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Abstract

This paper develops a statistical arbitrage strategy based on overnight social media data and

applies it to high-frequency data of the S&P 500 constituents from January 2014 to December

2015. The established trading framework predicts future financial markets using Factorization

Machines, which represent a state-of-the-art algorithm coping with high-dimensional data in very

sparse settings. Essentially, we implement and analyze the effectiveness of support vector machines

(SVM), second-order Factorization Machines (SFM), third-order Factorization Machines (TFM),

and adaptive-order Factorization Machines (AFM). In the back-testing study, we prove the efficiency

of Factorization Machines in general and show that increasing complexity of Factorization Machines

provokes higher profitability – annualized returns after transaction costs vary between 5.96 percent

for SVM and 13.52 percent for AFM, compared to 5.63 percent of a naive buy-and-hold strategy

of the S&P 500 index. The corresponding Sharpe ratios range between 1.00 for SVM and 2.15 for

AFM. Varying profitability during the opening minutes can be explained by the effects of market

efficiency and trading turmoils. Additionally, the AFM approach achieves the highest accuracy

rate and generates statistically and economically remarkable returns after transaction costs without

loading on any systematic risk exposure.
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arbitrage, high-frequency trading.
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1. Introduction

Within the recent past, the internet has provided an amazing amount of information reflecting

real-time sentiments and perceptions about stock companies. Therefore, academic interest in online

text mining for market prediction has surged over the past years. Nassirtoussi et al. (2014) gave a

comprehensive review of the existing research on this topic and pointed out that the vast majority

of literature uses classification algorithms. Only a small fraction applies regression analysis for

describing the interactions between the media and the stock market. Following Nassirtoussi et al.

(2014), this class is confined to Tetlock (2007), Schumaker et al. (2012), Hagenau et al. (2013),

Jin et al. (2013), and Chatrath et al. (2014). The seminal paper of Tetlock (2007) measured the

relationship between information on social media and stock markets using an ordinary least squares

regression. The results evidence that news media data contain information about movements

in stock market activity. Schumaker et al. (2012) and Hagenau et al. (2013) investigated the

sentiments in financial news articles and their relations to the stock market by applying support

vector machines. Jin et al. (2013) made forecasts by deploying a linear regression model based

on news articles, historical stock indices, and currency exchange values. Chatrath et al. (2014)

examined the impact of macro news on currency jumps by a stepwise multivariate regression in a

Probit model. All of theses studies are not in a position to consider the effect of overnight textual

data on future price changes – an obvious deficit since information in social media, news, blogs,

forums, and announcements are published 24 hours a day, 7 days a week.

In contrast to these previous approaches, this paper predicts financial markets based on over-

night social media data. To be more specific, we observe tweets about the S&P 500 companies

during the time span in which stock markets are closed and forecast the future price changes ba-

sed on the collected information. Therefore, we build a statistical arbitrage strategy based on

Factorization Machines (FMs) with different complexities, namely support vector machine (SVM),

second-order FM (SFM), third-order FM (TFM), adaptive-order FM (AFM). Most notable, AFM

estimates automatically all hyperparameters required by the higher-order FM model. In our back-

testing framework for the years 2014 and 2015, we demonstrate the efficiency of FMs in general

and discover that increasing the complexity of FMs causes better performance – annualized returns

after transaction costs range between 5.96 percent for SVM and 13.52 percent for AFM. Moreover,

AFM achieves the highest accuracy rate with a value of 61.76 percent and possesses returns which

are resistant to the impact of bid-ask spreads and do not show loadings on systematic sources of

risk.
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To gain more insight into this study, the rest of this paper is organized as follows. Section 2

outlines the concept of FMs. Data sample and software are described in section 3. In section 4, we

outline the study design of our back-testing framework. Section 5 presents empirical results and

key findings. Finally, section 6 concludes and summarizes directions for further research.

2. Factorization Machines

FMs are general predictors in machine learning introduced by Rendle (2010). They aim to

extract structure from training examples in the form of a statistical model. The application of

the derived model to new cases with the same structure as the training examples allows for a

classification or prediction given the new situation. In this context, each training example is

represented by a feature vector x containing information about the specific case and a target value

y, which reflects the value that is predicted with the statistical model. All the feature vectors of

the training examples can be collected in a feature matrix X ∈ R
n×p, while the target values form

the corresponding target vector y ∈ R
n.

In the following, we describe the well-known second-order FM model (Rendle, 2010) as well as

the higher-order FM approach (Knoll, 2016b), which is a more complex generalization of the second-

order FM model. Furthermore, we explain how to find the necessary hyperparameters employing

the adaptive-order algorithm and give an insight in the typical learning methods used to optimize

FM models.

2.1. Second-order Factorization Machines

The second-order FM model equation based on the feature vector x ∈ R
p, containing data

about p features, can be expressed as follows (Rendle, 2010):

ŷ(x) := v(0) +

p
∑

j1=1

xjv
(1)
j1,1

+

p
∑

j1=1

p
∑

j2=j1+1

xj1xj2

k2
∑

f=1

v
(2)
j1,f

v
(2)
j2,f

, (1)

with the model parameters v(0) ∈ R, V (1) ∈ R
p×1, and V (2) ∈ R

p×k2 . Hence, the second-order FM

model is able to factorize all pairwise interactions based on the dot product of two vectors of the

matrix V (2). This means that the parameters have different functions in this model: v(0) captures

a global intercept, v
(1)
1,1, . . . , v

(1)
p,1 capture a linear weight for each feature, and v

(2)
1,1, . . . , v

(2)
p,k2

capture

the second-order interactions between two features, respectively. By adjusting the hyperparameter

k2 ∈ N0 (the number of second-order factors), the amount of model parameters factorizing a second-

order interaction can be determined. Consequently, the higher the k2 the more precisely the model
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fits to the training data. Contrary, a rather low k2 abstracts more from the data in order to produce

a generalized prediction.

2.2. Higher-order Factorization Machines

The higher-order FM model factorizes not only second-order interactions but all interactions

up to the dth order (Rendle, 2010):

ŷ(x) := v(0) +

d
∑

l=1

p
∑

j1=1

...

p
∑

jl=jl−1+1

(

l
∏

m=1

xjm

)(

kl
∑

f=1

l
∏

m=1

v
(l)
jm,f

)

, (2)

with d ∈ N, v(0) ∈ R, V (l) ∈ R
p×kl , and kl ∈ N0. The linear weights for each feature can be

included (excluded) in the higher-order terms by setting k1 = 1 (k1 = 0). In general, the term
∑kl

f=1

∏l
m=1 v

(l)
jm,f factorizes interactions of order l, from l = 1 for linear weights up to l = d for the

highest included order.

Following this approach, a third-order FM is based on the following model:

ŷ(x) := v(0) +

p
∑

j1=1

xjv
(1)
j1,1

+

p
∑

j1=1

p
∑

j2=j1+1

xj1xj2

k2
∑

f=1

v
(2)
j1,f

v
(2)
j2,f

+

p
∑

j1=1

p
∑

j2=j1+1

p
∑

j3=j2+1

xj1xj2xj3

k3
∑

f=1

v
(3)
j1,f

v
(3)
j2,f

v
(3)
j3,f

, (3)

with k3 ∈ N0 and the model parameters V (3) ∈ R
p×k3 factorizing the third-order interactions.

2.3. Adaptive-order Factorization Machines

One crucial task when using higher-order FMs is to determine values for the hyperparameters

d and k2 up to kd. One could conduct a preliminary cross-validation grid search varying each of

these hyperparameters. The disadvantage of this method is that it is very time-consuming due to

the growing number of dimensions with each additional order of the FM approach. Thus, Knoll

et al. (2017) proposed the adaptive-order algorithm to find faster a reasonable hyperparameter

constellation. The algorithm is divided in three steps:

• In Step 1, the highest considered order d and a score rl (l ∈ {2, . . . , d}) reflecting the impor-

tance of each of the considered orders are determined. In this context, rl is defined as the

median root mean squared error (RMSE) of a 10-fold cross-validation procedure conducted

with a FM model containing linear weights and one factor at the lth order. Starting with the

third order, the highest included order d is found when rd is lower than rd+1.
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• Step 2 determines the most favorable setting among FMs of the dth order which contain

the proportion of the number of factors for each order given the importance of each order

extracted within Step 1. This is done following an out of sample 80/20 validation. The

hyperparameters k2 to kd are selected based on the model that produces the lower RMSE.

• Within Step 3, the model parameters of the final dth-order FM model (with k2, . . . , kd) are

optimized based on the whole data set (X,y). In this step, all data available during the

model training are used.

This algorithm for adaptive-order FMs pursues two objectives. First, it attempts to hold the

highest included order as low as possible because the time complexity of model parameter opti-

mization increases with the order. Second, it tries to minimize the number of model parameters

because the optimization of more model parameters is more time-consuming.

2.4. Learning methods

Some learning methods are described for training second-order FM models, such as stochastic

gradient descent, stochastic gradient descent with adaptive regularization, coordinate descent, or

Markov Chain Monte Carlo (MCMC) (Rendle, 2012). In this article, we focus on the application of

the MCMC approach because it does not require the determination of any further hyperparameters,

such as learning rate or regularization value. The intuition behind this learning method is to

estimate each model parameter with a Gibbs-sampler based on a normal gamma hyperprior with

unknown mean and unknown precision.

3. Data and Software

Our back-testing framework appropriates two data sources for predicting future stock market

returns based on financial information in social media from January 2014 to December 2015.

Today, the internet provides an amazing number of information sets depicting consumer beha-

vior. Twitter data especially reflect real-time sentiments and perceptions about future price trends.

Due to their topicality with respect to market development, we derive social media data from Twit-

ter, a free social networking and micro-blogging service with a total of 1.3 billion accounts, over 500

million posts per day, and more than 40 supported languages (Twitter, 2017). Users of this social

network interact via “tweets”, which are messages constricted to 140 characters per posting. This

strict limit and a well-defined markup vocabulary (e.g., RT stands for re-tweet) lead to an above-

average information density. Our data set is directly obtained from Twitter (2017) and contains all
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tweets about S&P 500 companies from January 2014 to December 2015, resulting in approximately

10 million tweets. Concentrating on the official company names prevents the inclusion of tweets

which are not related to the stock market, e.g., requesting the corporation “Amazon.com Inc.”

avoids the tweet “The Amazon is a large river in South America”. Additionally, the acquired data

set provides language, date, exact time, and further information for each tweet.

Figure 1 reports the number of tweets over the analyzed time period. On average, we observe

approximately 15,000 tweets per day over time. However, there still exist a few outliers caused by

changes in the stock market, e.g., we find a peak with over 50,000 tweets per day on the 19th of May

2014 – not surprising since AT&T Inc. presents a takeover offer for the DirecTV Corporation on

this day. These strong reactions via Twitter can be explained by the fact that DirecTV Corporation

supplies a daily commodity service which is used by a large audience.
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Figure 1: Total number of analyzed tweets in the years 2014 and 2015.

Financial data originate from QuantQuote (2016), which is a leading provider of high resolution

historical intraday stock data. We obtain minute-by-minute stock prices from all companies listed

on the S&P 500 from January 2014 to December 2015. The corresponding exchange is opened from

9.30 am to 4 pm Eastern time, Monday through Friday. The S&P 500 index, a highly liquid subset

of the U.S. stock market, covers about 80 percent of available market capitalization (S&P 500 Dow

Jones Indices, 2015). Given thorough investor scrutiny as well as analyst coverage, this market

segment serves as a true acid test for any potential capital market anomaly. Following Stübinger

and Bredthauer (2017), we perform a two-stage procedure with the objective of eliminating any

survivor bias. First, we create a constituent list of the S&P 500 for all stocks that have been part

of the S&P 500 for the period of January 2014 to December 2015. This information is further

consolidated into a binary matrix, in which each element features a “1” if the stock is constituent
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of the index on the current day and a “0” otherwise. Second, we receive the historical minute-by-

minute data for all stocks from QuantQuote (2016). Prices are adjusted for dividends, stock splits,

and additional corporate actions. By applying the described two-stage procedure, we are able to

replicate the S&P 500 constituency and the corresponding prices over time.

The presented methodology in this paper and all relevant analyses are conducted in the pro-

gramming language R (R Core Team, 2017). Furthermore, we use the packages Matrix by Bates

and Maechler (2016) and tm by Feinerer and Hornik (2017) in the field of text mining applications.

Handling of time-based data classes is predicated on the packages TTR by Ulrich (2016) and xts

by Ryan and Ulrich (2014). We rely on the package PerformanceAnalytics by Peterson and Carl

(2014) for performance and risk analysis. The flexible package FactoRizationMachines by Knoll

(2016a), which serves as central component of our implementation, enables us to compare diffe-

rent FM approaches (see section 4). Furthermore, the package provides an implementation of the

MCMC optimization method which allows us to conduct our simulation study without an extensive

search for hyperparameters, such as learning rate and regularization values. Moreover, the package

contains the adaptive-order algorithm described in section 2.

4. Methodology

For our empirical application, we opt for all tweets about the S&P 500 stock constituents and

their associated minute-by-minute prices from January 2014 to December 2015 (see section 3). The

entire data set is divided into 473 overlapping study periods, each shifted by one day (see figure

2). In the spirit of Knoll et al. (2017) and Stübinger and Endres (2017), each study period covers a

30-day formation period (subsection 4.1) and a consecutive 1-day trading period (subsection 4.2).

While the former estimates the model parameters and identifies the most suitable stocks based on

in-sample training, the latter conducts out-of-sample predictions on the corresponding trading sets.

In the following, we provide a detailed description of both the formation period and the trading

period.
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Formation Trading

2014/01/02 2016/01/01

1 30 days 1 day

2 + 1 day 30 days 1 day

...

...

...

3 30 days 1 day+ 2 days

471 30 days 1 day+ 470 days

472 30 days 1 day+ 471 days

473 30 days 1 day+ 472 days

Figure 2: The empirical application consists of 473 overlapping study periods from January 2014 to December 2015.

Each study period is built up of a 30-day formation and a 1-day trading period.

4.1. Formation period

In the 30-day formation period, we (i) construct the document-term matrix and the correspon-

ding future returns, (ii) connect the created document-term matrix and future returns by employing

FMs with different complexity, and (iii) select the top stocks for the subsequent trading period.

This subsection describes the 3-step logic outlined above in detail.

In the first step, we build the document-term matrix X ∈ R
n×p, which poses as the feature

matrix in our back-testing framework. Therefore, we proceed along the lines of Knoll et al. (2017)

and perform a six-step procedure with the objective of extracting high-quality information from

the tweets. First, we extract the body, time stamp, and associated language of each tweet from the

primary data set (see section 3). Second, we restrict the data set to English tweets and convert

them to lower-case form. Third, we remove uniform resource locators, numbers, and punctuation

marks as well as stop words based on the system for the mechanical analysis and retrieval of text

by Salton (1971). Forth, we focus on tweets published between 4 pm and 9.30 am before trading

days to exploit the overnight social media data. Fifth, we remove common morphological and

inflectional endings from the tweets using Porter’s stemming algorithm (Porter, 1980). Sixth, the

tweets are transformed into a document-term matrix X in which rows describe the tweets and

columns represent all stemmed terms. We apply binary weights for specifying the term frequency
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counts in our collection of the tweets, i.e., cell (i, j) ∈ X takes the value “1” in the presence of term

j in tweet i (i ∈ {1, . . . , n}, j ∈ {1, . . . , p}). The complete document-term matrix X comprises

p = 463, 278 columns for all unique terms. For each study period, we exclusively consider columns

related to terms arising in the formation period. This procedure avoids any look-ahead bias since

our trading algorithm only converts information which has been realized.

Afterwards, we adapt the tweets to the respective future returns, which serve as the target

vector y ∈ R
n in our simulation study. For this purpose, we assign each tweet to at least one S&P

500 company using pattern matching since a tweet can mention several stock corporations in one

post. Then, the appropriated return is calculated by the percentage change of the price from 4

pm of the last day to 9.45 am of the current day. We choose the target time 9.45 am following

Kim et al. (1997) and Visaltanachoti and Yang (2010), who pointed out that prices incorporate

information from news within 15 minutes on average after the opening. Concluding, the ith row of

the document-term matrix X ∈ R
n×p characterizes the stemmed terms x1, . . . , xp of the ith tweet,

and the ith element of the target vector y ∈ R
n describes the respective return from 4 pm to 9.45

am.

In the second step, we combine the document-term matrix with the respective future returns.

In line with Knoll et al. (2017), our simulation study employs models based on support vector

machines, second-order FMs, third-order FMs, and adaptive-order FMs. In the following, we

depict the key facts of the four approaches.

Support vector machines (SVM). This naive approach describes the relationship between stemmed

terms and respective future returns by means of one global intercept and weights for each term,

i.e., any ties between the terms are disregarded. To be more specific, the support vector machine

with a linear kernel results in the model ŷ(x) := v(0) +
∑p

j1=1 xjv
(1)
j1

, where v(0) ∈ R, v(1) ∈ R
p.

Second-order FMs (SFM). Extending the baseline approach by a term for pairwise interactions

between terms results in the second-order FM model given by equation (1). We set k2 = 10

motivated by the examination of the dimensionality of FMs by Knoll et al. (2017) who found that

most of the chosen models in their study contained between 6 and 10 second-order factors.

Third-order FMs (TFM). We enlarge the second-order FM model by supplementarily considering

third-order interactions between the terms. As such, we obtain the third-order FM model described

in equation (3). Similar to SFM, we set k2 = 10. Furthermore, we set k3 = 3 because once more,

most of the models Knoll et al. (2017) selected during their study included 2 to 3 third-order factors.
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Adaptive-order FMs (AFM). All interactions between terms up to the dth order are gathered in the

higher-order FM model in equation (2). Following the algorithm outlined in section 2, we specify

the highest involved order d (d ∈ N) and the number of factors k2, . . . , kd (k2, . . . , kd ∈ N0).

In the third step, we follow Gatev et al. (1999, 2006) and select the most suitable stocks for

the out-of-sample trading period. Our algorithm aims at identifying stocks with a minimal error

between predicted and actually observed returns. Therefore, we select the top s target stocks per

strategy possessing the lowest root relative squared error (s ∈ N). Additionally, top stocks have to

depict a quorum of 25 tweets averaged per day in the formation period. This filter ensures that

we pick stocks with sufficient information on the basis of considerable social media activity. We

transfer the top stocks to the trading period (section 4.2).

4.2. Trading period

The top s target stocks with the lowest root relative squared error are considered in the 1-day

trading period. For every top stock, we calculate the overnight return yo, i.e., the percentage

change of the price from 4 pm of the last day to 9.30 am of the current trading day (see figure 3).

Furthermore, we observe n tweets (n ∈ N0) about the corresponding company during the overnight

period, i.e., tweets are posted between 4 pm and 9.30 am. For each tweet i (i ∈ {1, . . . , n}), the

corresponding return ŷi(x) from 4 pm to the target time 9.45 am is predicted using the estimated

set of parameters. Therefore, we merge these predictions by calculating the average prediction µ̂(x)

and the respective standard deviation σ̂(x):

µ̂(x) =
1

n

n
∑

i=1

ŷi(x) (4)

σ̂(x) =

√

√

√

√

1

n

n
∑

i=1

(ŷi(x)− µ̂(x))2 (5)

Concluding, µ̂(x) characterizes the average predicted return from 4 pm of the last day to 9.45

am of the current trading day (see figure 3). Our framework is based on a two-stage logic. First,

overnight tweets about stocks contain information that have an essential effect on stock returns

in the future. Second, FMs capture the causality between overnight tweets and future returns. If

our assumption holds, we are in a position to take advantage of these market inefficiencies, i.e.,

the market prices of common stocks are not always exactly priced and tend to deviate temporarily

from the true discounted value of their future cash flows. To be more specific, the back-testing

framework aims to predict the return from 9.30 am to the target time 9.45 am (1+µ̂(x))/(1+yo)−1
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based on the observed overnight return yo and the average predicted return from 4 pm of the last

day to 9.45 am of the current trading day µ̂(x).

4 pm

Closing

time

9.30 am

Opening 

time

9.45 am

Target 

time

Figure 3: The back-testing framework aims at predicting the return from 9.30 am to 9.45 am ((1+ µ̂(x))/(1+yo)−1)

based on the observed overnight return (yo) and the average predicted return from 4 pm of the last day to 9.45 am

of the current trading day (µ̂(x)).

Using the realized overnight return yo and the predicted returns from 4 pm to 9.45 am, we are

able to capture mispricings and generate profits. Therefore, we define transaction costs c and the

risk parameter b (c, b ∈ R
+
0 ).

If we do not observe any tweets related to the top stock during the night, our algorithm does

not execute any trade. If we observe at least one tweet related to the top stock during the night,

we apply the following trading rules:

•
1 + µ̂(x)

1 + yo
− 1 > c + b · σ̂(x), i.e., the stock is undervalued. Consequently, we go long in the

stock and reverse the trade at 9.45 am.

•
1 + µ̂(x)

1 + yo
− 1 < −c− b · σ̂(x), i.e., the stock is overvalued. Consequently, we go short in the

stock and reverse the trade at 9.45 am.

• −c − b · σ̂(x) ≤
1 + µ̂(x)

1 + yo
− 1 ≤ c + b · σ̂(x), i.e., the stock is in its ’normal’ region. In

consequence, we do not execute any trades.

Since we still aim for a classic long-short investment strategy in the sense of Gatev et al. (2006),

we follow Avellaneda and Lee (2010) and hedge market exposure day-by-day with corresponding
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capital expenditures in the S&P 500 index. In accordance with Liu et al. (2017) and Stübinger and

Endres (2017), we set b = 3.

Following Gatev et al. (2006), return computation is based on committed capital, the more

common metric in trading literature. Thus, we divide the sum of net profits by the number of active

stocks. A stock is called active if it exhibits at least one round-trip trade during the respective

trading period. Following Prager et al. (2012), we depict c = 2 bps per share per half-turn. This

assumption is deemed feasible in light of our minute-by-minute data in a highly liquid investment

universe from 2014 to 2015.

5. Results

Following Krauss and Stübinger (2017)’s approach, we run a holistic performance analysis for the

top five stocks (s = 5) of the strategies SVM, SFM, TFM, and AFM, compared to a naive buy-and-

hold strategy of the S&P 500 index (MKT). Therefore, we analyze risk-return characteristics as well

as trading statistics (subsection 5.1), present statistical measures of the performance (subsection

5.2), examine the profitability varying the target time (subsection 5.3), and discuss the returns in

light of market frictions (subsection 5.4). Finally, we focus on AFM and investigate the exposure

of the daily returns to common systematic sources of risk (subsection 5.5), perform a bootstrap

trading (subsection 5.6), and conduct a deep dive on the dimensionality of the FMs (subsection

5.7).

5.1. Risk-return characteristics and trading statistics

Table 1 depicts daily risk-return measures for the analyzed period both before and after the

incorporation of transaction costs. The majority of the metrics can be found in Bacon (2008).

Irrespective of the FM model employed, we observe positive returns after transaction costs ranging

between 2 bps per day for SVM and 5 bps per day for AFM, compared to 3 bps for a naive buy-and-

hold strategy of the S&P 500. From a statistical perspective, the returns of AFM are also significant

with Newey-West(NW) t-statistics of 2.49 after transaction costs. A straight forward investment

in the general market leads to a standard deviation of 0.0085, approximately 2-times higher than

the key figures of the four strategies based on FMs. Moreover, SFM, TFM, and AFM possess

high values for the kurtosis as well as positive skewness – a pleasant property for investors (Cont,

2001). We depict the historical Value at Risk (VaR) as propounded by J.P. Morgan’s RiskMetrics

approach in Mina and Xiao (2001). The tail risk of FMs is at a very low level by contrast with
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the general market, e.g., the historical VaR (1 %) after transaction costs is -0.0084 for AFM versus

-0.0212 for MKT. This picture barely changes considering the maximum drawdown – the decline

from a historical peak is greatly reduced for FMs (3.87 percent – 6.72 percent), compared to the

benchmark (12.63 percent). The strategy AFM produces the highest hit rate, i.e., the percentage of

days with positive returns, with approximately 62 percent after transaction costs – complexity pays

off. In summary, AFM achieves meaningful risk-return characteristics, even considering transaction

costs. However, we have to investigate the robustness to systematic sources of risk.

Before transaction costs After transaction costs

SVM SFM TFM AFM SVM SFM TFM AFM MKT

Mean return 0.0004 0.0005 0.0006 0.0008 0.0002 0.0003 0.0003 0.0005 0.0003

Standard error (NW) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0004

t-Statistic (NW) 2.2856 2.2894 2.8456 3.6245 1.2395 1.4451 1.5465 2.4931 0.6259

Minimum -0.0338 -0.0169 -0.0202 -0.0169 -0.0342 -0.0173 -0.0207 -0.0173 -0.0402

Quartile 1 -0.0005 -0.0007 -0.0007 -0.0007 -0.0006 -0.0007 -0.0007 -0.0008 -0.0041

Median 0.0001 0.0002 0.0005 0.0003 0.0001 0.0001 0.0002 0.0001 0.0003

Quartile 3 0.0010 0.0013 0.0017 0.0017 0.0007 0.0010 0.0012 0.0012 0.0048

Maximum 0.0246 0.0418 0.0419 0.0400 0.0242 0.0414 0.0414 0.0396 0.0383

Standard deviation 0.0038 0.0040 0.0043 0.0040 0.0038 0.0040 0.0042 0.0040 0.0085

Skewness -0.5159 2.4861 1.6000 2.1865 -0.6412 2.4495 1.5002 2.2486 -0.2907

Kurtosis 22.8953 26.2757 21.7965 21.9991 24.5109 27.5101 22.6053 23.9771 2.3528

Historical VaR 1 % -0.0115 -0.0103 -0.0144 -0.0080 -0.0119 -0.0107 -0.0149 -0.0084 -0.0212

Historical CVaR 1 % -0.0191 -0.0142 -0.0171 -0.0136 -0.0195 -0.0146 -0.0176 -0.0140 -0.0300

Historical VaR 5 % -0.0030 -0.0046 -0.0046 -0.0041 -0.0030 -0.0050 -0.0052 -0.0042 -0.0144

Historical CVaR 5 % -0.0084 -0.0079 -0.0091 -0.0074 -0.0086 -0.0082 -0.0097 -0.0076 -0.0200

Maximum drawdown 0.0414 0.0334 0.0547 0.0343 0.0632 0.0422 0.0672 0.0387 0.1263

Share with return ≥ 0 0.5897 0.6060 0.6341 0.6545 0.5201 0.5518 0.5887 0.6180 0.5243

Table 1: Daily characteristics of returns for the top five stocks of SVM, SFM, TFM, and AFM compared to a long-

only S&P 500 benchmark (MKT) in the time frame between March 2014 and December 2015. NW as acronym for

Newey-West standard errors with one-lag correction, and CVaR refers to the Conditional Value at Risk.

Table 2 portrays statistics about the trading behavior of SVM, SFM, TFM, and AFM. All FMs

are substantially similar in their trading activity during the trading period. Across all models,

we observe approximately 1.60 traded top stocks and a corresponding standard deviation at ap-

proximately 0.80. This relatively small number is based on the fact that the trading rule is only

applied once per day. The resemblance among the compared models is most likely driven by the

same underlying trading logic as outlined in section 4 – however, the respective characteristics of

the returns differ vastly depending on the information level extracted by the various complex FMs.
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SVM SFM TFM AFM

Average number of target stocks traded per 1-day period 1.4755 1.4608 1.5324 1.6371

Standard deviation of number of target stocks traded per 1-day period 0.7584 0.7710 0.8005 0.8488

Table 2: Daily trading volume for the top 5 stocks of SVM, SFM, TFM, and AFM.

In table 3, we present advanced annualized risk-return measures for all strategies. The annu-

alized returns after transaction costs range between 5.96 percent for SVM and 13.52 percent for

AFM, compared to the general market with 5.63 percent. Across all strategies, the mean return

equals the mean excess return owing to the fact that the risk free rate amounts to zero during the

analyzed period. The standard deviation proves to be roughly homogeneous among the models at

around 0.06, while the long-only S&P 500 benchmark leads to a standard deviation of 0.14. The

Sharpe ratio, i.e., the excess return per unit of deviation, exceeds 2 in case of AFM – the excess

return clearly overcompensates the risk.

Before transaction costs After transaction costs

SVM SFM TFM AFM SVM SFM TFM AFM MKT

Mean return 0.1146 0.1344 0.1668 0.2079 0.0596 0.0822 0.0853 0.1352 0.0563

Mean excess return 0.1146 0.1344 0.1668 0.2079 0.0596 0.0822 0.0853 0.1352 0.0563

Standard deviation 0.0605 0.0642 0.0681 0.0643 0.0597 0.0632 0.0673 0.0628 0.1355

Downside deviation 0.0395 0.0350 0.0402 0.0332 0.0406 0.0365 0.0424 0.0343 0.0968

Sharpe ratio 1.8946 2.0922 2.4483 3.2347 0.9978 1.3011 1.2667 2.1518 0.4158

Sortino ratio 2.9012 3.8357 4.1494 6.2649 1.4695 2.2543 2.0098 3.9406 0.5822

Table 3: Annualized characteristics of returns for the top 5 stocks of SVM, SFM, TFM, and AFM compared to a

long-only S&P 500 benchmark (MKT) during the time frame between March 2014 and December 2015.

Table 4 describes advanced drawdown metrics. Both the Sterling ratio and Calmar ratio divide

the annualized return by the maximum drawdown in absolute terms. Additionally, the denominator

within the Sterling ratio is augmented by a 10 percent excess risk buffer. With respect to the Calmar

ratio, we observe that the annual returns of the FMs are at more than 2 times the magnitude of

maximum drawdown, compared to a value of 0.44 for the general market. The pain index, which

measures the depth, duration, and frequency of losses, ranges between 0.0094 for AFM and 0.0156

for SVM by contrast with 0.0207 for the naive buy-and-hold strategy. The highest pain ratio is

generated by AFM (34.15), which is not surprising since it exhibits the highest mean excess return

(table 3) and the lowest pain index.
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Before transaction costs After transaction costs

SVM SFM TFM AFM SVM SFM TFM AFM MKT

Sterling ratio 0.8103 1.0075 1.0781 1.5487 0.3652 0.5784 0.5103 0.9743 0.2490

Calmar ratio 2.7691 4.0232 3.0478 6.0691 0.9436 1.9499 1.2703 3.4899 0.4461

Burke ratio 1.9171 2.1598 2.4271 3.8165 0.9879 1.2365 1.1993 2.4265 0.2795

Pain index 0.0097 0.0081 0.0101 0.0061 0.0156 0.0125 0.0140 0.0094 0.0207

Ulcer index 0.0149 0.0118 0.0170 0.0099 0.0226 0.0166 0.0222 0.0144 0.0322

Pain ratio 11.7769 16.5395 16.5642 34.1546 3.8198 6.5926 6.1032 14.3895 2.7163

Martin ratio 7.7019 11.3922 9.8297 21.0474 2.6394 4.9506 3.8477 9.3803 1.7479

Table 4: Drawdown measures after transaction costs for the top 5 stocks of SVM, SFM, TFM, and AFM compared

to a long-only S&P 500 benchmark (MKT) during the time frame between March 2014 and December 2015.

Following Do and Faff (2010) and Bowen and Hutchinson (2016), we perform a sub-period

analysis in an effort to discern possible fluctuating tendencies of the strategies within the portrayed

time span. Figure 4 depicts the development of an investment of 1 USD for the analyzed strategies

both before transaction costs (left) and after transaction costs (right). After transaction costs, we

observe a growth to approximately 1.15 USD for TFM, SFM, SVM, and MKT. As expected, AFM

outperforms the other strategies over the sample period with a final value of 1.27 USD. Moreover,

the investments using SVM, SFM, TFM, and AFM exhibit steady growth from March 2014 until

December 2015. In stark contrast, the cumulative return of the general market shows strong swings

and large drawdowns.
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Figure 4: Investment of 1 USD for SVM, SFM, TFM, and AFM compared to a long-only S&P 500 benchmark

(MKT) during the time frame between March 2014 and December 2015 both before transaction costs (left) and after

transaction costs (right).

5.2. Statistical measures of the performance

Table 5 measures the degree of closeness of the predicted returns to the actually observed values.

Specifically, we build an advanced contingency table based on each trading prediction and alongside

it present additional ratios derived from the former. As expected, SVM does not perform well since

predictions are wrong in the majority of the trades, i.e., the true positive rate as well as the true

negative rate are below 50 percent. Since this strategy still achieves positive returns (see subsection

5.1), we conclude that fewer correct predictions generate high gains. Only AFM manages to return

both a true positive rate and true negative rate above 50 percent showing that complexity pays

off. The diagnostic odds ratio measures the effectiveness of a strategy and exceeds 1 if we observe

more correct decisions than wrong decisions. In contrast to SVM (0.46) and SFM (1.02), the more

extensive models TFM (1.33) and AFM (2.58) exceed clearly the desirable threshold. The total

accuracy, i.e., the proportion of true results among the total number of cases examined, is greater

50 percent for SFM, TFM, and AFM. The strategy AFM still outperforms strongly the other

strategies by scoring 61.76 percent, a value similar to the percentage of days with positive returns

(table 1).

16



SVM SFM TFM AFM

True positive rate 0.4902 0.5658 0.6375 0.6729

False positive rate 0.5937 0.5606 0.5694 0.4433

False negative rate 0.5098 0.4342 0.3625 0.3271

True negative rate 0.4062 0.4394 0.4306 0.5567

Positive likelihood ratio 0.8256 1.0092 1.1195 1.5179

Negative likelihood ratio 1.2549 0.9882 0.8419 0.5876

Diagnostic odds ratio 0.6579 1.0213 1.3297 2.5834

Accuracy 0.4578 0.5070 0.5395 0.6176

Table 5: Statistical measures of the performance for SVM, SFM, TFM, and AFM during the time frame between

March 2014 and December 2015.

5.3. Time-varying profitability

In subsection 4.2, the target time 9.45 am is motivated based on the existing literature (Kim

et al., 1997; Busse and Green, 2002; Visaltanachoti and Yang, 2010). Figure 5 investigates the

annualized returns for SVM, SFM, TFM, and AFM for varied target times before transaction costs

(left) and after transaction costs (right). Across all models, we observe a 3-step behavior over time

with upwards shifts for the more complex approaches. To be more specific, the strategies based

on FMs generate annualized returns of approximately 0 percent after transaction costs considering

target times close to the opening time. Second, the annualized returns increase strongly until

9.45 am – the peaks range between 11.46 percent for SVM and 20.79 percent for AFM before

transaction costs. Incorporating transaction costs leads to returns from 5.96 percent p.a. (SVM)

to 13.52 percent p.a. (AFM). Finally, the returns decline to the break-even point with increasing

target time – TFM and SFM cross this threshold at around 9.55 am.

Our findings are well in line with the literature explaining the behavior based on the effects of

market efficiency and market turmoils during the opening minutes. The first effect results from

the fact that stock prices deviate temporarily from the true discounted value (Rosenberg et al.,

1985; Stout, 2002). Visaltanachoti and Yang (2010) examined the speed of convergence using

multivariate regressions and find that on average US stock prices take approximately 30 minutes to

achieve market efficiency. The profitability of trading strategies decreases over time because more

and more prices are adjusted to incorporate information about the corresponding firms. The second

effect is based on high market turmoils during the first minutes of the trading day. Brooks (2011)

and Wendell (2017) pointed out that the opening range is the easiest time span to lose money since

there are a huge number of irrational and unpredictable events. Therefore, meaningful trading
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thresholds can only be defined after market makers have squared their offsetting positions. The

effect of this above-average volatility, caused by gamble trades, lessens over time and disappears

after around 15 minutes. Therefore, the interaction of both effects explains the return characteristics

for varying target times.
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Figure 5: Annualized returns for varying target times for SVM, SFM, TFM, and AFM before transaction costs (left)

and after transaction costs (right).

5.4. Market frictions

In this subsection, we evaluate the robustness of our statistical arbitrage strategies in light of

market frictions. Most notably, we evaluate the impact of bid-ask spreads, i.e., the amount by which

the bid price falls below the ask price for an asset, on our results (Abadir and Rockinger, 2003;

Jondeau et al., 2015; Krauss and Herrmann, 2017). Voya Investment Management (2016) pointed

out that the use of algorithmic trading, changes in the exchange landscape, and decimalization are

the main drivers for falling bid-ask spreads over time. Following Voya Investment Management

(2016), we apply 3 bps per share per half-turn for the considered trading years. In contrast to

table 3, table 6 depicts annualized risk-return characteristics in light of market frictions. Across all

strategies, we observe positive annualized returns ranging between 2.06 percent for SVM and 8.72

percent for AFM, compared to 5.63 percent for the general market. The standard deviation of MKT

(0.14) is approximately two-times higher than the standard deviation of the 4 approaches based

on FMs. As expected, the Sharpe ratios of SFM (0.53), TFM (0.72), and AFM (1.37) exceed the

simple buy-and-hold strategy of the S&P 500 index (0.42). To summarize, these strategies produce
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positive results in light of market frictions. The return time series of AFM especially remains

statistically and economically significant even with bid-ask spreads, posing a severe challenge to

the semi-strong form of market efficiency.

SVM SFM TFM AFM MKT

Mean return 0.0206 0.0343 0.0483 0.0872 0.0563

Standard deviation 0.0621 0.0643 0.0667 0.0635 0.1355

Sharpe ratio 0.3317 0.5334 0.7241 1.3732 0.4158

Table 6: Annualized characteristics of returns for the top 5 stocks of SVM, SFM, TFM, and AFM including bid-

ask spreads compared to a long-only S&P 500 benchmark (MKT) during the time frame between March 2014 and

December 2015.

5.5. Common risk factors

In table 7, we analyze the systematic risk exposure for the top 5 stocks of AFM after transaction

costs. In this respect, we employ three types of regression, namely Fama-French 3-factor model

(FF3), Fama-French 3+2-factor model (FF3+2), and Fama-French 5-factor model (FF5). The

standard model FF3, introduced by Fama and French (1996), explains the sensitivity to the general

market, small minus big capitalization stocks (SMB), and high minus low book-to-market stocks

(HML). The second regression FF3+2, in the spirit of Gatev et al. (2006), extends FF3 by adding the

factors momentum and short-term reversal. Following Fama and French (2015), FF5 enhances the

first model by two supplemental factors, i.e., portfolios of stocks with robust minus weak profitability

(RMW) and conservative minus aggressive investment behavior (CMA). All data related to these

models are downloaded from Kenneth R. French’s website1.

Across all employed Fama-French models, we observe statistically significant daily alphas of

0.05 percent after transaction costs – similar to the raw returns. Exposure to the general market,

SMB, HML, momentum, RMA, and CMA are statistically insignificant and close to zero due to

the fact that our strategy is dollar neutral. Most interestingly, the short-term reversal factor shows

a statistical positive loading implying that we buy short-term losers and short short-term winners.

The FF3+2 model presents the highest explanatory power provoked by the short-term reversal

factor. In short, AFM produces statistically significant and economically remarkable returns after

transaction costs, does not show loadings on any systematic risk exposure, and outperforms the

less complex benchmarks.

1We thank Kenneth R. French for supplying all required data to these models on his website.
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FF3 FF3+2 FF5

(Intercept) 0.0005∗∗ 0.0005∗∗ 0.0005∗∗

(0.0002) (0.0002) (0.0002)

Market −0.0083 −0.0105 −0.0082

(0.0210) (0.0225) (0.0223)

SMB 0.0099 0.0011

(0.0353) (0.0359)

HML −0.0757 −0.0546

(0.0408) (0.0492)

Momentum 0.0371

(0.0307)

Reversal 0.0879∗∗

(0.0330)

SMB5 0.0229

(0.0398)

HML5 −0.0674

(0.0564)

RMW5 0.0545

(0.0735)

CMA5 −0.0352

(0.1029)

R2 0.0376 0.0525 0.0388

Adj. R2 0.0315 0.0423 0.0285

Num. obs. 473 473 473

RMSE 0.0039 0.0039 0.0039

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7: Exposure to systematic risk factors for daily returns after transaction costs of the top 5 stocks of AFM

during the time frame between March 2014 and December 2015. Standard errors are depicted in parentheses.

5.6. Bootstrap trading

In view of our remarkable returns of AFM, we compare the financial performance with one

million random bootstraps of monkey trading. In the sense of Malkiel (2007), we randomly combine

the top stocks and the corresponding entry and exit signals for each of the trading days. Figure 6

illustrates the daily return characteristics of the bootstrapped monkey trading before transaction

costs. As anticipated, the average daily return of the random trading is zero prior transaction

costs. Most importantly, the best performing bootstrap, with an average daily return of 0.04

percent, achieves a weaker result than AFM (see table 1).
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Figure 6: Empirical distribution of daily mean returns of 1,000,000 bootstrap tradings during the time frame between

March 2014 and December 2015 (before transaction costs).

5.7. Dimensionality of Factorization Machines

In order to analyze the impact of the factors per order of the AFM model, Figure 7 shows

a summary of the particular FM models optimized for the 473 trading periods. The left plot

expresses the characteristics of the highest included order d among the FM models chosen, while

the right diagram presents the number of FM models which contained a specific dimensionality (kl)

corresponding to order l.

The left plot reveals that the maximum value of the highest included order is 8. The values

decline from 3, followed by 4 and 5, while 6, 7, and 8 are barely chosen. In this context, we note

that the highest included order cannot be 2 because the adaptive-order algorithm, which chooses

the order of the AFM models, only selects from higher-order FM models. The decreasing frequency

of d reflects the design of the adaptive-order algorithm to use the more time-efficient lower orders

rather than higher ones.

The plot on the right-hand side shows that the most frequently chosen number of factors is

1 for all orders except the second. Consequently, the second-order factors seem to be well suited

for representing the information extracted within the formation period. The mode of 1 factor for

all other orders is probably caused by the design of the adaptive-order algorithm which sets the

minimum number of factors for each order lower than d to 1. Hence, the large bar for 1 third-order

factor is a result of the algorithm design as well: if the FM model with only second-order factors

already produces good results, 1 third-order factor is added to the FM model to fulfill the higher-

order requirement. Furthermore, there is a tendency for lower rather than higher number of factors,

which also reflects the idea of the adaptive-order algorithm and saves computational resources.
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Figure 7: Analysis of the highest included order and the factors per order obtained by running the adaptive-order

algorithm for the 473 trading periods.

6. Conclusions

In this paper, we introduce a statistical arbitrage strategy using FMs to exploit overnight social

media data and deploy it on the S&P 500 constituents from January 2014 to December 2015.

Across all strategies based on FMs, we observe remarkable annualized returns after transaction

costs for the top 5 stocks demonstrating the efficiency of our strategy. Moreover, we observe that

increasing complexity of the FMs leads to higher profitability – annualized returns after transaction

costs range between 5.96 percent for SVM and 13.52 percent for AFM. Additionally considering the

risk-component, AFM outperforms the benchmarks with a Sharpe ratio of 2.15 after transaction

costs. Furthermore, AFM achieves the highest accuracy rate with a value of 61.76 percent; the

corresponding returns are robust against the impact of bid-ask spreads and do not load on any

systematic risk exposure.

For future research in this field, we could incorporate the time structure of the tweets during

the overnight period assigning different weights to data at varying positions in the time frame.

In addition, terms with synonymous meaning might be aggregated using a dictionary, e.g., the

terms “automobile” and “car” belong to the category “vehicle”. Third, the feature matrix could be

extended by financial data and economic data with the objective of more precise predictions about

the future price changes.
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