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Abstract

Partial cointegration is a weakening of cointegration that allows for the ”cointegrating” pro-

cess to contain a random walk and a mean-reverting component. We derive its representation

in state space, provide a maximum likelihood based estimation routine, and a suitable likeli-

hood ratio test. Then, we explore the use of partial cointegration as a means for identifying

promising pairs and for generating buy and sell signals. Specifically, we benchmark par-

tial cointegration against several classical pairs trading variants from 1990 until 2015, on

a survivor bias free data set of the S&P 500 constituents. We find annualized returns of

more than 12 percent after transaction costs. These results can only partially be explained

by common sources of systematic risk and are well superior to classical distance-based or

cointegration-based pairs trading variants on our data set.
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1. Introduction

Pairs trading is a relative-value arbitrage strategy that has been known in the quantitative

finance community ever since the mid 1980s (Vidyamurthy, 2004). The strategy involves

identifying two securities whose prices tend to travel together. Upon divergence, the cheaper

security is bought long and the more expensive one is sold short. When the prices converge

back to their historical equilibrium, the trade is closed and a profit collected. By formalizing

these concepts, we obtain a quantitative trading strategy exploiting relative mispricings

between two securities.

Pairs trading has been introduced to the academic community with the seminal papers of

Gatev et al. (1999, 2006). The authors study a pragmatic algorithm on U.S. CRSP securities

from 1962 until 2002. At first, they rank all pairs in a 12-month formation period by their

sum of squared distances in normalized price space. Then, the top 20 pairs with minimum

distance metric are transferred to a subsequent six-month trading period. A trade is entered

when the spread diverges at least two historical standard deviations from equilibrium. It is

closed with the next zero-crossing, at the end of the trading period, or upon delisting. Gatev

et al. (2006) find statistically and economically significant excess returns of 11 percent p.a.,

which exhibit low exposure to common sources of systematic risk.

Subsequently, interest in pairs trading has surged. Recently, Krauss (2015) has surveyed

the literature, cataloging more than 90 papers in five different categories - among them the

cointegration approach. Representative studies are by Caldeira and Moura (2013); Huck

(2015); Rad et al. (2015). These applications identify cointegrated pairs in a formation

period and trade the cointegrating process in a subsequent trading period. Further studies

describe the spread in state space, but still as fully mean-reverting model - see, among others,

Elliott et al. (2005); Do et al. (2006); Triantafyllopoulos and Montana (2011); de Moura et al.

(2016). The results are convincing. For example, Rad et al. (2015), the most comprehensive

study, report annualized excess returns of approximately 10 percent from 1962 until 2014 on

U.S. CRSP data, prior to transaction costs.

Despite these positive findings, there is reason to believe that cointegration may not

be the most appropriate model for pairs trading. If the price series of two securities are

cointegrated, then all shocks to the spread series must necessarily be transient. However,
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it is reasonable to believe that companies often experience idiosyncratic shocks that are

permanent in nature. Such shocks might be due to technological changes, the development

of new markets, adverse legal actions, changes in management, changes in credit rating, and

analyst upgrades or downgrades, to name a few. Any change to the fundamental value of

a company arguably represents a permanent shock. This view is supported by three recent

contributions: Clegg (2014) finds that the property of being cointegrated is not persistent,

and Krauss et al. (2015) as well as Jondeau et al. (2015) identify a substantial number of

permanent jumps in high-frequency market data. In light of these findings, it seems fair to

assume that the spread series of equity pairs are bombarded by a steady stream of permanent

shocks. As of today, no pairs trading study addresses this issue.

Our paper aims to fill this void. We develop the concept of partial cointegration (PCI),

a weakening of cointegration (CI) that allows for the ”cointegrating” process to contain a

random walk component.2 In other words, we model the spread series as the sum of a mean-

reverting component and a random walk component. In contrast to Bertram (2010a), we

assume that the mean-reverting and random walk components are not directly observable.

Even though they are not observable, we are able to show that the system is identifiable,

and we give a procedure for estimating the two components. Moreover, if the magnitude of

the mean-reverting component is large in comparison to the random walk component, it is

possible to profitably trade from the relationship.

Overall, we make three contributions to the literature. The first one is conceptual, i.e., the

representation of the PCI model in state space and the discussion of corresponding estimation

and testing routines. The second one is simulative. Specifically, we evaluate the goodness

of our maximum likelihood based estimators and analyze size as well as power properties

of a likelihood ratio test for partial cointegration - originally proposed in Clegg (2015). In

a further Monte Carlo simulation, we benchmark PCI-based versus CI-based pairs trading

on artificially generated pairs, thereby extracting key determinants of profitability for the

2Please note that the term partial cointegration is sometimes used in a different context. Harbo et al.

(1998) refer to partial cointegration in case of conditionally cointegrated systems and Caner and Hansen

(2001); Krishnakumar and Neto (2009) in the context of partial unit roots in threshold autoregressive models.

Both concepts are unrelated to the model presented in this paper.
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individual systems. The third contribution is empirical, i.e., the application of cointegration-

based pairs trading in comparison to PCI-based pairs trading on the S&P 500 constituents

from January 1990 until October 2015.

Our findings are as follows. On simulated data, we identify a key prerequisite for PCI-

based pairs trading profitability: The mean-reverting component needs to dominate the

random walk component, i.e., the portion of variance attributable to mean reversion has to

be relatively high. Then, profitability is a function of the half-life of mean-reversion - the

faster the series reverts to its mean, the higher are the returns that can be achieved. On

empirical data, we find PCI-based pairs trading to produce annualized returns of more than

12 percent after transaction costs, which are largely robust to common sources of systematic

risk. In contrast, classical distance and cointegration-based pairs trading variants disappoint

on our highly liquid and survivor bias free data sample.

The remainder of this paper is organized as follows. In section 2, we develop the partial

cointegration model and simulatively evaluate the goodness of our estimators and power as

well as size properties of the likelihood ratio test. In section 3, we describe the research design

for comparing PCI with CI in a pairs trading context - both on simulated and empirical data.

The results are presented in section 4. Finally, section 5 provides concluding thoughts and

summarizes directions for further research.

2. Partial cointegration

2.1. Representation

The partial cointegration model is a weakening of cointegration that allows for the residual

series to have both mean-reverting and random walk components. In analogy with Engle

and Granger (1987), the following definition is given:

DEFINITION: The components of the vector Xt are said to be partially cointegrated of

order d, b, denoted Xt ∼ PCI(d, b), if (i) all components of Xt are I(d); (ii) there exists a

vector α(6= 0) so that Zt = α′Xt and Zt can be decomposed as a sum Zt = Rt + Mt, where

Rt ∼ I(d) and Mt ∼ I(d− b).

In the remainder of this article, we consider the simplest possible instance of partial coin-

tegration. Namely, we consider only two price time series X1 = (X1,t)t∈T and

4



X2 = (X2,t)t∈T , and we say that X1 and X2 are partially cointegrated if β, ρ, σM , σR,m0, and

r0 can be found such that the following model is satisfied,

X2,t = βX1,t +Wt (1)

Wt = Mt +Rt,

Mt = ρMt−1 + εM,t εM,t ∼ N
(
0, σ2

M

)
,

Rt = Rt−1 + εR,t εR,t ∼ N
(
0, σ2

R

)
,

where β ∈ R is a parameter, ρ ∈ (−1, 1) is the AR(1) coefficient, and εM,t, εR,t follow

mutually independent Gaussian white noise processes with expectation zero and variances

σ2
M , σ

2
R ∈ R+

0 . To simplify model estimation, we take m0 = 0 and r0 = X2,0 − βX1,0. Note

that the time series X2 and X1 are connected by a partially autoregressive (PAR) model

W = (Wt)t∈T , first discussed in Summers (1986) and Poterba and Summers (1988), and

further elaborated in Clegg (2015) and the associated R package partialAR. A key statistic

of a PAR model is the proportion of variance attributable to mean-reversion, given as,

R2
MR =

Var [(1−B)Mt]

Var [(1−B)Wt]
=

2σ2
M

2σ2
M + (1 + ρ)σ2

R

, R2
MR ∈ [0, 1], (2)

where B denotes the backshift operator. If R2
MR = 0, then the AR component is zero and

the series a pure random walk. By contrast, if R2
MR = 1, then the random walk component

is zero and the series is (fully) autoregressive.

Since Wt is not directly observable, we restate the model in state space. Brockwell

and Davis (2010) provide an introductory treatment of state space models, while Durbin

and Koopman (2012) offer a more comprehensive reference. The state space representation

involves two equations, an observation equation and a state equation. These equations are

customarily given as

Xt = HtZt + Vt (3)

Zt = FtZt−1 +GtUt +Wt. (4)

The state of the system is given by Zt in (4), which may not be directly observable. It is

assumed to follow a linear dynamic and it may be influenced by a control input Ut. The term
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Wt is a noise term, which has covariance matrix Qt. The observable portion of the system

is represented by Xt in (3). It is assumed to have a linear dependence on the hidden state

Zt, given by Ht, and to be influenced by its own noise term Vt, whose covariance matrix is

Rt. We hereafter assume that the noise term Vt is zero and that there is no control input

term Ut. In addition, we assume that the linear dependence matrix Ht and the transition

matrix Ft are time invariant. Consequently, these equations simplify to

Xt = HZt (5)

Zt = FZt−1 +Wt. (6)

The partial cointegration (PCI) system has two observable variables, X1 and X2, and two

hidden state variables M and R. For convenience of representation, we treat X1 as a third

hidden state variable. In other words, X1 is represented in both the observation equation

and the state equation. The observation equation for the PCI system is therefore given as

Xt =

X2,t

X1,t

 = HZt =

β 1 1

1 0 0



X1,t

Mt

Rt

 . (7)

And the hidden state equation for the PCI system is given as

Zt =


X1,t

Mt

Rt

 = FZt−1 +Wt =


1 0 0

0 ρ 0

0 0 1



X1,t−1

Mt−1

Rt−1

+


εX,t

εM,t

εR,t

 , (8)

with εX,t ∈ R+
0 denoting the variance of the process X1 in first differences. It is assumed

that εX,t ∼ N (0, σ2
X) and that it is independent of εM,t and εR,t.

2.2. Estimation of a partial cointegration model

In AppendixA, we give a proof that the PCI system is identifiable. In other words, given

a (possibly infinite) realization of a PCI system, there is a unique set of parameter values

β, ρ, σM and σR that give rise to that realization. In this subsection, we turn to the problem

of how to estimate these values.

Parameter values are determined through maximum likelihood estimation of the associ-

ated Kalman filter. If the parameters of the system are known and the innovations εX,t, εM,t,
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and εR,t are zero-mean Gaussian, uncorrelated, and white, the Kalman Filter minimizes the

mean-squared error of the estimated parameters. If the innovations are zero-mean, uncorre-

lated, and white, but non-Gaussian, then the Kalman Filter is still the best linear estimator

(Simon, 2006).

The maximum likelihood method is a standard technique for parameter estimation. Let

Θt denote the information that is available up to and including time t, and let Φ denote

the parameter values β, ρ, σX , σM , and σR. The one-step ahead prediction error given by the

Kalman filter is et = Xt−E[Xt|Θt−1,Φ]. In case of the PCI model, it can be shown to be

et =

βεX,t + εM,t + εR,t

εX,t

 . (9)

Since p(βεX,t + εM,t + εR,t, εX,t) = p(εM,t + εR,t, εX,t), the likelihood function for the Kalman

filter of the PCI model can be written as

L(Φ) = p(X1|Φ)
n∏
k=2

φ(εM,k + εR,k; 0, σ2
M + σ2

R)
n∏
k=2

φ(εX,k; 0, σ2
X), (10)

where φ(·) denotes the probability density function of the normal distribution and p(X1|Φ) is

a constant term corresponding to the first observation. We are only interested in optimizing

for β, ρ, σM , and σR, so we can omit the first and third term from the above product. In other

words, the maximum likelihood estimates for β, ρ, σM and σR can be found by maximizing

LMR(β, ρ, σM , σR) =
n∏
k=2

φ(εM,k + εR,k; 0, σ2
M + σ2

R). (11)

We use this likelihood score as the objective function, and deploy L-BFGS to jointly optimize

over β, ρ, σM , and σR. The full algorithm is available online in the R package partialCI

and the full derivation of the likelihood function is provided in AppendixB.

2.3. Consistency of estimation routine

Given that we employ a maximum likelihood routine, our estimators should be

asymptotically efficient, asymptotically unbiased, and asymptotically consistent with regard

to mean squared error (MSE), if regularity conditions hold. We check these properties on a

collection of synthetic data sets of PCI models with different parameter configurations. The

baseline parameter settings are depicted in table 1.
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β σX σM σR ρ m0 r0

1.0000 0.0236 1.0000 1.0000 0.9000 0.0000 0.0000

Table 1: Baseline parameter settings for Monte Carlo simulations.

We set β to one, reflecting a typical equilibrium relationship. The price time series Xt

is generated as cumulative return time series with a starting price of 100, mean zero, and

standard deviation σX = 0.0236 - corresponding to the median value of all stocks having

ever been a S&P 500 constituent from 1990 until 2015.3 The standard deviations σM and σR

are both set to one for the sake of simplicity. Not their level is important, but their ratio,

as it affects the proportion of variance attributable to mean-reversion defined in equation

(2). The AR(1)-coefficient ρ is fixed ad hoc at 0.90 in the baseline setting, corresponding to

a half-life of mean-reversion of 6.60 days. We now vary ceteris paribus either σM or ρ, as

depicted in table 2, thus reflecting different levels of R2
MR and mean-reversion strength. The

sample size n is set to 100, 1000, or 10000 and we perform 10000 replications for each setting.

σM 0.00 0.50 1.00 1.50 2.00

ρ 1.00 0.90 0.80 0.70 0.60

Table 2: Different Monte Carlo settings: Ceteris paribus parameter variations.

The results for varying levels of σM are depicted in table 3. We see that MSE converges

towards zero for all levels of σM > 0, so our estimators seem to be MSE-consistent. The only

exception is the Monte Carlo setting with σM equal to zero. In this case, the cointegrating

process degenerates to a pure random walk, leading to inconsistent estimators. With increas-

ing R2
MR, the MSE exhibits faster convergence for all parameters, up until R2

MR = 0.51, i.e.,

when σM equals σR. Average estimates for β are very close to the true value for all sample

sizes, suggesting that the estimator is unbiased. Conversely, all other estimators suffer from

small sample bias and are only asymptotically unbiased (which is a direct consequence of

MSE-consistency). Specifically, σR and ρ are often underestimated.

3Neither the starting price nor the standard deviation σX has any influence on the subsequent simulations,

but we have decided to choose realistic values motivated from real data.
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Mean squared error Average estimate True value

σM R2
MR Parameter 100 1000 10000 100 1000 10000

0.00 0.00 β 0.0021 0.0003 0.0001 1.0000 1.0001 0.9998 1.00

0.00 0.00 ρ 0.5541 0.5052 0.5260 0.5069 0.5801 0.5603 0.90

0.00 0.00 σM 0.5823 0.5877 0.5542 0.6697 0.6600 0.6057 0.00

0.00 0.00 σR 0.4777 0.4802 0.5074 0.4518 0.4643 0.4692 1.00

0.50 0.21 β 0.0026 0.0003 0.0001 1.0001 1.0002 0.9998 1.00

0.50 0.21 ρ 0.5000 0.4148 0.2324 0.5343 0.6159 0.7134 0.90

0.50 0.21 σM 0.2295 0.2052 0.0839 0.7767 0.7242 0.5401 0.50

0.50 0.21 σR 0.4691 0.3609 0.1166 0.4926 0.6081 0.8857 1.00

1.00 0.51 β 0.0042 0.0005 0.0002 1.0000 1.0002 0.9997 1.00

1.00 0.51 ρ 0.4102 0.1831 0.0075 0.5842 0.7574 0.8921 0.90

1.00 0.51 σM 0.2031 0.1213 0.0083 1.0525 1.0285 1.0100 1.00

1.00 0.51 σR 0.4673 0.2007 0.0066 0.5885 0.8276 1.0037 1.00

1.50 0.70 β 0.0070 0.0009 0.0004 1.0000 1.0002 0.9996 1.00

1.50 0.70 ρ 0.3169 0.0566 0.0002 0.6420 0.8492 0.8992 0.90

1.50 0.70 σM 0.2596 0.0766 0.0031 1.4419 1.5102 1.5202 1.50

1.50 0.70 σR 0.5345 0.1451 0.0060 0.6556 0.9083 1.0061 1.00

2.00 0.81 β 0.0107 0.0014 0.0006 1.0000 1.0003 0.9995 1.00

2.00 0.81 ρ 0.2586 0.0172 0.0001 0.6803 0.8812 0.8996 0.90

2.00 0.81 σM 0.3345 0.0460 0.0026 1.8785 2.0216 2.0262 2.00

2.00 0.81 σR 0.6507 0.1332 0.0068 0.6967 0.9202 1.0058 1.00

Table 3: Mean squared error and average estimate versus true parameters for varying sample size n and

different levels of σM , thus different levels of R2
MR.

Table 4 reports the results for varying levels of ρ. As before, for ρ equal to one, the

PAR model degenerates to a random walk, resulting in inconsistent estimators. For all other

settings, we observe MSE-consistent estimation. Small sample bias decreases with ρ.

2.4. Power and size properties of the likelihood ratio test

By construction, a partially autoregressive series normally contains a unit root, so tradi-

tional cointegration tests are not appropriate for testing for partial cointegration. Instead,

the likelihood ratio test (LRT) is used to assess the null hypothesis HR
0 that the spread series

is a random walk - see Clegg (2015) for further details. When HR
0 is rejected, we assume

that the cointegrating process either follows a partially autoregressive model of order one

or autoregressive model of order one. Details about the test statistic and associated critical
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Mean squared error Average estimate True value

ρ R2
MR Parameter 100 1000 10000 100 1000 10000

1.00 0.50 β 0.0041 0.0005 0.0002 1.0003 1.0002 0.9997 1.00

1.00 0.50 ρ 0.6348 0.5629 0.6007 0.5074 0.5832 0.5539 1.00

1.00 0.50 σM 0.2760 0.3098 0.4090 0.9374 0.9200 0.8251 1.00

1.00 0.50 σR 0.4839 0.4926 0.5447 0.6445 0.6749 0.6978 1.00

0.90 0.51 β 0.0042 0.0005 0.0002 1.0000 1.0002 0.9997 1.00

0.90 0.51 ρ 0.4102 0.1831 0.0075 0.5842 0.7574 0.8921 0.90

0.90 0.51 σM 0.2031 0.1213 0.0083 1.0525 1.0285 1.0100 1.00

0.90 0.51 σR 0.4673 0.2007 0.0066 0.5885 0.8276 1.0037 1.00

0.80 0.53 β 0.0044 0.0006 0.0002 1.0000 1.0002 0.9997 1.00

0.80 0.53 ρ 0.3295 0.0701 0.0010 0.5626 0.7381 0.7979 0.80

0.80 0.53 σM 0.1810 0.0533 0.0030 1.0656 1.0270 1.0223 1.00

0.80 0.53 σR 0.4069 0.0693 0.0029 0.6372 0.9518 1.0190 1.00

0.70 0.54 β 0.0045 0.0006 0.0002 1.0000 1.0002 0.9997 1.00

0.70 0.54 ρ 0.2701 0.0270 0.0011 0.5297 0.6742 0.6983 0.70

0.70 0.54 σM 0.1622 0.0262 0.0028 1.0767 1.0383 1.0338 1.00

0.70 0.54 σR 0.3561 0.0289 0.0027 0.6840 0.9992 1.0325 1.00

0.60 0.56 β 0.0046 0.0006 0.0002 1.0000 1.0001 0.9997 1.00

0.60 0.56 ρ 0.2318 0.0172 0.0012 0.4813 0.5865 0.5985 0.60

0.60 0.56 σM 0.1472 0.0178 0.0034 1.0845 1.0498 1.0464 1.00

0.60 0.56 σR 0.3078 0.0174 0.0034 0.7335 1.0245 1.0461 1.00

Table 4: Mean squared error and average estimate versus true parameters for varying sample size n and

different levels of ρ, thus different levels of R2
MR and half-life of mean-reversion.

values can be found in AppendixC. We follow similar Monte Carlo settings as described in

subsection 2.3, but we choose a finer step size for σM and ρ.

The results for varying levels of σM are depicted in table 5. When σM equals zero, i.e.,

the cointegrating process is a pure random walk, we find that the null is erroneously rejected

in approximately four to five percent of all cases. As such, the type I error is in line with the

significance level α - size distortions are minor. With increasing levels of σM at fixed σR, the

proportion of variance attributable to mean-reversion increases and consequently, the power

of the likelihood ratio test. When σM = σR = 1, the power is approximately 50 percent for

n = 1000 - a reasonable value, which could easily be achieved with four years of daily data.

Table 6 reports the results for varying levels of ρ. The random walk case for ρ equal to
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σM 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

n = 100 0.0345 0.0388 0.0490 0.0653 0.0841 0.1033 0.1231 0.1447 0.1666

n = 1000 0.0487 0.0569 0.1129 0.2616 0.5064 0.7469 0.8953 0.9625 0.9869

n = 10000 0.0428 0.0829 0.5402 0.9750 0.9986 1.0000 1.0000 1.0000 1.0000

R2
MR 0.0000 0.0617 0.2083 0.3719 0.5128 0.6219 0.7031 0.7632 0.8081

Table 5: Power of likelihood ratio test with null hypothesis of ”random walk” for varying sample size n and

different levels of σM , thus different levels of R2
MR.

one results in almost the same size values as before. Power quickly increases with decreasing

levels of ρ. For example, for n = 1000 and ρ = 0.80, the power is already at 87 percent.

ρ 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60

n = 100 0.0366 0.0598 0.0841 0.1125 0.1402 0.1726 0.2081 0.2472 0.2902

n = 1000 0.0452 0.2651 0.5064 0.7254 0.8748 0.9532 0.9848 0.9963 0.9995

n = 10000 0.0385 0.9336 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R2
MR - 0.5063 0.5128 0.5195 0.5263 0.5333 0.5405 0.5479 0.5556

Table 6: Power of likelihood ratio test with null hypothesis of ”random walk” for varying sample size n and

different levels of ρ, thus different levels of R2
MR and half-life of mean-reversion.

3. Study design: Comparing partial cointegration with cointegration in the con-

text of pairs trading

3.1. Data

The backtesting of all trading strategies is performed on the S&P 500 index constituents.

As in Krauss et al. (2016), our choice is motivated by market efficiency, computational fea-

sibility, and liquidity. The S&P 500 contains the leading 500 companies of the U.S. stock

market, comprising approximately 80 percent of available market capitalization (S&P Dow

Jones Indices, 2015). This highly liquid subset serves as an acid test for any trading strategy,

in light of significant investor scrutiny and intense analyst coverage. We proceed along the

lines of Krauss et al. (2016) for eliminating survivor bias. In particular, we download all

month end constituent lists for the S&P 500 from Thomson Reuters Datastream from De-

cember 1989 to September 2015. We consolidate these lists into a binary matrix, indicating

if the stock is an index constituent or not. Second, for all stocks having ever been in the S&P
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500 during this time, we download the daily total return indices (RI) from January 1990 until

October 2015. Return indices reflect cum-dividend prices and account for all further corpo-

rate actions and stock splits, making it the most adequate metric for return computations.

Previously reported concerns about Datastream quality by Ince and Porter (2006) mainly

address small size deciles. Also, as Leippold and Lohre (2012) point out, Thomson Reuters

seems to have reacted in the meantime. Hence, besides eliminating holidays, we conduct no

further sanitizations. In table 3.1, we provide descriptive statistics for our sample period,

split into 10 sectors, as defined by the Global Industry Classification Standard (GICS).

Sector No. of stocks Arithmetic return Geometric return Standard deviation Skewness Kurtosis

Industrials 80.6 0.99 0.85 5.36 -0.19 1.71

Consumer Services 72.6 1.07 0.93 5.27 -0.20 2.59

Basic Materials 35.2 0.90 0.70 6.31 -0.02 2.24

Telecommunications 10.7 0.92 0.71 6.50 0.34 4.76

Health Care 41.3 1.33 1.23 4.40 -0.40 1.18

Technology 50.3 1.41 1.05 8.50 -0.06 1.11

Financials 78.0 1.13 0.94 6.17 -0.39 2.44

Consumer Goods 65.2 1.04 0.93 4.53 -0.44 3.02

Oil & Gas 31.2 1.00 0.76 6.89 -0.03 1.06

Utilities 34.6 0.85 0.74 4.54 -0.43 1.72

All 499.7 1.04 0.93 4.78 -0.49 2.01

Table 7: Summary statistics for S&P 500 constituents from January 1990 until October 2015. Returns and

standard deviations are denoted in percent.

3.2. The backtesting framework

3.2.1. Building blocks

We construct a backtesting framework to compare CI-based to PCI-based trading. This

subsection outlines the building blocks of the backtesting framework. A concise summary of

key parameters is provided in table 8.

Strategy variants: In particular, we benchmark four strategy variants against each other.

First, we replicate classical distance-based pairs trading of Gatev et al. (2006), denoted as

GGR. Second, we run a cointegration-based strategy subsuming proven parameter settings

in the available literature (CI1). Third, we test a cointegration-based variant with exactly
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GGR CI1 CI2 PCI

Number of study periods 305 305 305 305

Formation period, in months 12 12 48 48

Trading period, in months 6 6 6 6

Restriction to same sector Yes Yes Yes Yes

Eligibility criterion 1 - ADF test PP test LRT in bottom 5%

Eligibility criterion 2 - Johansen test PGFF test ρ > 0.5

Eligibility criterion 3 - R2
MR > 0.5

Portfolio size, in pairs 20 20 20 20

Portfolio selection SSD In-sample Sharpe ratio In-sample Sharpe ratio In-sample Sharpe ratio

Opening signal τo 2.0 2.0 1.0 1.0

Closing signal τc 0.0 0.0 -0.5 -0.5

Stop loss, in percent - - 10 10

Transaction costs, in percent 0.05 0.05 0.05 0.05

Table 8: Summary of backtesting framework.

the same parameter settings as the PCI-system (CI2). Fourth, we run a strategy based on

partial cointegration (PCI).

Study periods: For all models, we follow Gatev et al. (2006) and split our data into a

collection of overlapping study periods. Each study period consists of a formation period,

during which the different models are calibrated, followed by a trading period, during which

simulated trading is performed. For the GGR approach, we opt for a 12-month formation,

and a 6-month trading period (Gatev et al., 2006). For CI1, we follow Huck (2015) as

well as Rad et al. (2015) and use the same durations as GGR. In case of the CI2 and the

PCI approach, we lengthen the formation period to 48 months (approximately 1000 days)

in order to increase the power of the tests for cointegration and partial cointegration - see

tables 5 and 6 as well as Clegg (2014); Krauss et al. (2015). The trading period remains at

6 months. For all four trading systems, the first trading period starts January 1990 and the

last trading period ends October 2015. The trading periods are overlapping, so in general, we

have six active trading periods in parallel, with the exception of the first five trading periods.

Return computation: Return computation follows Gatev et al. (2006). Specifically, we
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scale the sum of monthly payoffs across all pairs by the sum of invested capital at the previous

month’s end. Invested capital is either defined as committed capital (1 USD is allocated at

the beginning of the trading period for each pair - whether it opens or not) or fully invested

capital (1 USD is allocated at the beginning of the trading period for each pair that opens

during the trading period). The former metric yields return on committed capital and the

latter metric return on fully invested capital.

3.2.2. Formation period

Available stocks: Within each formation period, a universe of available stocks is deter-

mined. For pair formation, we only consider the stocks that (i) are an index constituent of

the S&P 500 at the very last day of the formation period and (ii) do not exhibit missing

data during the (in-sample) formation period.

Eligible pairs: From the universe of available stocks, a collection of eligible pairs is then

determined. Following previous studies (Gatev et al., 2006; Do and Faff, 2010, 2012) we only

allow pairs composed of stocks belonging to the same GICS-sector. This restriction renders

our application computationally feasible4 and reduces spurious relationships. For the GGR

approach, all pairs of the same sector are eligible and no further restrictions are imposed.

For CI1, a same-sector pair is eligible, if both the Augmented Dickey-Fuller test of Dickey

and Fuller (1979) and the Johansen test of Johansen (1988) reject the null hypothesis of

”no cointegration relationship” at the level α = 0.05. These tests are recommended in Huck

(2015) and Rad et al. (2015). Caldeira and Moura (2013) use this exact combination. In case

of CI2, a same-sector pair is eligible if both the Phillips-Perron test of Phillips and Perron

(1988) and the Pantula, Gonzalez-Farias, and Fuller test of Pantula et al. (1994) reject the

null hypothesis of ”no cointegration relationship” at the level α = 0.05. These tests exhibit

higher power in case of financial return data - see Clegg (2014) and Krauss et al. (2015) for a

comparison of various unit root tests. For PCI, a same-sector pair is eligible if the likelihood

4Note: Parallelized processing on 8 hyper threads on a contemporary Intel core i7-4790K with a clock

speed of 4 GHz leads to an approximate run-time of 15 days for the PCI-application and 11 hours for each

of the other variants, considering industry restrictions.
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ratio score is in the lower five percent among all available pairs, ρ > 0.5, and R2
MR > 0.5.

The first condition (likelihood ratio score in the lower 5 percent) ensures that the pairs have

a higher probability of being (partially) cointegrated. The second condition (ρ > 0.5) ex-

cludes pairs with a half-life of mean-reversion of one day or less - thereby avoiding to select

pairs where trading gains are largely attributable to bid-ask bounce. The third condition

(R2
MR > 0.5) ensures more reliable parameter estimates - see tables 3 and 4.

Top pairs: For GGR, the top pairs transferred to the trading period are the ones with

minimum sum of squared distance (SSD) in normalized price space - see Gatev et al. (2006)

for further details. For CI1, CI2, and PCI we run an in-sample trading simulation adhering

to the standards outlined in table 8 and detailed in subsection 3.2.3. Following Dunis et al.

(2010); Bertram (2010b); Caldeira and Moura (2013), we assign an in-sample Sharpe ratio to

each pair. For each stock, its eligible partners are then ranked by their respective in-sample

Sharpe ratios. The highest ranking partner is then selected as the trading partner for that

stock. Thus, we obtain a list of securities and their selected trading partners. Finally, we

construct a portfolio consisting of the 20 stocks and their partners with the highest in-sample

Sharpe ratios - the top pairs selected for the subsequent trading period.

3.2.3. Trading period

In the trading period, we consider the top 20 pairs selected in the formation period. In

the following, we discuss the buy and sell signals for the different strategy variants.

Distance-based pairs trading (GGR): For a given pair (P,Q), let X1 and X2 represent

their respective price series. Using in-sample data of the formation period, we obtain the

historical standard deviation σ of the price spread X2 − X1. In the trading period, we

compute the normalized Z-score Zt as

Zt =
X2,t −X1,t

σ
.

If Zt is larger than the opening threshold τo and no position is currently open, we go long

in stock P and short in Q. If a long position in P is already open and Zt becomes smaller

than the closing threshold τc, the positions are closed. Analogously, if Zt is smaller than
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the opening threshold −τo and no position is currently open, we go short in stock P and

long in Q. If a long position in Q is already open and Zt becomes larger than the closing

threshold −τc, the positions are closed. We choose τo = 2.0 and τc = 0, and invest an

equal-dollar amount in the long and in the short leg of each pair - just as in the original

application of Gatev et al. (2006).

Cointegration-based pairs trading (CI1, CI2): Relying on the same notation as before,

we use in-sample data of the formation period to obtain in-sample regression constants α

and β, that give rise to the least squares fit to the equation,

X2,t = α + βX1,t +Wt,

where Wt denotes the zero-mean residual series. The historical standard deviation σ of Wt

is then determined - equally with formation data. In the trading period, we compute the

normalized Z-score Zt as

Zt =
X2,t − α− βX1,t

σ
,

which we use as trading signal. For CI1, we follow Huck (2015); Rad et al. (2015) and adopt

an opening threshold τo = 2 and a closing threshold τc = 0. For CI2, we take on an opening

threshold τo = 1 and a closing threshold τc = −0.5 - identical to the parametrization of the

PCI model described in the next paragraph. In case of CI1, we use no stop-loss rule. By

contrast, for CI2, we implement a stop loss of 10 percent, following Nath (2003); Caldeira

and Moura (2013) and the development of pairs trading profitability over time presented

in Jacobs and Weber (2015). Specifically, if the value of the portfolio associated to a pair

drops below 10 percent of its initial value, the trade is closed and the pair is disqualified

from any further trades in this trading period. Any positions open on the last day of the

trading period are closed and stocks that are delisted booked out with the delisting return5.

The value of the position on the long side may not exactly match the value of the

position on the short side. The assumption underlying the cointegration model is that the

5By contrast, if a stock drops out of the S&P 500 during the trading period, we continue trading it until

the end of the trading period.
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spread series Wt is mean-reverting. Therefore, the goal is to construct a financial position

whose behavior mimics the behavior of Wt as closely as possible. According to the above

cointegrating equation, each share of Q that is bought long (respectively, sold short) should

be offset with a short sale (respectively, long purchase) of β shares of P . Thus, a USD 1

investment in Q, representing 1/X2,t shares in Q, is offset by an investment of β/X2,t shares

in P , with a price of βX1,t/X2,t. In general, this amount is not exactly equal to USD 1.

The value of the portfolio associated to a pair may fluctuate on a daily basis. When no

trade is open, the portfolio is assumed to be held in cash and not to earn interest. When

a trade is open, the value of the portfolio changes according to changes in the value of two

securities. When a trade is initiated, it is assumed that the maximum amount of capital

that is allocated to either side of the trade is limited to the value of the portfolio. Thus, if

βX1,t/X2,t < 1 and the value of the portfolio on day t is v, then the amount invested in Q

(long or short) is v, while the amount invested in P is (βX1,t/X2,t)v. If βX1,t/X2,t > 1, then

the amount invested in Q is (X2,t/βX1,t)v while the amount invested in P is v. These re-

strictions mimic simplified Reg T requirements. The total return on the portfolio associated

to the pair (P,Q) is the product of the returns achieved for each of the trades in this pair

over the trading period.

PCI-based pairs trading (PCI): For each pair (P,Q), the partial cointegrating relationship

in the formation period is found:

X2,t = βX1,t +Wt, (12)

Wt = Mt +Rt,

Mt = ρMt−1 + εM,t,

Rt = Rt−1 + εR,t.

In this representation, Mt is the mean-reverting component and hence represents the oppor-

tunity for potential trading profit. However, Mt and Rt are not directly visible and need

to be estimated using the Kalman filter. Based upon the fitted values for ρ, σM , and σR,

the Kalman gain κ is computed. The Kalman gain can be computed either as a closed-form

formula (see Clegg (2015)) or it can be approximated through the Kalman filter equations.
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The estimated values of Mt and Rt are then determined through the equations

Wt = Pt − βQt, (13)

Et = Wt − ρMt−1 −Rt−1,

Mt = ρMt−1 + κEt,

Rt = Rt−1 + (1− κ)Et,

with Et representing the one-step estimation error of the Kalman filter. These equations are

applied to the data in the formation period to obtain an in-sample estimate of Mt and its

standard deviation σ. In the trading period, these equations are again used to estimate Mt

at the end of each trading day. A Z-score Zt is computed as Zt = Mt/σ. We take on an

opening threshold τo = 1 and a closing threshold τc = −0.5. These thresholds are close to

optimal for PCI on simulated data - see subsections 3.3 and 4.1.

The remainder of the PCI-based trading system mirrors the cointegration-based trading

system. In particular, a hedge ratio is determined using the value βX1,t/X2,t. One remaining

significant difference is that under the PCI-based system, it is possible to lose money from

convergent trades. In the cointegration-based system, if a trade closes prior to the end of the

trading period, it is guaranteed to yield a profit. No such guarantee exists in the partially

cointegrated system, due to the random walk component.

3.3. Trading on simulated data

Prior to the empirical application, we aim to explore the effectiveness of trading with the

partial cointegration model under ideal circumstances. In particular, the following questions

are of interest: First, when the data is partially cointegrated, how does trading using the PCI

model compare to trading using the cointegration model? Second, how does the effectiveness

of trading vary as a function of the proportion of variance attributable to mean-reversion

R2
MR and as a function of ρ, the AR(1)-coefficient? Third, how should optimal entry and

exit thresholds τo, τc be chosen for the PCI system?

To address the first two questions, a collection of synthetic data sets are generated for

various values of ρ and R2
MR. The value of ρ is allowed to range from 0.6 to 0.95, while the

value for R2
MR is allowed to range from 0.05 to 1.0. For each combination of ρ and R2

MR,
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5000 random pairs are generated. To construct such a pair, we follow the procedure outlined

in section 2.3 to generate synthetic price time series X1,t of length 1125. Next, a synthetic

partially autoregressive process Wt of the same length is generated, subject to the constraint

that the variance of the first differences is held at 1.0. Then, the price series X2,t is defined as

X2,t = X1,t +Wt. Thus, the value of β is fixed at one, assuming an equilibrium relationship

between the two securities. Given this pair, trading is then simulated on it using both the

cointegrated and the partially cointegrated trading system. The first 1000 observations are

used as training data, and trading is then performed on the final 125 observations. This

setting roughly corresponds to a four-year formation and a six-month trading period. We

benchmark the CI2 strategy against the PCI strategy. Parameters are set as in table 8.

To address the third question, we simulate 5000 random pairs, following the procedure

above. However, we choose a parametrization we expect to be typical for an eligible PCI pair,

i.e., ρ at 0.9 and R2
MR at 0.75, i.e., a half-life of mean-reversion of 6.6 days and a strong mean-

reverting overlay. Next, we run simulated trading on this dataset with τo ∈ [0.5, 1.0, . . . , 2.5]

and τc ∈ [−2.5,−2.45, . . . , 2.5] and log the mean return per month for each configuration of

opening and closing threshold. All other parameters are chosen as in table 8.

4. Results

4.1. Simulated data

First, we discuss the trading results in terms of monthly mean return on simulated data.

Figure 1 reports the findings. The graph consists of five panels, each representing a different

value for ρ. Within each panel, the average monthly return of each strategy is plotted as a

function of R2
MR. There are several interesting conclusions we can infer from these graphs.

Neither strategy provides significant gains when R2
MR < 0.5, due to the predominant

random walk component. With increasing proportion of variance attributable to mean-

reversion, we observe increasing returns for both strategies and across all regimes of ρ. This

effect is driven by an increasingly strong mean-reverting overlay on top of the random walk

component. Higher levels of ρ lead to lower returns for CI-based and PCI-based pairs trading.

With higher ρ, the half-life of mean-reversion increases, and as such the trade duration - with

a detrimental effect on monthly returns.

19



Interestingly enough, the level of ρ shifts the relative advantage of CI-based versus PCI-

based pairs trading for R2
MR > 0.5. For ρ smaller than 0.9, the PCI system clearly out-

performs classical cointegration-based pairs trading. This edge disappears for increasingly

higher levels of ρ, given that the AR(1)-process then approaches a random walk, so that

reliable parameter estimates are harder to achieve. The relative advantage of PCI also dis-

appears for very high levels of R2
MR. For R2

MR → 1, partial cointegration converges towards

classical cointegration, rendering the two strategies more similar again.
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Figure 1: Simulated trading results for cointegrated (CI2) and partially cointegrated strategies (PCI).

Please note that increasing levels of the variance of the first differences of the spread
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process Wt only influences absolute returns, not the relative advantage of the strategies. To

put it simply, it is the same game on a different level. Evidently, σX , has no effect either, as

it does not have any impact on Wt - see section 2.

For trading applications, we draw three major conclusions: First, only pairs with a high

R2
MR should be considered for trading. Second, a PCI-based trading system performs best

for intermediate levels of ρ and converges towards the performance of a CI-based system for

high ρ and/or high R2
MR. Third, even if the data is only partially cointegrated, it is still

possible to profitably trade with a CI-based model.
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Second, we address the question about optimal trading thresholds for PCI. Figure 2
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displays the findings. The chart represents the monthly mean return averaged over 5000

simulated pairs with ρ = 0.9 and R2
MR = 0.75, evaluated for varying levels of the closing

threshold, conditional to different opening thresholds. We observe that monthly mean return

decreases with increasing opening threshold. The higher the opening threshold, the higher

the average profit per trade, but the lower the number of trades. The relative advantage

between the opening thresholds τo = 0.5 and τo = 1.0 is much smaller than between the

opening thresholds τo = 1.0 and τo = 1.5, due to increasing impact of transaction costs.

For practical applications, τo = 1.0 seems to be a sensible value, representing a fair trade-off

between trading frequency and profit per trade. The simulatively evaluated return maximum

for this opening threshold is close to τc = −0.5, which we choose for our empirical application.

4.2. Empirical data

We follow Krauss et al. (2016) and run a fully-fledged performance evaluation on all four

trading strategies, relying on the R package PerformanceAnalytics by Peterson and Carl

(2014). Most of the metrics discussed below can be found in Bacon (2008). Our key results

are reported in two panels - before and after transaction costs. Given that the strategies

are implemented on a highly liquid stock universe, we follow Avellaneda and Lee (2010)

and assume transaction costs of 0.05 percent per share per half-turn. This value is well in

line with several studies in pairs trading research. For example, Bogomolov (2013) points

out that even retail commissions are at 0.10 percent, and Do and Faff (2012) refer to Jones

(2002), assuming institutional commissions of 0.10 percent or less between 1997 and 2009.

Pairs trading is a liquidity providing strategy exploiting transitory pricing errors, and as

such, potentially eligible for rebates (Brogaard et al., 2014). As such, we do not account

for any further market impact. In any case, for the S&P 500, market impact would be low.

Exact values are hard to estimate, but Prager et al. (2012) report that the bid-ask spread

has declined to less that one cent for the S&P 500 constituents, or 2 basis points assuming

an average stock price of 50 USD. This value seems reasonable, given that Krauss et al.

(2015) find average bid-ask spreads of 4 to 5 basis points on a high frequency data set of the

German DAX 30 constituents - also a highly liquid stock universe.
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4.2.1. Performance evaluation

Table 9 reports monthly return characteristics and associated risk metrics. We see that

the baseline GGR strategy returns 0.15 percent per month prior to transaction costs. This

value is reasonable and compares well to the findings of Do and Faff (2010) in the recent

part of their CRSP data sample. They achieve 0.56 percent from 1989 until 2002 and 0.33

percent from 2003 until 2009. We surmise that this additional decline is mainly caused by

our smaller stock universe, consisting of no more than 500 securities at any point in time

(versus several thousands in the case of CRSP data), the extended sample period until 2015

(versus 2002 for Gatev et al. (2006) and 2009 for Do and Faff (2010)), and the higher liquidity

of the S&P 500 constituents. Compared to the results of Gatev et al. (2006) of 1.44 percent

per month from 1962 until 2002, we can confirm the declining profitability of distance-based

pairs trading discussed in Do and Faff (2010). In the spirit of Rad et al. (2015), classical

cointegration-based pairs trading performs very similar to distance-based pairs trading with

mean returns of 0.20 percent (CI1) and 0.15 percent (CI2) prior to transaction costs. The

different cointegration tests and trading thresholds reflected in CI1 and CI2 hardly make

any difference. We have not been able to reproduce the higher returns of Huck (2015);

Huck and Afawubo (2015) - presumably due to the different data sources (Thomson Reuters

versus Bloomberg), the longer sample period (26 versus 10 years), the different treatment

of survivor bias, and different pre-selection methodologies. Compared to the classical pairs

trading variants, PCI shows clear outperformance with a mean return of 1.18 percent per

month before transaction costs - which is large in an economical and a statistical sense

(t-statistic = 5.67). This picture barely changes with the inclusion of transaction costs.

Even then, the PCI strategy returns 1 percent per month and outperforms a buy and hold

investment in the general market (MKT), yielding 0.86 percent per month. Specifically,

compared to the general market, the PCI return distribution is skewed to the right - a

positive property for any investor and atypical for financial data (Cont, 2001). Also, value

at risk (VaR) levels after transaction costs are substantially lower: The historical monthly

VaR at the one percent level amounts to -3.5 percent for PCI versus -10 percent for the

general market. The reduced tail risk is also expressed in a maximum drawdown of merely

19 percent for PCI, compared to 50 percent for MKT. The hit rates complement this picture
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- the share of observations with returns greater than zero is higher than 70 percent for

PCI, compared to 64 percent for MKT, and values well below 60 percent for the remaining

strategies. We summarize that PCI-based pairs trading exhibits favorable risk and return

characteristics - even after transaction cost estimates. However, it remains to be checked

whether these returns are robust to systematic sources of risk.

A: Before transaction costs B: After transaction costs

GGR CI1 CI2 PCI GGR CI1 CI2 PCI MKT

Mean return (fully invested) 0.0015 0.0020 0.0015 0.0118 0.0010 0.0015 0.0010 0.0100 0.0086

Mean return (committed) 0.0014 0.0018 0.0015 0.0117 0.0009 0.0013 0.0010 0.0100 0.0086

Standard error (NW) 0.0006 0.0009 0.0007 0.0021 0.0006 0.0009 0.0007 0.0020 0.0026

t-Statistic (NW) 2.6149 2.1436 2.0124 5.6729 1.7053 1.5889 1.3762 5.0657 3.2693

Minimum -0.0522 -0.0531 -0.0791 -0.0699 -0.0528 -0.0535 -0.0794 -0.0687 -0.1708

Quartile 1 -0.0034 -0.0069 -0.0064 -0.0005 -0.0039 -0.0074 -0.0067 -0.0016 -0.0175

Median 0.0015 0.0013 0.0012 0.0092 0.0009 0.0008 0.0004 0.0077 0.0140

Quartile 3 0.0071 0.0102 0.0090 0.0211 0.0066 0.0097 0.0085 0.0188 0.0378

Maximum 0.0295 0.0605 0.0610 0.1960 0.0284 0.0600 0.0595 0.1915 0.1136

Standard deviation 0.0095 0.0161 0.0142 0.0244 0.0095 0.0161 0.0141 0.0238 0.0433

Skewness -0.8030 0.2435 -0.3102 1.8211 -0.8307 0.2428 -0.3451 1.8718 -0.6498

Kurtosis 3.7743 1.6566 4.5188 11.4527 3.8391 1.6588 4.5286 11.9093 1.1373

Historical VaR 1% -0.0260 -0.0368 -0.0288 -0.0363 -0.0267 -0.0373 -0.0291 -0.0347 -0.1019

Historical CVaR 1% -0.0347 -0.0458 -0.0489 -0.0502 -0.0353 -0.0462 -0.0493 -0.0504 -0.1329

Historical VaR 5% -0.0137 -0.0221 -0.0186 -0.0225 -0.0142 -0.0227 -0.0194 -0.0239 -0.0700

Historical CVaR 5% -0.0229 -0.0330 -0.0290 -0.0336 -0.0234 -0.0335 -0.0294 -0.0340 -0.0971

Maximum drawdown 0.1057 0.2377 0.2112 0.1297 0.1413 0.2754 0.2544 0.1883 0.5029

Calmar ratio 0.1646 0.0940 0.0798 1.1305 0.0783 0.0586 0.0427 0.6553 0.1910

Share with return > 0 0.5968 0.5484 0.5548 0.7323 0.5677 0.5194 0.5258 0.7032 0.6355

Table 9: Monthly return characteristics and risk metrics of GGR, CI1, CI2, PCI compared to MKT from

January 1990 until October 2015. NW denotes Newey-West. The t-statistics are calculated using NW

standard errors with six-lag correction.

Table 10 contains summary statistics on trading frequency. Across all systems, almost

all pairs are traded at some point during the six-month trading period. The share is slightly

lower for GGR and CI1 with opening thresholds of 2.0 (approximately 95 percent), and

slightly higher for CI2, and PCI with opening thresholds of 1.0 (approximately 99 percent).

Specifically, for the GGR strategy, 94.5 percent of the 20 pairs are traded - a value that

compares well with the findings of Gatev et al. (2006) with 19.30 out of 20 pairs, or 96.5
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percent. This high value also explains why return on fully invested and on committed

capital in table 9 exhibit very similar values. The average number of trades per pair is

vastly different for GGR, CI1, CI2 (approximately 1.5), compared to PCI (approximately

6.5). We can cautiously infer from this statistic, that the latter strategy successfully captures

the mean-reverting property of the hidden PAR process Wt. In the same vein, almost all

PCI-triggered trades are completed during the trading period, i.e., 89 percent, versus levels

of 40 to 50 percent for classical pairs trading. Clearly, trade duration of 16.7 days is much

lower for PCI-based pairs, reflecting a shorter half-life of mean-reversion.

GGR CI1 CI2 PCI

Proportion of pairs traded 0.9446 0.9566 0.9856 0.9860

Average number of trades per pair 1.4108 1.6261 1.6562 6.4800

Average completed trades per pair 0.6444 0.8184 0.7264 5.7500

Share of completed trades per pair 0.4568 0.5033 0.4386 0.8873

Average holding time per trade 60.5594 64.5820 48.2093 16.7000

Table 10: Trading statistics for GGR, CI1, CI2, PCI from January 1990 until October 2015, per six-month

trading period.

Table 11 summarizes annualized risk and return characteristics for all four strategies.

Annualized return is almost at 15 percent for PCI, prior to transaction costs and at 12.3

percent post transaction costs - well superior to the classical pairs trading variants. Com-

pared to the general market, we observe that we achieve higher returns at approximately

half the standard deviation, leading to a favorable Sharpe ratio of 1.1 after transaction costs.

Interestingly enough, this tendency is even stronger when focusing on downside deviation.

Negative deviations from the mean are substantially lower for PCI at 3.3 percent, compared

to MKT with 10.0 percent. In consequence, the Sortino ratio, scaling mean return by unit of

downside risk, is at 3.8 for PCI versus 1.0 for MKT - reflecting a strategy with the potential

to perform well even in adverse market environments.

Table 12 presents exposures to common sources of systematic risk for the PCI strategy

after transaction costs. We perform three regressions, as in Krauss and Stübinger (2015).

First, we use the Fama-French three-factor model (FF3), in line with Fama and French

(1996). This model measures exposure to the general market, small minus big capitalization

stocks (SMB), as well as high minus low book-to-market stocks (HML). Second, we add a
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A: Before transaction costs B: After transaction costs

GGR CI1 CI2 PCI GGR CI1 CI2 PCI MKT

Mean return 0.0174 0.0223 0.0168 0.1466 0.0111 0.0161 0.0109 0.1234 0.0960

Mean excess return -0.0119 -0.0070 -0.0124 0.1141 -0.0180 -0.0131 -0.0182 0.0915 0.0647

Standard deviation 0.0331 0.0557 0.0491 0.0845 0.0330 0.0557 0.0488 0.0824 0.1499

Downside deviation 0.0225 0.0347 0.0324 0.0318 0.0233 0.0355 0.0331 0.0328 0.1000

Sharpe ratio -0.3591 -0.1262 -0.2519 1.3497 -0.5473 -0.2350 -0.3729 1.1099 0.4314

Sortino ratio 0.7718 0.6441 0.5198 4.6077 0.4747 0.4537 0.3277 3.7642 0.9604

Table 11: Annualized return and risk measures of GGR, CI1, CI2, PCI compared to MKT from January

1990 until October 2015. Mean return and mean excess return are calculated on fully invested capital.

momentum and a short-term reversal factor, as in Gatev et al. (2006) and call this variant

Fama-French 3+2-factor model (FF3+2). Third, we deploy the recently developed Fama-

French five-factor model (FF5), in line with Fama and French (2015). It nests the three-

factor model and is enhanced by two additional factors, i.e., portfolios of stocks with robust

minus weak profitability (RMW) and with conservative minus aggressive (CMA) investment

behavior. The data required for these factor models are downloaded from Kenneth French’s

website.6 Across all three models, the PCI strategy results in statistically and economically

significant monthly alphas between 0.44 percent and 0.71 percent, after transaction costs.

Due to the long-short design of the strategy, exposure to the general market is insignificant

and the loading close to zero. The same applies to the SMB, HML, RMW, and CMA factors,

with one minor exception. Highest explanatory power has the FF3+2 model, resulting in an

R2 close to ten percent. The increase compared to the other two models is primarily driven by

the short-term reversal factor. The loading is positive and highly significant, indicating that

the PCI returns can partially be explained by reversal patterns. Conversely, the momentum

factor is insignificant, but has the predicted negative sign. Overall, the statistically and

economically significant alpha suggests that PCI-based pairs trading is vastly different from

basic reversal strategies.

6We thank Kenneth R. French for offering all relevant data for these models on his website.
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FF3 FF3+2 FF5

(Intercept) 0.0071∗∗∗ 0.0044∗∗ 0.0070∗∗∗

(0.0013) (0.0015) (0.0014)

Market 0.0511 0.0126 0.0549

(0.0323) (0.0333) (0.0367)

SMB 0.0070 0.0160

(0.0433) (0.0419)

HML 0.0861 0.0953∗

(0.0458) (0.0447)

Momentum −0.0150

(0.0291)

Reversal 0.1547∗∗∗

(0.0316)

SMB5 0.0122

(0.0485)

HML5 0.0741

(0.0650)

RMW5 0.0123

(0.0693)

CMA5 0.0187

(0.0929)

R2 0.0164 0.0966 0.0166

Adj. R2 0.0067 0.0818 0.0005

Num. obs. 310 310 310

RMSE 0.0234 0.0225 0.0234

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 12: Exposure of PCI strategy after transaction costs to systematic sources of risk from January 1990

until October 2015.

4.2.2. Sub-period analysis

Prior pairs trading research suggests that performance fluctuates over time, so we conduct

a sub-period analysis (Gatev et al., 2006; Do and Faff, 2010; Bowen and Hutchinson, 2014).

The first sub-period ranges from 01/90 to 03/01. It ends with the introduction of deci-

malization and the onset of the dot-com crisis. Compared to the overall period presented in

table 11, we observe that all strategies perform better in terms of annualized mean returns.

PCI still outperforms the other variants by far, with annualized returns of 22 percent after

transaction costs and a Sharpe ratio well above 2. Note that during this time period, returns

are more likely to be driven by bid-ask bounce, with the minimum price increment set at

1/16 USD. However, at approximately one trade per month, PCI returns roughly 1.5 percent
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per trade - a value well superior to microstructure effects in a highly liquid stock universe.

The second sub-period ranges from 04/01 until 08/08. It corresponds to a time of

moderation. Returns of classical pairs trading strategies decline to zero, or even turn nega-

tive. In contrast, PCI still produces 5.2 percent in annualized returns after transaction costs

- similar to MKT, but at approximately 50 percent of the standard deviation and only 30

percent of maximum drawdown.

Before transaction costs After transaction costs

Period 01/90-03/01 GGR CI1 CI2 PCI GGR CI1 CI2 PCI MKT

Mean return 0.0312 0.0486 0.0520 0.2596 0.0245 0.0413 0.0441 0.2231 0.1331

Mean excess return -0.0180 -0.0013 0.0019 0.2005 -0.0244 -0.0083 -0.0056 0.1656 0.0794

Standard deviation 0.0359 0.0510 0.0537 0.0705 0.0358 0.0510 0.0532 0.0691 0.1476

Sharpe ratio -0.5020 -0.0261 0.0352 2.8436 -0.6831 -0.1636 -0.1056 2.3963 0.5378

Maximum drawdown 0.1057 0.0622 0.0915 0.0502 0.1138 0.0694 0.0968 0.0526 0.2582

Calmar ratio 0.2953 0.7809 0.5684 5.1658 0.2152 0.5952 0.4560 4.2422 0.5153

Period 04/01-08/08

Mean return -0.0001 0.0077 -0.0133 0.0643 -0.0060 0.0024 -0.0177 0.0516 0.0466

Mean excess return -0.0263 -0.0187 -0.0392 0.0365 -0.0321 -0.0238 -0.0435 0.0241 0.0193

Standard deviation 0.0321 0.0612 0.0406 0.0701 0.0320 0.0613 0.0408 0.0683 0.1343

Sharpe ratio -0.8188 -0.3059 -0.9651 0.5213 -1.0025 -0.3886 -1.0662 0.3533 0.1437

Maximum drawdown 0.0798 0.2236 0.1297 0.0983 0.1099 0.2430 0.1454 0.0991 0.3218

Calmar ratio -0.0009 0.0342 -0.1024 0.6539 -0.0548 0.0101 -0.1215 0.5205 0.1449

Period 09/08-12/09

Mean return 0.0596 0.0338 -0.0253 0.5280 0.0518 0.0290 -0.0309 0.4894 -0.0358

Mean excess return 0.0570 0.0313 -0.0276 0.5245 0.0492 0.0265 -0.0332 0.4859 -0.0383

Standard deviation 0.0465 0.0758 0.0918 0.1889 0.0464 0.0759 0.0916 0.1864 0.2670

Sharpe ratio 1.2264 0.4125 -0.3011 2.7768 1.0604 0.3490 -0.3629 2.6069 -0.1434

Maximum drawdown 0.0375 0.0531 0.0919 0.0306 0.0386 0.0535 0.0939 0.0334 0.3873

Calmar ratio 1.5896 0.6366 -0.2752 17.2665 1.3415 0.5421 -0.3289 14.6515 -0.0924

Period 01/10-10/15

Mean return 0.0040 -0.0109 -0.0009 -0.0151 -0.0018 -0.0167 -0.0056 -0.0276 0.1308

Mean excess return 0.0036 -0.0113 -0.0013 -0.0154 -0.0022 -0.0171 -0.0060 -0.0280 0.1304

Standard deviation 0.0226 0.0509 0.0303 0.0492 0.0224 0.0508 0.0303 0.0491 0.1386

Sharpe ratio 0.1578 -0.2225 -0.0423 -0.3139 -0.0975 -0.3364 -0.1983 -0.5708 0.9409

Maximum drawdown 0.0379 0.1016 0.0454 0.1297 0.0499 0.1222 0.0501 0.1883 0.1770

Calmar ratio 0.1043 -0.1075 -0.0195 -0.1161 -0.0359 -0.1367 -0.1119 -0.1467 0.7392

Table 13: Annualized risk-return characteristics of GGR, CI1, CI2, PCI compared to MKT for the indicated

sub-periods. Mean return and mean excess return are calculated on fully invested capital.

The third sub-period ranges from 09/08 until 12/09 - the global financial crisis. Previous

28



studies have established the fact that pairs trading - as a liquidity providing strategy -

performs exceptionally well in low liquidity environments. Specifically, Do and Faff (2010)

and Bowen and Hutchinson (2014) find pairs trading to outperform during bear markets,

i.e., the dot-com crash or the global financial crisis. We can confirm this finding for almost

all our variants. After transaction costs, standard distance-based pairs trading returns more

than 5 percent in annualized returns at that time - even better than cointegration-based

pairs trading CI1 with close to 3 percent. PCI exhibits the strongest outperformance of the

entire sample period with 49 percent in annualized returns, a drawdown of merely 3 percent

(compared to 39 percent for MKT), and a Sharpe ratio of 2.6. Given that the strategy buys

short-term losers and shorts short-term winners, i.e., provides liquidity, an execution during

that time would have been likely. This finding in such recent times posits a severe challenge

to the semi-strong form of market efficiency.

The fourth sub-period ranges from 01/10 until 10/15. In light of a market increasing 13

percent on an annualized basis, all strategies disappoint, including PCI. Annualized returns

are all close to zero in the negative domain. With active pairs trading research and more

than 90 key contributions ever since 2006 (Krauss, 2015), we can only assume that increasing

deployment of such strategies renders the markets more efficient.

5. Conclusions

With our paper, we have made three contributions to the literature. The first contri-

bution is conceptual. We have developed the partial cointegration model, established its

representation in state space, and provided criteria for identifiability. Also, we have derived

a maximum likelihood based estimation routine and a suitable likelihood ratio test. Our

model constitutes a novelty, as it allows for the coexistence of a random walk with a mean-

reverting overlay. Existing enhancements of classical cointegration models, such as fractional

cointegration (Granger, 1986; Granger and Joyeux, 1980; Hosking, 1981) or threshold coin-

tegration (Balke and Fomby, 1997) do not allow for permanent shocks. The same applies to

any other advancement of cointegration - at least to our knowledge.

The second contribution is simulative. We find that the maximum likelihood based

estimation routine provides consistent estimates as long as the the AR(1) part does not
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degenerate to a random walk and as long as the proportion of variance attributable to

mean-reversion is unequal to zero. Also, the associated likelihood ratio test allows for effec-

tive testing against the random walk null. If sample size is sufficiently high, the power is

acceptable. Furthermore, we have evaluated PCI-based and cointegration-based pairs trad-

ing on artificially generated data. We find the former to outperform the latter for medium to

low AR(1)-coefficients, i.e., a short half-life of mean-reversion and for processes with medium

to high proportion of variance attributable to mean reversion.

The third contribution is empirical. We deploy partial cointegration in a pairs trading

context, where we expect the coexistence of transient components and permanent shocks.

We find PCI-based pairs trading to outperform classical cointegration-based and distance-

based pairs trading variants. Specifically, we find average annualized returns of more than

12 percent after transaction costs, that can only partially be explained by common sources

of systematic risk. Performance is especially strong at times of high market turmoil, and

is peaking during the global financial crisis with annualized returns of 49 percent. Only in

recent years, performance has leveled off, suggesting that the markets may have reacted to

recent advancements in pairs trading research. Nevertheless, our findings pose a severe chal-

lenge to the semi-strong form of market efficiency, considering the consistently high returns

PCI-based pairs trading produces from 1990 until 2010 in a highly-liquid stock universe.

For further research, we see the potential to deploy this model in other economic contexts,

where the coexistence of transient and permanent shocks could be expected. For example, fu-

ture markets (spreads between spot and future prices), commodities (spread between futures

on raw products and refined end products) or bond markets (spread between short-term and

long-term debt) - to name a few. Also, classical macroeconomic phenomena typical for coin-

tegration analysis, such as income (Campbell, 1987), money demand (Johansen and Juselius,

1990), or purchasing power parity (Corbae and Ouliaris, 1988) could be reinvestigated with

partial cointegration.
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AppendixA. Identifiability

A system is said to be identifiable if the parameters of the system can be uniquely

determined from a (possibly infinite) realization of that system. In this section, we show

that if X1 and X2 conform to the model given by equation (1), then the system can be

identified if the following conditions are met:

1. The sequence of first differences ((1−B)X1,t)t∈T exhibits weak stationarity, and

2. The sequence of first differences ((1−B)X1,t)t∈T is independent of the sequence of first

differences ((1−B)(Mt +Rt))t∈T .

To see that a system is identifiable in case assumptions 1 and 2 are fulfilled, consider

the state space representation given in equations (7), (8). Then, the first difference of X1,t

is εX,t, with variance σ2
X , which is assumed to be independent of εM,t and εR,t. Now, let

Dt = (1 − B)X1,t. By assumption, Var[Dt] is defined, and Dt is independent of

(1−B)(Mt +Rt), and therefore Cov[Dt, (1−B)(Mt +Rt)] = 0. Also, note that

(1−B)X2,t = (1−B)(βX1,t +Mt +Rt) = βDt + (1−B)(Mt +Rt). (A.1)

Consequently,

Cov[(1−B)X1,t, (1−B)X2,t] = Cov[Dt, βDt + (1−B)(Mt +Rt)] (A.2)

= Cov[Dt, βDt] + Cov[Dt, (1−B)(Mt +Rt)] (A.3)

= βVar[Dt]. (A.4)

Therefore, β can be recovered as

β =
Cov[(1−B)X1,t, (1−B)X2,t]

Var[(1−B)X1,t]
. (A.5)

Having recovered β, we can now compute the sequence

Wt = X2,t − βX1,t = Mt +Rt, (A.6)
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which is partially autoregressive, and known to be identifiable (Clegg, 2015). If we take

vk = Var[(1−Bk)Wt], the remaining parameters can be determined following Clegg (2015):

ρ = −v1 − 2v2 + v3

2v1 − v2
(A.7)

σ2
M =

1

2

(
ρ+ 1

ρ− 1

)
(v2 − 2v1) (A.8)

σ2
R =

1

2

(
v2 − 2σ2

M

)
. (A.9)

AppendixB. Likelihood function

Let Θt denote the information that was available up to and including time t, and let

Φ denote the parameter values β, ρ, σX , σM , and σR. Given the sequence of observations

X1,X2, . . . ,Xn and parameter values Φ, the likelihood function can be written as

L(φ) = p(X1|Φ)
n∏
k=2

p(Xk|Θk−1,Φ). (B.1)

Using the Markov property, this can be rewritten as

L(φ) = p(X1|Φ)
n∏
k=2

p(Xk|Xk−1,Φ). (B.2)

Expanding this in terms of the definition of Xt, we have

L(φ) = p(X1,1, X2,1|Φ)
n∏
k=2

p(X1,k, X2,k|X1,k−1, X2,k−1,Φ). (B.3)

Now, we focus on a particular term in this product, p(X1,k, X2,k|X1,k−1, X2,k−1,Φ). From

the laws of conditional probability, we have p(A,B|C) = p(A|B,C)p(B|C). Therefore,

p(X1,k, X2,k|X1,k−1, X2,k−1,Φ) = p(X2,k|X1,k, X1,k−1, X2,k−1,Φ)p(X1,k|X1,k−1, X2,k−1,Φ).

(B.4)

We proceed by separately evaluating each of the two terms on the right hand side of the

above equation. To start with, we have

p(X1,k|X1,k−1, X2,k−1,Φ) = p(X1,k −X1,k−1|X1,k−1, X2,k−1,Φ) (B.5)

= p(εX,k|X1,k−1, X2,k−1,Φ) (B.6)

= φ(εX,k; 0, σ2
X), (B.7)
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where φ(·) denotes the probability density function of the normal distribution - in this case

with expectation zero and variance σ2
X .

To evaluate p(X2,k|X1,k, X1,k−1, X2,k−1,Φ), we begin by noting that

X2,k − E(X2,k|X1,k,Θk−1,Φ) = βX1,k +Mk +Rk − E(βX1,k +Mk +Rk|X1,k,Θk−1,Φ)

(B.8)

= Mk +Rk − E(Mk +Rk|X1,k,Θk−1,Φ) (B.9)

= Mk − E(Mk|X1,k,Θk−1,Φ) +Rk − E(Rk|X1,k,Θk−1,Φ)

(B.10)

= ρMk−1 + εM,k − E(ρMk−1 + εM,k|X1,k,Θk−1,Φ)+ (B.11)

Rk−1 + εR,k − E(Rk−1 + εR,k|X1,k,Θk−1,Φ) (B.12)

= εM,k − E(εM,k|X1,k,Θk−1,Φ)+ (B.13)

εR,k − E(εR,k|X1,k,Θk−1,Φ) (B.14)

= εM,k + εR,k. (B.15)

Therefore,

p(X2,k|X1,k, X1,k−1, X2,k−1,Φ) = p(εM,k + εR,k|X1,k, X1,k−1, X2,k−1,Φ) (B.16)

= φ(εM,k + εR,k; 0, σ2
M + σ2

R). (B.17)

Putting the above together and returning to the likelihood function, we therefore have

L(φ) = p(X1,1, X2,1; Φ)
n∏
k=2

p(X1,k, X2,k|X1,k−1, X2,k−1,Φ) (B.18)

= p(X1,1, X2,1; Φ)
n∏
k=2

φ(εX,k; 0, σ2
X)φ(εM,k + εR,k; 0, σ2

M + σ2
R) (B.19)

= p(X1,1, X2,1; Φ)
( n∏
k=2

φ(εX,k; 0, σ2
X)
)( n∏

k=2

φ(εM,k + εR,k; 0, σ2
M + σ2

R)
)

(B.20)

= p(X1,1, X2,1; Φ)LX(σX)LMR(β, ρ, σM , σR). (B.21)

33



AppendixC. Likelihood ratio test

Let

L∗MR = max
β,ρ,σM ,σR

LMR(β, ρ, σM , σR) (C.1)

be the maximum value of the likelihood function found by the optimization routine outlined

in 2.2, and similarly let

L∗RW = max
β,σR
LMR(β, ρ = 0, σM = 0, σR) (C.2)

be the maximum value of this function that is found when the parameters ρ and σM are held

constant at zero. Then, the value of the test statistic is given as

Λ = log
(L∗RW
L∗MR

)
(C.3)

Critical values for testing the simplified null hypothesisHR
0 that the cointegrating process

is a random walk are determined through simulation. Specifically, 1000 random partially

cointegrated pairs are generated with the parameters β = 1, σX = 1, σM = 0, and σR = 1.

For each such pair, the log likelihood ratio score Λ is computed, and the quantiles are

tabulated. This procedure is repeated for various values of the sample size n.

n p=0.01 p=0.05 p=0.10

50 -5.3 -3.3 -2.4

100 -5.4 -3.3 -2.4

250 -5.1 -3.0 -2.2

500 -4.7 -3.1 -2.3

1000 -4.6 -3.1 -2.4

2500 -5.0 -3.3 -2.5

Table C.14: Critical values for the likelihood ratio test for the null hypothesis that the cointegrating process

is a random walk.
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