as well, meaning that the process jumps from one of

the stationary outer regimes to the nonstationary inner regime. However, by scaling the shape

parameter with a factor of high magnitude as described in section 3, chances are much higher for

jumps occurring from the nonstationary to the stationary regime than vice versa. The reason is a

much higher variance of the jumps compared to the unconditional variance of the MR(3)-STAR(1)-

GARCH(1,1) process. Clearly, we see that reversible jumps enlarge the proportion of observations

in the stationary regimes, so it is quite intuitive that the cointegration tests exhibit higher power.

We further note that this behavior is similar across all tests, i.e., reversible jumps do not change

the ranking compared to table 8. In respect to the AR-coefficients, we observe that gain in power

is more expressed when moving closer to nonstationarity.
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Test φL = φU λW = 0 λW = 1 λW = 5 λW = 10

pp 0.95 0.65 0.69 0.78 0.80
pp 0.90 0.97 0.97 0.98 0.99
pp 0.85 0.98 0.98 0.99 0.99

adf 0.95 0.46 0.49 0.54 0.57
adf 0.90 0.87 0.90 0.93 0.95
adf 0.85 0.95 0.96 0.97 0.98

jo-e 0.95 0.38 0.40 0.45 0.48
jo-e 0.90 0.89 0.92 0.96 0.97
jo-e 0.85 0.97 0.97 0.98 0.99

jo-t 0.95 0.36 0.39 0.42 0.45
jo-t 0.90 0.85 0.89 0.95 0.96
jo-t 0.85 0.96 0.97 0.98 0.99

ers-p 0.95 0.58 0.64 0.71 0.73
ers-p 0.90 0.82 0.86 0.89 0.90
ers-p 0.85 0.91 0.92 0.93 0.93

ers-d 0.95 0.57 0.62 0.70 0.71
ers-d 0.90 0.79 0.83 0.88 0.88
ers-d 0.85 0.86 0.89 0.91 0.92

sp-r 0.95 0.47 0.50 0.54 0.57
sp-r 0.90 0.85 0.87 0.90 0.92
sp-r 0.85 0.95 0.95 0.95 0.96

hurst 0.95 0.34 0.34 0.34 0.37
hurst 0.90 0.61 0.60 0.61 0.63
hurst 0.85 0.74 0.75 0.76 0.78

bvr 0.95 0.43 0.44 0.45 0.48
bvr 0.90 0.70 0.70 0.72 0.74
bvr 0.85 0.81 0.83 0.85 0.87

pgff 0.95 0.68 0.72 0.82 0.84
pgff 0.90 0.97 0.97 0.98 0.99
pgff 0.85 0.98 0.98 0.99 0.99

Table 9: Power Type V.
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4.4 Results Type VI

Result for Type VI are given in table 10. Type VI introduces nonreversible jumps through a

compound poisson process with expected number of jumps λP per trading day at standard deviation

σP and degrees of freedom νP . The superposition of the compound poisson process with the

previously discussed STAR process of equation 3 results in a regime shift of the mean equation with

each jump. In other words, each jump technically leads to a rupture of the previous cointegration

relationship and the establishment of a new one at another mean level. The shift in mean depends

on the size of the jump, which is driven by its variance. From table 10, we see that the power

decreases with increasing expected number of jumps and increasing standard deviation of the

jumps. In the following, we differentiate the results by jump size: Small jumps: It is interesting

to see that smaller jumps with standard deviations of 0.01 only have a minor effect on the power

- even though this value is more than eight times higher than the median unconditional variance

σG of the innovations, see table 3. For example, the power of the PP test declines from 0.65 to

0.62 for λP = 5 and to 0.49 for λP = 10. Medium jumps: Medium-sized jumps with standard

deviation of 0.10 are more detrimental. An expected value of five jumps leads to a deterioration in

power to 0.41 for the PP test, i.e., a slump of 37 percent. Nevertheless, power is still a respectable

level, considering that these jumps exhibit a more than 80 times higher standard deviation than

the underlying process. However, higher jump frequencies completely deteriorate the power and

render the tests useless - which is fair, considering that cointegration relationships only exist for a

shorter time until the next mean shift occurs. Large jumps: Large jumps with standard deviation

of 1.00 already do significant damage if they occur just once in expectation. We see that power

deteriorates by more than 40 percent across almost all tests compared to the case with no jumps.

The latter finding suggests that if a jump actually manifests, it reduces the power to approximately

five percent, i.e., the size of the type one error. If the jump does not manifest, it remains at the

original level. The mixed effect results in the decline of 40 percent. The salient point is, that the

occurrence of one large jump prevents detection of time-varying cointegration relationships.

These results are paramount, meaning that we are able to detect a cointegration relationship

in financial market data, even if its mean varies over time either at low frequencies or with only

limited shifts in mean - see section 5 for a more comprehensive discussion.
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0.00 1.00 1.00 1.00 5.00 5.00 5.00 10.00 10.00 10.00 λP
Test φL = φU 0.00 0.01 0.10 1.00 0.01 0.1 1.00 0.01 0.10 1.00 σP

pp 0.95 0.65 0.64 0.56 0.37 0.62 0.41 0.10 0.49 0.12 0.06
pp 0.90 0.97 0.96 0.88 0.55 0.95 0.68 0.13 0.84 0.17 0.06
pp 0.85 0.98 0.98 0.91 0.57 0.97 0.73 0.14 0.87 0.19 0.06

adf 0.95 0.46 0.46 0.41 0.27 0.45 0.28 0.10 0.35 0.10 0.05
adf 0.90 0.87 0.86 0.75 0.47 0.84 0.52 0.12 0.66 0.12 0.05
adf 0.85 0.95 0.95 0.83 0.52 0.93 0.59 0.11 0.75 0.13 0.06

jo-e 0.95 0.38 0.38 0.31 0.23 0.35 0.21 0.10 0.26 0.08 0.06
jo-e 0.90 0.89 0.88 0.75 0.47 0.87 0.48 0.12 0.65 0.10 0.07
jo-e 0.85 0.97 0.96 0.85 0.52 0.95 0.60 0.12 0.78 0.12 0.06

jo-t 0.95 0.36 0.36 0.31 0.21 0.34 0.21 0.08 0.26 0.07 0.06
jo-t 0.90 0.85 0.85 0.72 0.45 0.82 0.46 0.11 0.60 0.10 0.06
jo-t 0.85 0.96 0.96 0.84 0.51 0.94 0.57 0.11 0.75 0.11 0.06

ers-p 0.95 0.58 0.58 0.51 0.31 0.56 0.35 0.08 0.45 0.10 0.05
ers-p 0.90 0.82 0.82 0.72 0.44 0.80 0.50 0.09 0.64 0.14 0.05
ers-p 0.85 0.91 0.90 0.78 0.49 0.87 0.55 0.10 0.71 0.14 0.05

ers-d 0.95 0.57 0.55 0.48 0.30 0.54 0.33 0.08 0.43 0.10 0.05
ers-d 0.90 0.79 0.79 0.68 0.41 0.76 0.47 0.09 0.59 0.12 0.04
ers-d 0.85 0.86 0.85 0.73 0.44 0.83 0.50 0.09 0.65 0.12 0.05

sp-r 0.95 0.47 0.47 0.40 0.25 0.45 0.27 0.07 0.36 0.10 0.05
sp-r 0.90 0.85 0.84 0.72 0.43 0.82 0.47 0.08 0.62 0.10 0.05
sp-r 0.85 0.95 0.94 0.81 0.47 0.92 0.53 0.08 0.72 0.10 0.05

hurst 0.95 0.34 0.34 0.29 0.23 0.33 0.19 0.09 0.24 0.07 0.05
hurst 0.90 0.61 0.58 0.46 0.34 0.54 0.26 0.09 0.34 0.07 0.05
hurst 0.85 0.74 0.71 0.54 0.39 0.63 0.27 0.09 0.36 0.07 0.05

bvr 0.95 0.43 0.43 0.35 0.24 0.40 0.23 0.07 0.29 0.07 0.04
bvr 0.90 0.70 0.66 0.52 0.34 0.63 0.29 0.07 0.40 0.08 0.05
bvr 0.85 0.81 0.79 0.60 0.40 0.70 0.29 0.07 0.42 0.07 0.05

pgff 0.95 0.68 0.67 0.59 0.37 0.66 0.42 0.09 0.53 0.13 0.05
pgff 0.90 0.97 0.97 0.89 0.55 0.96 0.71 0.13 0.85 0.19 0.06
pgff 0.85 0.98 0.98 0.92 0.58 0.97 0.77 0.14 0.90 0.22 0.06

Table 10: Power Type VI.
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5. Economic interpretation

5.1 Interpretation of the cointegration processes

From an economic perspective, a cointegration relation reflects the law of one price (LOP); see Gatev

et al. (2006) for the subsequent discussion. Ingersoll (1987) states the LOP as the ”proposition

(...) that two investments with the same payoff in every state of nature must have the same

current value.” Chen and Knez (1995) expand on this concept and argue that ”closely integrated

markets should assign to similar payoffs prices that are close”. In other words, the models provided

above tie the price time series of two securities together, ensuring that they are close. Whenever

they diverge too far, the stationary models describe a relative value arbitrage mechanism as in

Gatev et al. (2006), ensuring subsequent convergence. The latter is referred to as a ”weak-form

market integration” by Chen and Knez (1995), meaning a ”near-efficient market”. Based on this

interpretation of cointegration, we may interpret the models examined as follows:

• The AR(1) and the AR(1)-GARCH(1,1) models are very strict in their formulation, allowing

only for one stationary (or nonstationary regime) with arbitrage permanently occurring.

• The MR(3)-STAR(1)-GARCH(1,1) model is a lot more flexible. Specifically, in the middle

regime, the cointegration process tying the prices together truly behaves like a random work -

arbitrage is not yet profitable. However, once the cointegration process ventures in the outer

regimes, arbitrage starts to occur. The (symmetric) thresholds c1 and c2 define at which level

arbitrage kicks in and the parameter γ determines how abruptly arbitrage kicks in. Regarding

the abruptness of arbitrage kicking in, we can argue for a certain smoothness. Arbitrageurs

most likely have different operating costs and different relative-value arbitrage models - for

an overview of such strategies, see Krauss (2015). This diversity creates fuzziness around

the threshold levels, which is reflected in the parameter γ. A value of ten already hinges

towards a heaviside function, a value of one is very smooth. As ad hoc choice for Type V

and Type VI, we have opted for a value of five. Regarding the thresholds, we have reason

to believe that they would amount to the mean value of the cointegration process plus or

minus the transaction costs of the arbitrageur. The average bid-ask spread for all DAX 30

stocks in 2014 is in the range of four to five basis points (bps), i.e., approximately 10 bps per
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round trip of the spread trade. Compared to this estimate, even a threshold level of one time

the unconditional standard deviation of a hypothetical mixed process with φ = 0.95 offers

sufficient profit opportunities. The unconditional standard deviation σU for an AR(1) process

is defined in e.g., Tsay (2010) as

σU =
σG√
1− φ2

. (7)

As before, σG denotes the unconditional standard deviation of the GARCH innovations. For

a mean value of 0.006 for σG, and φ equal to 0.95, the unconditional standard deviation σU

amounts to 0.019. Hence, clearly, the return from a spread trade, entered at the threshold

level of |ci| = 1 · σU and held until mean reversion amounts to 1.9 percent and exceeds

transaction costs by far7. Considering this thought experiment, it is reasonable to believe

that equity markets exhibit arbitrage threshold levels below |ci| = 1. In this light it appears

to be a conservative choice to set |ci| = 1 as done for Type V and Type VI simulations.

• Reversible jumps can be interpreted as uninformed buying or selling, as described in Andrade

et al. (2005). In this case, clearly, the arbitrage mechanism re-establishes equilibrium over

time. The frequency at which uninformed trading occurs in near-efficient markets is not

known, so there is no good assessment at hand for reasonable values of λW .

• Nonreversible jumps may reflect idiosyncratic information, affecting only one of the two com-

panies. Such a jump translates into a regime shift in the mean equation, causing further

arbitrage to occur at a different level. It is clear that strong and frequent jumps of this type

will lead to a process that frequently re-establishes new cointegrating relationships at different

levels and of short durations. We believe that during one trading day of 510 minutes, such

a frequent and especially strong arrival of idiosyncratic information in an otherwise cointe-

grated stock pair is rather the exception than the rule - otherwise the LOP simply does not

hold for these two securities, they are not cointegrated and arbitrage does not exist. However,

clearly, this conjecture is subject for further research.

7We have calculated the return on an investment of 1 monetary unit in the long leg of the spread trade. The latter
is often the convention, see for example Gatev et al. (2006).
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5.2 Interpretation of the power analysis

An economic interpretation of the analysis in section 4 is as simple as important: If the LOP applies

and relative-value arbitrage is performed between two securities, the ability of a cointegration test

to detect the cointegration relationship mainly depends on four factors: First, the parametrization

of the MR(3)-STAR(1)-GARCH(1,1) model, i.e., the threshold level at which arbitrage kicks in

and the abruptness with which arbitrage kicks in. Second, the expected number and scaling factor

of reversible jumps and third, expected number and standard deviation of irreversible jumps. In

the light of the economic background outlined in subsection 5.1, we justify choices of models and

parameters as follows:

• Type IV: Under reasonable arbitrage assumptions in near-efficient markets outlined in sub-

section 5.1, we would assume that arbitrage kicks in at thresholds below ci = 1 with an

abruptness of γi ≤ 5. Under these conditions, standard cointegration tests exhibit good

power properties, e.g., the PP test with a power of 0.65 or the PGFF with a power of 0.68

- even for an AR(1) coefficient of 0.95. For lower values of φ1, power for these tests even

increases to levels above 0.95. However, once we make more aggressive assumptions about

the threshold levels or the abruptness, power quickly deteriorates. It is the basis of future

research to evaluate the threshold levels and abruptness coefficients associated with relative-

value arbitrageurs.

• Type V: Reversible jumps representing uninformed demand shocks actually have a positive

effect on the power. Quintessentially, they make the arbitrage process visible, by pushing the

cointegration process in its stationary region. Any occurrence is beneficial to the power of

the tests. As such, lack of clarity on the parameter λW is not key.

• Type VI: Nonreversible jumps contradict the stationarity assumption of the cointegration

process and may thus prevent the identification of such a relation. Therefore, we can neither

provide an estimate for the frequency of nonreversible jumps nor for their variance. These

two parameters would steer the level of idiosyncratic information, affecting only one of the

two stocks of a cointegrated pair vs. the level of common information, affecting both stocks

of the pair. However, we can put upper bounds on the parameter values, i.e., until which
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levels it is still possible to detect a cointegrating relationship with acceptable power. Again,

considering the PP test for φL = φU = 0.95, we see that at σP = 0.01 and λP = 10, we would

still wind up with a power of 0.49. Consequently, some idiosyncratic information may occur,

as long as the level shifts in the mean equation are small in absolute value.

6. Conclusion

We conduct an in-depth analysis of size and power properties of ten contemporary cointegration

tests, given the stylized facts of high-frequency trade data. We make several contributions to the

existing literature.

First, we test for different stylized facts on a large database of one minute return data. In line

with the existing literature, we find non-normality, ARCH effects, jumps and evidence of further

nonlinearities. The same stylized facts are established for the cointegration processes linking some

of the DAX 30 constituents. To our knowledge, the latter analysis has not yet been performed

in the literature. It is interesting to see that the identified cointegration processes are classified

as stationary by the Johansen trace test, but still exhibit non-normalities, ARCH effects, further

nonlinearities as well as jumps. One could have assumed that these stylized facts cancel each other

out, just as the nonstationary components. The data prove us wrong in this case.

Second, we propose an innovative approach for simulating stock prices following the stationary

bootstrap of Politis and Romano (1994). This procedure allows for simulating stock prices in a

high-frequency setting, while retaining the majority of their stylized facts.

Third, we suggest six different cointegration processes based on the current literature. These

processes accommodate the above mentioned stylized facts in a staggered approach. To our knowl-

edge, the application of a MR(3)-STAR(1)-GARCH(1,1) model is a novelty in this context. It

provides a lot more flexibility for modeling relative-value arbitrage strategies and may also be an

interesting direction for further research in that respect.

Fourth, we have performed Monte Carlo simulations to assess the power and size properties of

ten different cointegration tests. We find that both, non-normality and GARCH effects have none

or only a marginal impact on size and power properties. We can summarize that non-normality

and ARCH effects, as present in high-frequency financial data, still allow for cointegration testing
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with very respectable size and power properties.

STAR nonlinearities have an adverse effect on the power, which decreases with rising threshold

levels and increasing values for gamma. The latter is driven by the fact that increasing parameter

values push a higher share of observations in the nonstationary middle regime. However, with the

plausible assumption of relative-value arbitrage kicking in at threshold levels equal to round-trip

transaction costs, the power of cointegration tests still remains acceptable.

The effect of jumps differs by their nature: Reversible jumps, which may be driven by un-

informed buying, actually increase the power. This improvement is easily explained by the fact,

that a reversible jump is just a temporary disruption, which usually pushes the observations in the

stationary outer regimes. On the contrary, nonreversible jumps disrupt the power with increasing

rate of occurrence and increasing variance.

Across all of the above mentioned stylized facts, the PGFF and the PP test exhibit the most

favorable power properties. These test strictly dominate all other tests in all settings reflecting

stylized facts, where PGFF is slightly better than PP.

We conclude that contemporary cointegration tests may be applied in the high-frequency setting

of one minute stock return data.
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Luukkonen, R., Saikkonen, P., and Teräsvirta, T. (1988). Testing linearity against smooth transition

autoregressive models. Biometrika, 75(3):491–499.

33



Pantula, S. G., Gonzalez-Farias, G., and Fuller, W. A. (1994). A comparison of unit-root test

criteria. Journal of Business & Economic Statistics, 12(4):449–459.

Pati, P. C. and Rajib, P. (2011). Intraday return dynamics and volatility spillovers between NSE

S&P CNX Nifty stock index and stock index futures. Applied Economics Letters, 18(6):567–574.

Perron, P. (1988). Trends and random walks in macroeconomic time series. Journal of Economic

Dynamics and Control, 12(2-3):297–332.

Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. Springer, New York.

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap. Journal of the American

Statistical Association, 89(428):1303–1313.

R Core Team (2014). R: A language and environment for statistical computing. R software.

Rahbek, A., Hansen, E., and Dennis, J. G. (2002). ARCH innovations and their impact on cointe-

gration rank testing. Working paper, Centre for Analytical Finance, 22:15.

Ross, S. M. (1996). Stochastic processes. Wiley, New York.

Schmidt, P. and Phillips, C. B. Peter (1992). LM tests for a unit root in the presence of deterministic

trends. Oxford Bulletin of Economics and Statistics, 54(3):257–287.

Seo, M. (2006). Bootstrap testing for the null of no cointegration in a threshold vector error

correction model. Journal of Econometrics, 134(1):129–150.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for

kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological),

pages 683–690.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall,

London and New York.

Terasvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive

models. Journal of the American Statistical Association, 89(425):208–218.

34



Trapletti, A. and Hornik, K. (2013). tseries: Time series analysis and computational finance. R

package.

Tsay, R. S. (2010). Analysis of financial time series. John Wiley & Sons, Hoboken, N.J.

van Dijk, D. and Franses, P. H. (1999). Modeling multiple regimes in the business cycle. Macroe-

conomic dynamics, 3(03):311–340.

Wuertz, D. and Taqqu, M. S. (2013). fArma: ARMA time series modelling. R package.

Yang, F. (2013). CommonTrend: Extract and plot common trends from a cointegration system.

Calculate p-value for Johansen statistics. R package.

Yang, J., Yang, Z., and Zhou, Y. (2012). Intraday price discovery and volatility transmission in

stock index and stock index futures markets: Evidence from China. Journal of Futures Markets,

32(2):99–121.

35



1 1 1 5 5 5 10 10 10 ci
Test φL = φU 1 5 10 1 5 10 1 5 10 γi

pp 1 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07
adf 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
jo-e 1 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
jo-t 1 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.06
ers-p 1 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06
ers-d 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05
sp-r 1 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05
hurst 1 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05
bvr 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
pgff 1 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.07

Test φL = φU λW = 1 λW = 5 λW = 10
pp 1 0.07 0.06 0.06

adf 1 0.06 0.06 0.06
jo-e 1 0.07 0.07 0.07
jo-t 1 0.06 0.07 0.07
ers-p 1 0.05 0.05 0.05
ers-d 1 0.05 0.05 0.05
sp-r 1 0.05 0.04 0.04
hurst 1 0.06 0.05 0.06
bvr 1 0.05 0.04 0.04
pgff 1 0.06 0.05 0.06

1 1 1 5 5 5 10 10 10 λP
Test φL = φU 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 σP

pp 1 0.07 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.06
adf 1 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.05
jo-e 1 0.07 0.07 0.08 0.06 0.07 0.08 0.07 0.07 0.06
jo-t 1 0.07 0.07 0.07 0.06 0.07 0.08 0.06 0.06 0.06
ers-p 1 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05
ers-d 1 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
sp-r 1 0.05 0.05 0.05 0.06 0.05 0.04 0.05 0.05 0.04
hurst 1 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.05
bvr 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04
pgff 1 0.07 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.05

Table 11: Size Type IV, V and VI.
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