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Abstract – Information-theoretic approaches still play a minor role in financial market analysis.
Nonetheless, there have been two very similar approaches evolving during the last years, one in
the so-called econophysics and the other in econometrics. Both generalize the notion of GARCH
processes in an information-theoretic sense and are able to capture kurtosis better than traditional
models. In this article we present both approaches in a more general framework. The latter allows
the derivation of a wide range of new models. We choose a third model using an entropy measure
suggested by Kapur. In an application to financial market data, we find that all considered models
– with similar flexibility in terms of skewness and kurtosis – lead to very similar results.
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Introduction. – Although information-theoretic
approaches still play only a minor role in financial
market analysis, there have been two recent approaches
developing independently, one in econophysics and the
other in econometrics. Both approaches generalize the
notion of ARCH or GARCH models.
Furthermore, both approaches have successfully been

applied to financial market data – possibly due to the fact
that both generalizations allow to capture kurtosis in given
variance models. Following Kesavan and Kapur [1] we
give a more general framework for information-theoretic
models for time-varying moments and derive GARCH
models as well as the above-mentioned approaches as
special cases. We briefly present the recent information-
theoretic approaches and – using the general framework –
derive a third approach based on a entropy suggested
by Kapur. In an application to financial market data we
compare these models’ capability to capture the behavior
of financial returns. We find very similar results for all
models.

Models for time-varying moments based on the
generalized principle of maximum entropy. – We
consider time-series models that assume the conditional
distribution of some random variable X at time t given

(a)E-mail: klaus.herrmann@wiso.uni-erlangen.de

Ft, the information set available at time t− 1, to be
the distribution maximizing some generalized entropy
measure

H(f) =−
∫
D(X)

φ(f(x)) dx, (1)

for some convex function1 φ and D(X) the random vari-
ables support, subject to constraints of k+1 conditional
expectation values of suitable functions gi(·) as

E(g0(Xt) |Ft) = 1, E (gi(Xt) |Ft) = ai(Ft), (2)

∀ i= 2, . . . , k, with g0(x) = x, where ai may be some
deterministic functions depending only on the information
set available.
The information-theoretic interpretation of such models

is that we model only some expectation values’ motion in
time and for all information missing to completely deter-
mine the corresponding density functions we maximize
entropy. In the case of the Shannon entropy measure such
a way of modeling is nothing else but the consequent appli-
cation of Jaynes’ Principle of Maximum Entropy [2]. Using
generalized entropy measures is justified by Kesavan and
Kapur’s generalized maximum entropy principle [1].
Following their suggestion, we restrict φ to the set of

differentiable convex functions. A variational approach

1Here we follow the suggestion in [1].
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shows that, under some weak conditions for φ, it holds
for the maximum entropy density (if it exists) that

φ′(f(x)) =
k∑
i=0

λigi(x), (3)

where the λi have to be chosen such that the constraints
are fullfilled2.

Numerical implementation. – If a solution exists
for f , λ= (λ1, . . . , λk) from eq. (3) can be found by
minimizing a convex function Z of some dual problem with

max
f
(H(f)) =min

λ
(Z(λ)). (4)

Such dual problems are given, e.g., in [3]. For the cases
relevant to this letter we use

ZS(λ) =

k∑
i=1

aiλi+

∫ ∞
−∞
exp

(
k∑
i=1

λigi(x)

)
dx, (5)

ZT (λ) =
2− q
q− 1

k∑
i=1

aiλi+

∫ ∞
−∞

(
k∑
i=1

λigi(x) dx

)2−q
1−q

dx,

(6)

ZK(λ) =

k∑
i=1

aiλi− 1
c

∫ ∞
−∞
ln

(
exp

(
k∑
i=1

λigi(x)

)
− c
)

+

k∑
i=1

λigi(x) dx, (7)

where ZS , ZT and ZK denote the dual problems for the
Shannon, Tsallis and Kapur entropy, respectively. The
algorithm for the numerical implementation given in [4]
may be extended to any information measure. It relies for
the integration involved a Gauss-Legendre approach and
for the minimization gradient-based optimization3. Using
this, we may write, e.g., ZS as

ZS(λ) =

k∑
i=1

aiλi+

n∑
j=1

exp

(
k∑
i=1

λigi(xj)

)
wj , (8)

where wj denotes the Gauss-Legendre weights, n its
number and xj the corresponding transformed abscissa,
with

xj = [(u− l)zj +(u+ l)]/zj (9)

where u and l denote the upper and lower limit for the
support to be used for the integration4 and zj the abscissa
in [−1, 1]. Using this integration scheme, we may derive λ
by iterating k with

λk = λk−1+ δk, (10)

2Compare, e.g., [3].
3The corresponding implementation in R will be delivered to the

interested reader by the author on request.
4Problems potentially arising by this restriction are discussed

in [5].

and δk as the solution of

∂2Z(λ)

∂λ2
δk =−∂Z(λ)

∂λ
. (11)

This algorithm proved to be very efficient for all dual
problems given in [3], where sufficient convergence was
achieved after about 14 iterations.

GARCH models. – Bollerslev’s original GARCH
(p,q) model in [6] may be written as

Xt|Ft =Zt ·σt, Zt iid∼ N (0, 1), (12)

σ2t = α0+

p∑
i=1

α1,ix
2
t−i+

q∑
i=1

α2,iσ
2
t−i, (13)

where Xt is the random variable at time t and xt its
realization.
We may present this model in the above framework,

if we derive the conditional density functions of Xt by
maximizing e.g., Shannon’s entropy measure

HS(f) =−
∫
D(X)

f(x) ln(f(x)) dx (14)

subject to the constraints

E(Xt|Ft) = µ, E((Xt−µ)2|Ft) = σ2t , (15)

assuming again eq. (13) for σt. The distribution maxi-
mizing eq. (14) subject to eq. (15) is again the normal
distribution.
But it is a well known fact that GARCH models assum-

ing Gaussian innovations do not sufficiently describe finan-
cial market data. Apart from a vast literature concerned
with that topic5, this can be seen by looking at the
GARCH-filtered innovations. Their distribution should be
close to a Gaussian, but it is regularly found that this
assumption does not hold.
The observation that financial market GARCH innova-

tions deviate from the normal distribution mainly in terms
of skewness and higher kurtosis has been frequently found
in several studies and is now known to econometricians
as a so-called stylized fact. This observation gave rise to
a large number of approaches which try to model these
phenomena by assuming zt to follow some flexible para-
metric distribution, such as, e.g., the SGT2, EGB2 or the
family of stable distributions6.
This note, of course, is devoted to information-theoretic

approaches that either explicitly model such features
by including measures of skewness and kurtosis into
the entropy maximization task or, as the non-extensive
approaches do, implicitly by generalizing the entropy
measure.

5See, e.g., [7] for an overview.
6Compare, e.g., [8–10]. Some of the parametric approaches may

also find some representation in the above framework – but because
of the vast supply of such suggestions, we restrict this letter to the
most basic case.
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Table 1: Suggestions for measures of asymmetry m3 and
measures of kurtosis m4 as proposed in the recent literature.

m3 m4

E(tan−1(X)) E(tan−1(X)2)
E
(

X
1+X2

)
E(ln(1+X2))

Higher informative moments. – To the best of our
knowlegde, the first approach of including higher moments
in an information-theoretic framework for financial models
was given in [4]. Extensions have been given in [5,11,12].
The idea behind these approaches is to interpret stylized
facts as information given to the analyst, such that it
consequently has to be included in the entropy maximiza-
tion task. Formally, these econometric approaches assume
for the conditional distributions of Xt given the informa-
tion set available at t− 1 the distribution maximizing the
Shannon entropy subject to

E (Xt|Ft) = µ, E
(
(Xt−µ)2|Ft

)
= σ2t , (16)

E

(
g3

(
Xt−µ
σt

)
|Ft
)
=m3, (17)

E

(
g4

(
Xt−µ
σt

)
|Ft
)
=m4. (18)

The approach in [4] uses third and fourth power moments
to measure skewness and kurtosis. But as [5] point out,
these measures do not allow the derivation of proper
maximum Shannon entropy densities for kurtosis values
higher than implied by the lower moments. Suggestions
for more appropriate measures of the form mi =E(gi(X))
can be found in [11] or [5], as given in table 1, where m3
denotes measures of asymmetry and m4 denotes measures
of kurtosis.

Non-extensive approach. – The information-
theoretic models in econophysics have been developed
mainly in [13–16]. Contrary to the econometric models,
these approaches do not explicitly aim at modeling styl-
ized facts, but they rather try to generalize the entropy
measure to capture situations where the Shannon entropy
does not reflect the nature of the system, compare [14].
Consequently these approaches generalize GARCH
models in the above-discussed form by assuming the
conditional density functions to maximize the generalized
entropy measure suggested by Tsallis [17]7,

HT =

∫
D(X)

1− f(x)q
q− 1 dx, (19)

s.t. E (Xt|Ft) = µ, E
(
(Xt−µ)2|Ft

)
= σ2t , (20)

with different suggestions for σt’s motion in time.

7Tsallis suggestion is also known as the entropy of
Havrda/Charvat. It is non-additive and non-extensive for q �= 1,
compare, e.g., [18], and Shannon’s entropy appears as the limiting
case for q→ 1.

The use of Tsallis entropy may be justified from a
theoretic perspective by the generalized Khinchin condi-
tions, compare [19], or, for the application to financial
returns, by its ability to allow for long-range interactions,
compare [14]. From a mere statistical point of view, the
use of this entropy measure would rather be justified by
its ability to model kurtosis, not as information explicitly
included to the constraints, but by flexibly varying q. The
conditional distribution of the model is given by

fME,T =

(
k∑
i=0

λigi(x)

) 1
1−q

=
(
λ0+λ1x+λ2(x−µ)2

) 1
1−q ,

(21)

and can, for q > 1, be interpreted as some generalized
t-distribution, where q drives the degrees of freedom8. For
q > 1, a higher deviation from extensitivity (q= 1) implies
higher kurtosis.

A Kapur entropy-based approach. – From the
presented framework we may easily derive a vast range of
equally flexible models by choosing appropriate measures
of entropy. As an example, we suggest a third approach,
where we proceed as above, but maximize the non-additive
entropy measure suggested by Kapur [3],

HK(f) =

∫
D(X)

(
−f(x) ln(f(x))+ 1

c
d(x) ln(d(x))

)
dx,

with d(x) = 1+ c · f(x), (22)

where Shannon’s entropy appears for c= 0. This entropy
measure can be related to the Fermi-Dirac statistics
for c=−1 or to the Bose-Einstein statistics for c= 1,
compare [21]. The corresponding density function has the
form [3]

fME,K(x) =

(
exp

(
k∑
i=0

λigi(x)

)
− c
)−1

. (23)

Its application here shall be motivated only from a
statistician’s perspective by its ability to model higher
kurtosis by increasing c > 0.

Application to financial market data. – We
compare the above-presented approaches, using specifica-
tions with equivalent flexibility, in an application to three
different time-series typical for financial markets. We
will compare results by likelihood and likelihood-based
goodness-of-fit measures, by the distance of their empiri-
cal innovations’ distribution to the theoretical model and
by their capability to explain their empirical quantiles in
the tails.

Models. For all models we use a constant mean and
time-varying variance as

E (Xt|Ft) = µ, E
(
(Xt−µ)2|Ft

)
= σt2 , (24)

8For q < 1 the distribution may be related to the r-distribution,
see [20].
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Table 2: Descriptive statistics for the illustrative data sets.

Gold DJIA EurUS

Mean −1.363e-03 2.316e-05 −1.657e-04
Stan. Dev. 3.479e-02 1.286e-02 6.499e-03
m̂3 −1.596e-01 −5.802e-02 7.545e-02
m̂4 6.961 14.301 7.254
Observations 1606 1603 1632

where we assume for σt’s motion in time

σ2t = α0+α1x
2
t−i+α2σ

2
t−i, (25)

as there is empirical evidence that p= 1 and q= 1
sufficiently describe financial returns behavior, compare,
e.g., [22].
For the inclusion of stylized facts we model skewness as

E

(
tan−1

(
Xt−µ
σt

) ∣∣∣∣Ft)= β0, (26)

and for the Shannon model (E) kurtosis as

E

(
ln

(
1+

(
Xt−µ
σt

)2)∣∣∣∣Ft
)
= γ0, (27)

since in some previous study these moments performed
best. For the Tsallis model (N) and the Kapur model (K)
kurtosis is modeled by the flexibility of the parameters
of the corresponding entropy measures q and c. For all
models we assume skewness and kurtosis to be constant
over time.

Data. In order to sample different kinds of financial
market indices, we chose the daily returns between
January 1st, 2003 and March 20th, 2009 for the
gold price, the Dow Jones Industrial Average, both
from yahoo.finance.com, and for the Euro-US-Dollar
exchange rate from www.ecb.int. Some descriptive statis-
tics for the data are given in table 2 (see footnote 9).

Empirical results. We use numerical optimization
routines to implement maximum likelihood estimation of
the model parameters. Estimates and standard errors (in
brackets) are given in table 3.
We find for all models similar estimates for variance

motion in time as well as similar values for skewness. The
kurtosis parameters differ of course, as all models have
their own way to capture kurtosis. For all models and all
data sets we find significant non-normal kurtosis10.
Table 4 gives an overview over the model fit, where

LogL denotes log-likelihood, AIC the Akaike information
criterion, BIC the Bayesian information criterion, KS the
Kolgomorov-Smirnov distance and χ2 the χ2 test statistic
assuming 10 classes.

9m̂3 (m̂4) denotes the empirical third (fourth) standardized
power moment.
10The value form4 (used in the “E” model) implied by the normal
distribution is about 0.53345.

Table 3: Estimates for the applied models.

α̂0 α̂1 α̂2 β̂0 γ̂0 / q̂ / ĉ

E 7.63e-06 0.0410 0.952 0.00409 0.508
(4.16e-06) (0.0087) (0.010) (0.00393) (0.005)

N 7.03e-06 0.0394 0.955 0.00537 1.240
(3.96e-06) (0.0082) (0.009) (0.00385) (0.058)

K 7.68e-06 0.0416 0.952 0.00520 3.883
(4.16e-06) (0.0089) (0.010) (0.00375) (1.011)

Gold price

E 7.08e-07 0.0707 0.923 −4.0e-05 0.509
(3.14e-07) (0.0115) (0.012) (0.00399) (0.005)

N 7.38e-07 0.0702 0.923 −0.00114 1.221
(3.16e-07) (0.0114) (0.011) (0.00393) (0.061)

K 7.31e-07 0.0702 0.923 −0.00284 4.071
(3.17e-07) (0.0115) (0.012) (0.00384) (1.083)

Dow Jones industrial average

E 1.47e-07 0.0337 0.963 −0.00144 0.509
(9.24e-08) (0.0070) (0.007) (0.00386) (0.005)

N 1.61e-07 0.0313 0.964 −0.00272 1.220
(9.02e-08) (0.0064) (0.007) (0.00379) (0.056)

K 1.45e-07 0.0343 0.962 −0.00236 3.640
(9.27e-08) (0.0068) (0.007) (0.00369) (0.991)

Euro-USD exchange rate

Table 4: Goodness-of-fit measures for the applied models.

LogL AIC BIC KS χ2

E 3283.85 −6557.69 −6530.80 0.5238 4.666
N 3284.06 −6558.13 −6531.23 0.5626 4.396
K 3283.85 −6557.70 −6530.81 0.4707 4.037

Gold price

E 5255.65 −10521.29 −10474.39 1.6563 23.776
N 5252.58 −10515.16 −10468.26 1.7200 29.956
K 5255.70 −10521.40 −10474.50 1.4537 21.874

Dow Jones industrial average

E 6076.47 −12162.94 −12115.95 0.6817 5.747
N 6076.81 −12163.62 −12116.63 0.7017 9.754
K 6075.93 −12161.86 −12116.87 0.6125 5.217

Euro-USD exchange rate

All models behave well – except for the Dow Jones
Industrial Average, where KS and χ2 test would reject
all suggested models. In the sense of likelihood-based
measures we cannot derive a uniformly “best” model. The
Kapur model outperforms all other models if we use only
KS and χ2 as criteria.
In a last step, we compare the model fit in terms

of tails. Therefore we compare some extreme theoretical
quantiles with their sample anologa. Table 5 gives the
differences for the standardized estimates. We find that all
models similarly under- or over-estimate the most extreme
quantiles.
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Table 5: Absolute difference between theoretical quantiles and
sample estimates.

0.5% 1% 5% 95% 99% 99.5%

E −0.074 0.060 0.012 −0.037 0.002 −0.052
N −0.026 0.042 −0.003 0.005 0.023 −0.060
K −0.079 0.067 0.024 −0.036 −0.003 −0.057

Gold price

E 0.078 −0.046 −0.118 −0.067 −0.214 −0.115
N 0.082 −0.079 −0.146 −0.049 −0.203 −0.146
K 0.061 −0.058 −0.125 −0.091 −0.255 −0.158

Dow Jones industrial average

E −0.151 0.087 0.016 −0.022 −0.074 −0.102
N −0.134 0.061 −0.024 0.001 −0.076 −0.119
K −0.159 0.083 0.019 −0.034 −0.083 −0.119

Euro-USD exchange rate

We conclude that none of the models clearly outper-
forms the other ones. This is not surprising, as all models
have been chosen such that they exhibit the same flexibil-
ity needed to model known stylized facts. This result may
thus be explained by the fact, that the more information
we explicitly introduce into the model, the less information
is introduced by the choice of entropy.

Summary. – The information-theoretic approaches to
time-series models considered in econometrics and econo-
physics may both be interpreted as special cases of models
for time-varying moments using the generalized maximum
entropy principle. Using this interpretation we may derive
further models. For illustration we introduce a new model
based on a suggestion by Kapur. In application to three
illustrative data sets typical for financial markets, we find
that all suggested models from this class exhibit similar
flexibility in capturing the behavior of financial returns
where neither the econometric’s nor the econophysician’s
approach gives superior results in a statistical sense. The

explanation for this observation may be that the more
information we include into the model, the less the choice
of entropy matters.
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