
_____________________________________________________________________ 
 

Friedrich-Alexander-Universität Erlangen-Nürnberg 
Institute for Economics 

https://www.iwf.rw.fau.de/research/iwf-discussion-paper-series/ 

 
 

 
 
 
 
 

No. 25/2017 
 
 
 
 
 
 

(Generalized) Maximum Cumulative 
Direct, Paired, and Residual 𝜙𝜙 Entropy 

Principle 
 
 
 
 
 
 
 

Ingo Klein 
University of Erlangen-Nürnberg 

 
 
 
 
 
 
 

ISSN 1867-6707 

Discussion Papers  
in Economics 
 

https://www.iwf.rw.fau.de/research/iwf-discussion-paper-series/


(Generalized) Maximum Cumulative Direct,

Paired, and Residual φ Entropy Principle

Ingo Klein∗

Friedrich Alexander University Erlangen-Nürnberg (FAU), Germany

December 12, 2017

Jaynes (1957a,b) formulates the maximum entropy (ME) principle as the

search for a distribution maximizing a given entropy under some given con-

straints. Kapur (1984) and Kesavan & Kapur (1989) introduce the generalized

maximum entropy principle as the derivation of an entropy for which a given

distribution has the maximum entropy property under some given constraints.

Both principles will be considered for cumulative entropies. Such entropies de-

pend either on the distribution (direct) or on the survival function (residual)

or on both (paired). Maximizing this entropy without any constraint gives a

extremely U -shaped (= bipolar) distribution. Under the constraint of fixed

mean and variance. maximizing the cumulative entropy tries to transform a

distribution in the direction of a bipolar distribution as far as it is allowed

by the constraints. A bipolar distribution represents so-called contradictory

information in contrast to minimum or no information. Only a few maximum

entropy distributions for cumulative entropies have already been derived in the

literature. We extend the results to well-known flexible distributions (like the

generalized logistic distribution) and derive some special distributions (like the

skewed logistic, the skewed Tukey λ and the extended Burr XII distribution).

The generalized maximum entropy principle will be applied to the generalized

Tukey λ distribution and the Fechner family of skewed distributions. At last,

cumulative entropies will be estimated such that the data was drawn from a

ME distribution. This estimator will be applied to the daily S&P500 returns

and the time duration between mine explosions.

Keywords: Cumulative entropy, maximum entropy distribution, generalized Tukey λ

distribution, generalized logistic distribution, skewed logistic distribution, skewed Tukey

λ distribution, skewed normal distribution, Weibull distribution, extended Burr XII dis-

tribution
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1 Introduction

For a continuous random variable with density f , the classical differential entropy is defined

by

ES = −
∫
f(x) ln f(x)dx. (1)

This measure has some shortcomings in order to be a good measure of information (cf.

Schroeder (2004)). For example, it could be negative for special densities. Nevertheless,

maximizing (1) with respect to f under the constraint of observed power or L-moments

gives maximum entropy (ME) densities (cf. Park & Bera (2008), Hosking (2005)). This

ME solution represents a distributional model which is compatible with the minimum

information given by the observed constraints. Substituting in (1) the density by the sur-

vival function, leads to the cumulative residual (Shannon) entropy. Rao et al. (2004) are

the first who discuss this new entropy. The discussion happens in the context of reliability

theory. For this context, only random variables with non-negative support are of impor-

tance, and the survival function is the natural distributional concept. Rao et al. (2004)

and Rao (2005) already discuss the solution of the maxiumum entropy task under power

moment constraints. They use the log-sum inequality to derive the ME solution instead

of the usual approach based on the Lagrange-Euler equations. The exponential, and more

general the Weibull distribution are solutions of this special ME tasks. In the following

years, Asadi et al. (2007), Drissi et al. (2008), Kumar & Taneja (2011), Navarro et al.

(2010), Baratpour (2010), Baratpour et al. (2012), Psarrakos & Navarro (2013), Chamany

& Baratpour (2014) publish papers with the focus on cumulative residual entropies. Es-

pecially Drissi et al. (2008) are concerned with the ME problem. They consider random

variables with support R and derive the logistic distribution as ME solution under the

additional constraint that the ME solution has to be symmetric. Most recent papers are

again focussed on cumulative residual entropies of the Shannon type (cf. Minimol (2017),

Mirali et al. (2017), Navarro & Psarrakos (2017) and Sankaran & Sunoj (2017)). Di

Crescenzo & Longobardi (2009a), (2009b) apply (1) to the distribution function and call

the result ”cumulative entropy”. Based on early results in the fuzzy set theory (cf. De

Luca & Termini (1972), Pal & Bedzek (1994))) concerning membership functions, Li &

Liu (2008) define a further entropy concept for so-called uncertainty variables which are

similar but not identical to random variables. The main idea is now to consider in (1) the

distribution function as well as the survivor function. The obvious corresponding ME task

is discussed by Chen & Dai (2011), Liu (2015) and Dai (2017). There is a vast literature

concerned with the generalization of (1). Havrda & Charvát (1967), Kapur (1994), Rényi

(1961) modify the entropy generating function. General generating function are consid-

ered by Csiszár (1963), Morimoto (1963) and Ali & Silvey (1966) for the definition of

the related concept of f -divergence (cf. Liese & Vajda (2006)). Sometimes f divergences

will be called φ-divergences (cf. Cressie & Pardo (2002)). It is obvious that Zografos &

Nadarajah (2005) generalize the cumulative residual Shannon entropy in a similar way.

Klein et al. (2016) combine the ME task known from uncertainty theory with the use of
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general entropy generating functions. They derive the Tukey λ distribution as a ME dis-

tribution if the entropy generating function of Havrda & Charvát will be applied together

to the distribution and the survivor function. They introduce the term ”cumulative paired

entropy” analogue to the paired φ entropy introduced by Burbea & Rao (1993). Recent

publications (cf. Kumar (2017), Rajesh & Sunoj (2017)) apply the Havrda & Charvát ap-

proach to the survivor function under the name ”Cumulative Tsallis entropy” of order α.

This term refers to Tsallis famous paper from 1988, where he gives a physical foundation

for the Havrda & Charvát approach.

The first purpose of our paper is to unify the diverse approaches of cumulative entropies

and their maximization. For this purpose, general cumulative Φ entropies will be intro-

duced. All known variants of cumulative entropies will be special cases of this general

class. The ME task in reliability and uncertainty theory is mainly focused on technical

reasons. As a second research question, we want to clarify what kind of information cu-

mulative entropies really measure. Therefore, we introduce the concept of ”contradictory

information” in contrast to ”no information”. After deriving two general formulas for ME

quantile functions under some moment restrictions we apply this formulas to derive ME

distributions for new cumulative entropies (like the cumulative Mielke entropy) or to iden-

tify the cumulative entropy for some flexible family of distributions (like the generalized

Tukey λ or the generalized logistic distribution) allowing for skewness. As a byproduct,

we find some new family of distributions (like a special skewed Tukey λ distribution and

a generalized Weibull distribution). The last research question starts with the observed

data and tries to estimate the cumulative entropy such that the data comes from the cor-

responding ME distribution. This gives an alternative to the non-parametric estimation

of the density or the distribution function.

The paper is organized parallel to this research questions. Section 2 starts with the

principal discussion of cumulative entropies. Here we concentrate on the Shannon case.

All insights can be transferred to other cumulative entropies immediately. In section 3,

we introduce general cumulative Φ entropies and prove general result for ME distributions

for cumulative Ψ entropies under different constraints. In section 4, we apply this results

to eight families of entropies or families of distributions. In the fourth section, we propose

an estimator for the ME generating function. We apply this estimator to real data sets.

2 What does maximizing cumulative direct, paired and residual

Shannon entropies mean?

The traditional maximum entropy approach starts with the result that the uniform distri-

bution has minimum information (= maximal entropy) under the constraint that the area

under the density sums up to one. In fuzzy set and uncertainty theory, there is another

concept of maximal entropy. Transferred to probability theory, maximum uncertainty rep-

resents the fact that an event A with probability 0 < P (A) < 1 and the complementary

event A with probability P (A) = 1− P (A) are equal-probable. This means P (A) = 1/2.
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Since the Shannon entropy

−P (A) logP (A)− (1− P (A)) logP (A)

is maximized for P (A) = 1/2, this kind of entropy could serve as the basis of an uncertainty

measure. For a continuous random variable X, the ensemble of events (X ≤ x), x ∈ R
such that 0 < P (X ≤ x) < 1 can be considered. It is obvious to measure the amount of

uncertainty of X by

−
∫
P (X ≤ x) logP (X ≤ x)dx−

∫
(1− P (X ≤ x)) log(1− P (X ≤ x))dx.

The integration area is the whole real line R. We set 0 log 0 = 0. Let F be the cumulative

distribution function of X the cumulative paired Shannon entropy is defined by

CPES(F ) = −
∫
F (x) logF (x)dx−

∫
(1− F (x))log(1− F (x))dx

= −
∫ 1

0
(u log u+ (1− u) log(1− u))q(u)du (2)

with the probability integral transformation u = F (x), the quantile function Q(u) =

F−1(u), and the quantile density q(u) = dQ(u)/du = 1/f(Q(u)) for u ∈ [0, 1]. f denotes

the density of X. If X has a compact support [a, b], CPES(F ) attains its maximum for

F (x) = 1/2 for a ≤ x < b. This corresponds to a so-called bipolar distribution with

P (X = a) = P (X = b) = 1/2. For this bipolar distribution, CPES(F ) = ln 2(b − a),

a < b holds. Therefore, the cumulative paired Shannon entropy increases with b − a.

In contrast to this, the classical Shannon entropy takes a value of ln 2 for all bipolar

distributions, independent how great the distance between the two mass points is. Wang

et al. (2004) identify this property as an important advantage of cumulative entropies

over the differential entropy.

Example 2.1. To illustrate the different behaviour of the differential entropy and the

cumulative Shannon entropy, we consider the symmetric beta distribution with density

f(x;α) =
1

B(α, α)
xα−1(1− x)α−1, 0 < x < 1, α > 0

with parameter α ∈ (0.1, 2). This range allows almost bipolar distributions (α = 0.1),

uniform distributions (α = 1), as well as bell-shaped distributions (α = 2). Figure 1

compares the values of the differential entropy and the cumulative paired Shannon entropy

for this range of parameter values. What we learn is that the differential entropy is non-

positive everywhere and attains its maximum for the uniform distribution (α = 1). In

contrast to this, the cumulative paired Shannon entropy starts with the maximum value for

a bipolar distribution and decreases monotonically with an increase of the parameter α.

The following examples try to explain how bipolar distributions can appear in real
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Figure 1: Differential entropy and cumulative paired Shannon entropy for symmetric beta
distribution for several parameter values of α.

situations and what this bipolarity means for the predictability of the random variable X.

Example 2.2. In an opinion poll survey, persons will be asked to judge their political belief

on a continuous left-right scale. 0 (100) symbolizes an extremely left (right) position. The

survey results maximizes the cumulative paired Shannon entropy if half of the people say,

that they are extremely left (= 0), and the other half, that they are extremely right (= 100).

This means a situation of maximal uncertainty, how to predict the political orientation of

an individual person.

Example 2.3. If the task is to judge a product on a Likert scale with five ordered cate-

gories, the uniform distribution means that no category will be favored by the majority of

the voters. But, there could be a result of the voting that is still more confusing than the

uniform distribution. What can we learn from the extreme situation that the half of the

voters give their vote to the best and the other half to the worst category? What does this

mean for a new customer thinking to buy the product? Buying means to receive an excel-

lent or a really bad product. This is the situation where it is most complicate to predict

what the customer will really do.

Both situations can be characterized by the term ”contradictory information” in contrast

to minimal or no information. Information is able to reduce uncertainty. Contradictory

5



information is implicitly defined by the fact that it increases uncertainty, and gives great

chance for a wrong decision. 1 Therefore, it is a important task to consider entropies

that will be maximized by a bipolar distribution if there are no constraints. In general,

cumulative paired entropies are introduced to cover this contradictory information.

Rao et al. (2004) introduce cumulative residual entropies as a Shannon entropy, where

the density is substituted by the survivor function. In the following years, Rao (2005),

Asadi et al. (2007), Drissi et al. (2008), Kumar & Taneja (2011), Navarro et al. (2010),

Baratpour (2010), Baratpour et al. (2012), Psarrakos & Navarro (2013), Chamany &

Baratpour (2014), Minimol (2017), Mirali et al. (2017), Navarro & Psarrakos (2017),

Sankaran & Sunoj (2017)) published papers with the focus on the cumulative residual

Shannon entropy

CRES(F ) = −
∫ ∞
infty

(1− F (x)) ln(1− F (x))dx. (3)

The only exception is Di Crescenzo & Longobardi (2009a), (2009b). They apply the

Shannon entropy to distribution function and call it cumulative entropy. This gives the

formula

CDES(F ) = −
∫ ∞
−∞

F (x) lnF (x)dx. (4)

We will call (4) cumulative direct Shannon entropy for a better distinction to the cumu-

lative paired and the cumulative residual Shannon entropy.

What does maximal entropy mean in this cases? The entropy generating function

−(1 − u) ln(1 − u) attains its maximum for u = 1 − 1/e = 0.632 > 0.5. If the support

is [a, b], the maximum CRES distribution is again bipolar. But this bipolarity is less

extreme than in the symmetric case. It holds P (X = a) = 1 − 1/e and P (X = b) = 1/e.

There is a preference for the alternative a, what makes the prediction of X easier than

in the symmetric case. But, there is still a kind of contradictory information instead of

information. For (4), the probabilities for the a and b have to be interchanged to ge a

maximal CDES distribution.

The following example illustrates for a beta distribution with parameters α and β.

Example 2.4. Let X be beta distributed with the density

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1, α, β > 0.

In the following we fix β and compute α such that (3) or (4) will be maximized. αcre and

αce denote the corresponding maximal values in the following table 1. This table contains

also the maximal values of CRES and CES. We see that the maximum will be attained

for small values of α and β. This means a slightly asymmetric U -shaped beta distribution.

Figure 2 illustrates the maximum CRES and CES beta distributions for this parameter

1Anti-information is a related, but less formal concept introduced by the information scientist J. Verhoeff
(1984).
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β αcre Max. CRES αce Max. CDES
0.01 0.006 0.3678 0.017 0.3677
0.20 0.111 0.3543 0.290 0.3408
0.50 0.259 0.3222 0.595 0.2970
1.00 0.482 0.2778 1.000 0.2500
2.00 0.905 0.2226 1.000 0.1869

Table 1: ME beta distributions for different values of β.

Figure 2: Cumulative residual and cumulative direct Shannon entropy of the asymmetric
beta distribution with parameter α such that CRES (CES) is maximized for
given β

setting.

We get a completely different result if we consider only random variable with non-

negative support and Q(0) = 0 (c.f. Rao et al (2004)). Such distributions are f.e. in the
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focus of the reliability theory. Maximizing CRES or CES under the constraint Q(0) = 0

gives a distribution which is no longer U -shaped, and the maximal entropy situation no

longer corresponds with contradictory information. We illustrate this again by a special

beta distribution. The parameter β will be set to 1 such that Q(0) = 0.

Example 2.5. Let X be beta distributed with density

f(x;α) =
1

α
xα−1, 0 < x < 1, α > 0.

Table 2 reports the values for CRES and CES for selected values of α. For α = 0.48

(α = 1), CRES (CES is maximal.

α CRSS CDES
0.01 0.1836 0.0826
0.48 0.2779 0.2191
1.00 0.2500 0.2500
3.00 0.1464 0.1876

Table 2: Cumulative residual and cumulative Shannon entropy for a beta distribution with
parameters α and β = 1.

In figure 3, we see that the maximal CRES distribution is a compromise between an

extremely right skewed (α = 0.01) and an extremely left skewed (α = 3) distribution.

The question we raised in the section title can be answered by the conclusion that

maximizing direct, paired and residual cumulative Shannon entropies lead to a more or

less skewed U -shaped distribution as long as there are no special constraints (like Q(0) = 0)

which are able to prevent this. In the following, we will identify the impact of additional

constraints concerning f.e. the mean, the variance or (k-th power moment on the maximum

entropy and the generalized maximum entropy task. This has do be done in general as

well as under the constraint Q(0) = 0.

3 Maximum cumulative entropy distributions

3.1 General class of cumulative Φ entropies

We want to incorporate cumulative direct, paired, and residual cumulative entropies in

one approach. Additionally, we want to abstract from the Shannon case and allow for a

general so-called entropy generating function φ. φ has to be a non-negative and concave

function on [0, 1]. In general, but not mandatory φ has a maximum in the interval [0, 1].

The corresponding cumulative φ entropies are the cumulative direct φ entropy with

CDEφ(F ) =

∫
φ(F (x))dx =

∫ 1

0
φ(u)q(u)du, (5)
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Figure 3: Cumulative residual and cumulative direct Shannon entropies and the density
function of a beta distribution with several α and β = 1.

the cumulative paired φ entropy

CPEφ(F ) =

∫
R
φ(F (x)) + φ(1− F (x))dx =

∫ 1

0
(φ(u) + φ(1− u)))q(u)du (6)

and the cumulative residual φ entropy

CREφ(F ) =

∫
R
φ(1− F (x))dx =

∫ 1

0
φ(1− u)))q(u)du. (7)

To cover all three cases, we consider a general concave entropy generating function Φ such

that Φ(u) = φ(u) or Φ(u) = φ(u) + φ(1− u) or Φ(u) = φ(1− u), u ∈ [0, 1]. Then,

CEΦ(F ) =

∫
R

Φ(u)du

9



will be called cumulative Φ entropy. The objective is to maximize this cumulative Φ

entropy with respect to F under distinct constraints. At first, we consider cumulative Φ

entropies in the situation where mean and variance are fixed. The restriction to this both

moments can be explained by that fact that higher moments lead to equations for the

ME quantile function which cannot be solved explicitly or the solution does not exist. At

second, we discuss the same task with the additional requirement that Q(0) = 0. This

leads to the fact that the solution can only exist for special proportions of the fixed mean

and the fixed k-th power moment.

For some choices of Φ, the problem has already been solved. Others will be considered

in the following. Thereby, we will focus on Φ leading to well-known distributions. With

the ME principle, it is no problem to generate completely new distributions. But this will

not be the objective of this paper.

Table 3 gives an overview of results already known from the literature and other results

that will be shown in this paper. fN and F−1
N denote the density and the quantile function

of the standard normal distribution.

no. Φ ME distribution

Without Q(0) = 0 and fixed mean and variance

1 −u lnu− (1− u) ln(1− u) logistic
2 u(uα−1 − 1)/(1− α)

+(1− u)((1− u)α−1 − 1)/(1− α) Tukey λ
3 2(1/2− |u− 1/2|) extremely bimodal
4 2(1/4− (u− 1/2)2 uniform
5 2((1/2)r − |u− 1/2|r symmetric beta

6 u(uα1−1 − 1)/(1− α1)
+(1− u)((1− u)α2−1 − 1)/(1− α2) general. Tukey λ

7 −B(2−α,α)
α−1

(
β(u; 2− α, α)− u

B(2−α,α)

)
general. logistic

8 −α1u lnu− α2(1− u) ln(1− u) skewed logistic

9 α1u
uα−1
1−α + α2(1− u) (1−u)α−1

1−α skewed Tukey λ

10 2γ3/(1 + γ2)fN (F−1
N (u))I(u ≤ γ2/(1 + γ2))

+2/(γ(1 + γ2))
(
fN (F−1

N (0.5((1 + γ2)u+ 1− γ2)))

−1/
√

2π
)
· I(u > γ2/(1 + γ2)) skewed normal

With Q(0) = 0 and fixed mean and k-th moment

11 −(1− u) ln(1− u) Weibull distribution
12 −(1− u)((1− u)α−1 − 1)/(α− 1) extended Burr XII

Table 3: Some entropy generating functions with corresponding ME distributions

Already known are the solutions of number (1) (cf. Liu (2012)), (2) (cf. Klein et al.

(2016)), (3) (cf. Klein et al. (2016), (4) (cf. Dai & Chen (2012), Dai (2017)) and (11)

(cf. Rao (2005)). The remaining cases state new results. The cases 5 to 12 allow for

asymmetry of the ME distribution. For (6) and (10) the generalized maximum entropy

principle will be applied. This means that the ME distribution and constraints are fixed

and the corresponding entropy will be derived.
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3.2 General results for arbitrary support

3.2.1 Maximum cumulative Φ entropy task

The following theorem gives a general formula for the ME quantile function Q. It is the

solution of the maximum entropy principle in the sense of Jaynes (1987a,b). This means

that the entropy and the constraints are fixed and the ME distribution will be derived.

Theorem 3.1. Let CEΦ be the cumulative Φ entropy with concave entropy generating

function Φ such that the derivative Φ′ exists a.e., is quadratic integrable over [0, 1], and

|Φ(0)| <∞, |Φ(1)| <∞ hold . Then, the maximum CE distribution under the constraint

of fixed mean µ and variance σ2 is given by the quantile function

Q(u) = µ+ σ
−Φ′(u) + (Φ(1)− Φ(0))√∫ 1

0 Φ′(u)2du+ (Φ(1)− Φ(0))2
. (8)

Proof: The objective function∫
Φ(F (x))du =

∫ 1

0
Φ(u)q(u)du

has to be maximized under the restrictions of fixed

µ =

∫ 1

0
Q(u)du and σ2 + µ2 =

∫ 1

0
Q(u)2du

with respect to the quantile function Q and the quantile density q. This leads to the

Lagrange function

L(q,Q, λ1, λ2) =

∫ 1

0
Φ(u)q(u)du− l1

(∫ 1

0
Q(u)du− µ

)
−l2

(∫ 1

0
Q(u)2du− σ2 + µ2

)
.

The Euler-Lagrange equation gives

d

du

∂L
∂q
− ∂L
∂Q

= Φ′(u) + l1 + 2l2Q(u)
!

= 0.

l1 and l2 denote the Lagrange parameter. Solving this equation leads to the quantile

function

Q(u) =
1

2l2

(
−Φ′(u)− l1

)
.

l1 and l2 are determined by the moments µ and σ2. Rearranging

µ =
1

2l2

∫ 1

0
(−Φ′(u)− l1)du = − 1

2l2
(Φ(1)− Φ(0))− l1

2l2
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leads to

l1 = −2l2µ− (Φ(1)− Φ(0))

and

Q(u) = µ− 1

2l2

(
Φ′(u)− (Φ(1)− Φ(0))

)
. (9)

From

µ2 + σ2 =

∫ 1

0
Q(u)2du

= µ2 +
1

l2
µ

(∫ 1

0
Φ′(u)− (Φ(1)− Φ(0))du

)
+

1

4l22

∫ 1

0

(
Φ′(u)− (Φ(1)− Φ(0))

)2
du

= µ2 +
1

4l22

(∫ 1

0
Φ′(u)2du− 2

∫ 1

0
Φ′(u)du(Φ(1)− Φ(0)) + (Φ(1)− Φ(0))2

)
= µ2 +

1

4l22

(∫ 1

0
Φ′(u)2du− (Φ(1)− Φ(0))2

)
.

Solving with respect to l2 leads to

l2 =
1

2σ

√∫ 1

0
Φ′(u)2du− (Φ(1)− Φ(0))2.

Inserting l2 into (9) gives the quantile function (8). �

3.2.2 Generalized maximum cumulative Φ entropy task

Starting with a quantile function Q, the formula (8) can also be used to derive the corre-

sponding generating function Φ of the cumulative Φ entropy. This procedure follows the

generalized maximum entropy principle formulated by Kesavan & Kapur (1989). For a

simpler notation we introduce the partial mean function. Let X be the random variable

corresponding to Q and f be the density of X. This function is given by

µ(u) =

∫ u

0
Q(v)dv =

∫ Q(u)

−∞
xf(x)dx = −E(X|X ≤ Q(u))P (X ≤ Q(u)) (10)

= uE(X|X ≤ Q(u)) u ∈ [0, 1].

Obviously, µ(0) = 0 and µ(1) = µ hold.

The following corollary states that the negative of the partial mean function deter-

mines the entropy generating function such hat Q is the ME quantile function under the

constraint of given mean µ and variance σ2.

Corollary 3.1. Let Q be a quantile function. The entropy generating function Φ such

that Q is ME under the constraint of given mean and variance is given by Φ(u) = −µ(u),

u ∈ [0, 1].
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Proof: Setting Φ′(u) = −Q(u), u ∈ [0, 1] gives

Φ(u) = −
∫ u

0
Q(v)dv = −µ(u) u ∈ [0, 1]. � (11)

Hence, −Φ(u)/u is the conditional mean of X given X ≤ Q(u) fur u ∈ [0, 1]. It holds

µ(0) = 0 and µ(1) = µ such that Φ(0) = 0 and Φ(1) = −µ. The special role of the partial

mean function µ(u) is easy to explain. µ(u) sums up the values x of X weighted with

the density f(x) until the u-quantile of X. For an extremely U -shaped distribution this

addition gives constant values until the the median quantile. Thereafter, the value will be

changed one time and stays again constant. The heavier the tails of a distribution are, the

steeper the entropy generating function Φ(u) at u = 0 and u = 1 is. This leads to a large

value for the derivative Φ′(u) at u = 0 and u = 1. If the support is R, then lim Φ′(0) =∞
and lim Φ′(u) = −∞. We will use (11) to derive Φ such that a given distribution has the

ME property under the constraint of fixed mean and variance. Based on (11), in the last

section we propose an estimator for Φ.

3.3 General results for non-negative support

3.3.1 Maximum cumulative Φ entropy task

We restrict the support of the ME distribution to (0,∞). This means that Q(0) = 0

holds for the ME quantile function Q. From this fact, we get an additional constraint for

the ME task. As further constraints, we consider a fixed mean µ and a fixed k-th power

moment µ′k, k > 1. The following theorem shows how to derive the ME quantile function

under this three constraints. The ME solution requires a special relationship between the

fixed moments µ and µ′k. Otherwise, there is no solution of the ME task.

Theorem 3.2. Let Φ a be concave function on [0, 1] with derivative Φ′ such that −Φ′(u)+

Φ′(0) is monotone increasing. Then the ME quantile function under the constraint of given

mean and k-th power moment µ′k is

Q(u) =
(−Φ′(u) + Φ′(0))1/(k−1)∫ 1

0 (−Φ′(u) + Φ′(0))1/(k−1)du
µ. (12)

This solution is only valid, if

µ′k
µk

=

∫ 1
0 (−Φ′(u) + Φ′(0))k/(k−1)du(∫ 1

0 (−Φ′(u) + Φ′(0))1/(k−1)du
)k . (13)

Proof: Due to The Euler-Lagrange equation it is

Φ′(u) + l1 + kl2Q(u)k−1 !
= 0, u ∈ [0, 1].
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The constraint Q(0) = 0 leads to l1 = −Φ′(0) and

Q(u) = ((−Φ′(u) + Φ′(0))/(kl2))1/(k−1), u ∈ [0, 1].

kl2 can be derived from

µ =

∫ 1

0
Q(u)du =

(
1

kl2

)1/(k−1) ∫ 1

0
(−Φ′(u) + Φ′(0))1/(k−1)du

as

kl2 =

(
1

µ

)k−1(∫ 1

0
(−Φ′(u) + Φ′(0))1/(k−1)du

)k−1

.

Inserting kl2 into Q(u) gives (12) immediately.

There is the third constraint

µ′k =

∫ 1

0
Q(u)kdu =

∫ 1
0 (−Φ′(u) + Φ′(0))k/(k−1)du(∫ 1

0 (−Φ′(u) + Φ′(0))1/(k−1)du
)kµk.

Dividing µk on both sides gives (13). �.

In the most popular case mean and variance are fixed. This means k = 2 and

Q(u) =
−Φ′(u) + Φ(0)∫ 1

0 (−Φ′(u) + Φ′(0))du
µ =

−Φ′(u) + Φ′(0)

−Φ(1) + Φ(0) + Φ′(0)
µ

and

µ′2
µ2

=

∫ 1
0 (−Φ′(u) + Φ′(0))2du(∫ 1
0 (−Φ′(u) + Φ′(0))du

)2

=

∫ 1
0 Φ′(u)2du− 2(Φ(1)− Φ(0))Φ′(0) + Φ′(0)2

(Φ(1)− Φ(0))2 − 2(Φ(1)− Φ(0))Φ′(0) + Φ′(0)2

3.3.2 Generalized maximum cumulative Φ entropy task

It remains to discuss the generalized maximum entropy principle for random variables

with non-negative support and Q(0) = 0. We start with the knowledge of the quantile

function Q to derive the corresponding generating function Φ of the cumulative Φ entropy

such that Q is the ME quantile function for Φ under the constraints Q(0) = 0 and fixed

mean µ and fixed k-th power moment µ′k. It is again helpful to introduce a special partial

mean function. µk−1(u) denotes the partial (k − 1)-th power mean function with

µk−1(u) = uE[Xk−1|X ≤ Q(u)], u ∈ [0, 1]

for k = 2, 3, . . .. This partial (k − 1)-th power moment function is an important part of

the entropy generating function as the following corollary shows.

Corollary 3.2. Let Q be a quantile function. The entropy generating function Φ, such

14



that Q is ME under the constraints Q(0) = 0, fixed mean and fixed variance, is given by

Φ(u) = µ′k−1u− µk−1(u), u ∈ [0, 1]. (14)

Proof: Let X be the random variable corresponding to Q and f be the density of X. From

Q(u) = (−Φ′(u)− Φ′(0))1/(k−1), u ∈ [0, 1]

we get

−Φ(u) + Φ′(0)u =

∫ u

0
Q(v)k−1dv ≡ µk−1(u), u ∈ [0, 1].

It is easy to verify that Φ(0) = 0. Under the assumption Φ(1) = 0 it is Φ′(0) = µ′k−1 and

Φ(u) = µ′k−1u− µk−1(u), u ∈ [0, 1]. � (15)

In the last section we will use (15) to estimate Φ from a data set such that the data is

generated by the corresponding ME distribution under the constraints of Q(0) = 0 and

fixed mean and fixed k-the power moment.

4 Applications

4.1 Cumulative paired Mielke(r) entropy

Mielke (1972) and Mielke & Johnson (1973) discuss two-sample linear rank tests for alter-

natives of scale with score generating function∣∣∣∣u− 1

2

∣∣∣∣r , u ∈ [0, 1], r > 0.

This family of tests, parameterized by r, includes the well-known test from Ansari &

Bradley (1960) for r = 1 and Mood (1954) for r = 2. He derived the symmetric distribution

for an asymptotically optimal with this score generating function. Similar to Klein et

al. (2016), there is a simple relationship between the score generation functions of two

sample linear rank tests for scale alternatives and the entropy generating function Φ of

a corresponding cumulative paired Φ entropy. In the case Mielke considers, we get the

entropy generating function

Φ(u) = 2

((
1

2

)r
−
∣∣∣∣u− 1

2

∣∣∣∣r) u ∈ [0, 1].

This function is strictly concave on [0, 1] for r > 1 and concave for r = 1. Therefore,

we will only consider this cases. Φ is differentiable and the derivative twice integrable.

It holds Φ(1/2) = (1/2)(r) ≥ Φ(u), u ∈ [0, 1] and Φ(1) = Φ(0) = 0. In the following,

we abbreviate the cumulative paired Mielke(r) entropy by CPEM (r)). Now, we will show

that the double β distribution maximizes CPRM(r), r > 1 if mean and variance are known.
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For r = 1, we get an extremely U -shaped distribution. In both cases the support of the

ME distribution is a closed interval. The four-parameter double β distribution is defined

by

f(x; a, b, c, d) =
1

2B(a, b)

1

d

(
x− c
d

)a−1(
1− x− c

d

)b−1

, c− d ≤ x ≤ c+ d

with a, b, d > 0, c ∈ R.

Corollary 4.1. The distribution F maximizing∫ 1

0
2

((
1

2

)r
−
∣∣∣∣F (x)− 1

2

∣∣∣∣r) dx
under the constraint of known mean µ and known variance σ2 is a double β-distribution

with parameters a = 1/(r − 1), b = 1 and support [µ− σ
√

2r − 1, µ+
√

2r − 1σ] for r > 1

an extremely bimodal distribution with support {µ− σ, µ+ σ} for r = 1.

Proof: The derivative of Φ is given by

Φ′(u) = −2r|u− 1/2|r−1sign(u− 1/2), u ∈ [0, 1], r ≥ 1.

In (8) we need the expected value of Φ′(U)2 for U ∼ R(0, 1). This expected value is given

by

E[Φ′(U)2] = 4r2

∫ 1

0
(u− 1/2)2r−2du = 4r2

∫ 1/2

−1/2
v2r−2dv

= 4r22

∫ 1/2

0
v2r−2dv =

4r2

2r − 1
(1/2)2r.

With Φ(0) = Φ(1) = 0 and according to (8) the quantile function is given by

Q(u)− µ = σ
√

2r − 1|2u− 1|r−1sign(u− 1/2), u ∈ [0, 1]

with the support given by

[µ− σ
√

2r − 1, µ+ σ
√

2r − 1].

for r 6= 1 and {µ− σ, µ+ σ} for r = 1. For r ≥ 1 the corresponding distribution function

is

F (x) = 1/2

(
1 + sign(x− µ)

(
|x− µ|
σ
√

2r − 1

)1/(r−1)
)

for x ∈ [µ− σ
√

2r − 1, µ+ σ
√

2r − 1]. The corresponding density is

f(x) = 1/2
1

σ
√

2r − 1

1

r − 1

∣∣∣∣ x− µ
σ
√

2r − 1

∣∣∣∣1/(r−1)−1

for x ∈ [µ−σ
√

2r − 1, µ+σ
√

2r − 1]. This is a β distribution with parameters a = 1/(r−1,
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b = 1 and support x ∈ [µ − σ
√

2r − 1, µ + σ
√

2r − 1]. For r = 1 we get the extremely

bi-modal distribution with mass points µ− σ and µ+ σ. �

Figure 4: Entropy generating and density of the double beta distribution with parameter
r = 1, 2, 3, 4.

In figure 4, the entropy generating functions and ME densities demonstrate the impact

of different settings for the parameter r. For r = 1, the entropy generating function is

a triangle, such that the density is bipolar. Increasing r leads to a bi-modal distribution

(r = 2), an uniform distribution (r = 3), up to an very leptokurtic distribution with

singularity at 0 (r = 4). With increasing r, the entropy generating functions becomes

more and more flat. The entropy generating function starts at 0 and 1 with an absolute

value of the derivative which is smaller than 1/2. This characterizes the compact support

of all ME distributions for the cumulative paired Mielke(r) entropy. All the distributional

characteristics can be learned from the form of the entropy generating function.

Klein et al. (2016) discuss the cumulative paired Leik entropy and Dai & Chen (2012)

the cumulative paired Gini entropy. Both are embedded in the class of cumulative paired

Mielke(r) entropy for r = 1 and r = 2.
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4.2 Generalized Tukey λ distribution

The second possibility to interpret (8) is to fix a quantile function and derive the entropy

generating function Φ such that Q represents the corresponding ME distribution. This

procedure has been called the generalized cumulative Φ entropy approach. We want to

apply this approach to a quantile function considered by Freimer et al. (1988). They

introduced the so-called generalized Tukey λ distribution with the help of the quantile

function

Q(u) = λ4 +
1

λ3

(
uλ1 − 1

λ1
− (1− u)λ2 − 1

λ2

)
, u ∈ [0, 1].

λ4 is a location, λ3 is a scale parameter and λ1, λ2 determine the distribution’s skewness.

Freimer et al. (1988) show that the k-th moment exists iff min(λ1, λ2 > −1/k. This

means that the variance exists for min(λ1, λ2) > −1/2. Simple calculations lead to formu-

las for the mean

µ = λ4 +
1

λ3

(
1

λ1 + 1
− 1

λ2 + 1

)
and the variance

σ2 =
1

λ3

2
(

1

(2λ1 + 1)(λ1 + 1)2
+

1

(2λ2 + 1)(λ2 + 1)2

− 2

λ1λ2

(
B(λ1 + 1, λ2) +

1

(λ1 + 1)(λ2 + 1)

))
.

In the following corollary, we show how the entropy generating functions look like for

which the generalized Tukey Λ distribution is a maximum entropy distribution under the

constraint of fixed mean and variance.

Corollary 4.2. Let Q be the quantile function of the generalized Tukey λ distribution.

The entropy generating function Φ such that Q is the ME quantile function under the

constraint of known mean and variance is given by

Φ(u) = −u
λ1+1 − (λ1 + 1)u

λ1(λ1 + 1)
− (1− u)λ2+1 − (λ2 + 1)(1− u)

λ2(λ2 + 1)
− 1

λ2 + 1
(16)

for u ∈ [0, 1], λ1 > 0, λ2 > 0.

Proof: It is µ(u) = −
∫ u

0 Q(v)du = −Φ(u). For µ(u) we get

µ(u) =

∫ u

0

vλ1 − 1

λ1
dv −

∫ u

0

(1− vλ2)− 1

λ2
dv

=
uλ1+1 − (λ1 + 1)u

λ1(λ1 + 1)
+

(1− u)λ2+1 − (λ2 + 1)(1− u)

λ2(λ2 + 1)
+

1

λ2 + 1
. �

The setting λ = λ1 = λ2 results in the symmetric Tukey λ distribution. Klein et al.

(2016) identify this distribution as ME distribution for the entropy generating function

Φ(u) = −u(uλ − 1)/λ − (1 − u)λ − 1)/λ, u ∈ [0, 1]. This is (up to constant 1/(λ + 1))

identical with the entropy generating function (16). In the upper panel of figure 5, we
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Figure 5: Entropy generating function and density for the Tukey λ (λ = 0.51, 0, 1, 2) and
the generalized Tukey λ distribution (λ1 = 0.51, 0, 1, 2, λ2 = 0).

see the corresponding entropy generating function and the ME density for several choices

of λ. The range of distributional properties for the Tukey λ distribution is much richer

than it is for the ME distributions belonging to the cumulative paired Mielke(r)-entropy.

For negative values of λ, the support is the whole real line R since the entropy generating

function has an non-finite derivative at 0 and 1. For λ = 0, we get the logistic distribution.

For positive values of λ the support is a compact interval. λ = 1 and λ = 2 give uniform

distributions.

To demonstrate the consequence of skewness, the lower panel of figure 5 shows the

entropy generating function and the density for λ1 6= λ2. We set λ2 = 0 and vary only the

values of λ1. Now, for λ1 6= 0 it is Φ(1) 6= 0. This can be explained by the skewness of

19



the distribution. Φ represents the cumulative mean function. For a skewed distribution,

summing up the quantile function over the positive part does not exactly compensate the

sum of the quantile function over the negative part. This latter part can be smaller for a

left-skewed and greater for a right-skewed distribution.

Chalabi et al. (2012) give an excellent overview about the properties, parameter esti-

mation and applications of the generalized Tukey λ distribution. We recommend to study

the long list of references in their paper. Also van Staden (2013) discusses all this aspects

in detail in his Ph.D. thesis from the University of Pretoria. Van Staden mentions several

applications in distinct scientific fields ranging from actuarial science over finance until

supply chain planning (pp. 127). Chalabi et al. (2012) focus on applications in finance.

King & McGillivray (1999) discuss the ordering properties of skewness and kurtosis for

the generalized λ distribution. Su (2007), Su (2012) and van Staden & Loots (2009) are

concerned with estimation in this family.

4.3 Generalized logistic distribution

A further way to use formula (8) is to start not with an entropy generating function but

with its derivative. Such a derivative could be

Φ′(u) = Φ

(
1− u
u

)
, u ∈ [0, 1] (17)

where Φ is strictly increasing on [0, 1]. An example is Φ(x) = lnx, x > 0 such that

Φ′(u) = ln

(
1− u
u

)
u ∈ [0, 1]. (18)

In this special case, Φ belongs to the cumulative paired Shannon entropy and the corre-

sponding ME distribution is the logistic distribution under the constraint of fixed mean

and variance (cf. Liu (2007), Li & Liu (2008), Liu (2015), Klein et al. (2016)).

A plausible extension is to consider

Φ′(u) =
((1− u)/u)α−1 − 1

α− 1
, u ∈ [0, 1], α 6= 1. (19)

For α→ 1 we get (18).

Corollary 4.3. The density of the ME distribution for the cumulative entropy with deriva-

tive (19) is given by

f(x) =
1− (α− 1)x)1/(α−1)−1(

1 + (1− (α− 1)x)1/(α−1)
)2

for x ∈ (−∞, 1/(α− 1)) and 1 < α < 3/2 and x ∈ (−1/(α− 1),∞) if 1/2 < α < 1.

Proof: Φ′ determines the ME quantile function via (8). This means

Q(u) = −((1− u)/u)α−1 − 1

α− 1
, u ∈ [0, 1]. (20)
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The support is given by

supp(F ) = (Q(0), Q(1)) =

{
(−∞, 1/(α− 1)) for α > 1

(1/α− 1,∞) for α < 1

The considered ME task requires the existence of the variance. The k-th power mean∫ 1

0
Q(u)kdu =

(
1

α− 1

)k ∫ 1

0

(
1− u1−α(1− u)α−1

)k
du

=

(
1

α− 1

)k k∑
i=0

(
k

i

)
(1−)k−iB((1− α)(k − i) + 1, (α− 1)(k − i) + 1)

exists for (1−α)(k− i) + 1 > 0 and (α− 1)(k− i) + 1) > 0 for i = 1, 2, . . . , k. This means

1− 1/k < α < 1 + 1/k. Therefore, the variance exists for 1/2 < α < 3/2.

Solving Q(u) = x with respect to u gives

F (x) =
(

1 + (1− (α− 1)x)1/(α−1)
)−1

x ∈ supp(F )

and differentiating the distribution function delivers the postulated density. �.

The quantile function (20) has been discussed by Shabri et al. (2011). They introduce

the term ”generalized logistic distribution” (GLO). The generalization is due to the fact

that skewness will be introduced into the logistic distribution by the parameter α. The

support also depends on the parameter α. For α → 1, we result in the support R and

the logistic distribution. This is the only symmetric distribution in this GLO class. For

α > 1, the support is (−∞, 1/(α− 1) and the GLO distribution is left-skewed. For α < 1,

we get the support [−1/(1− α),∞) and a right-skewed distribution.

A working paper written by Morais & Cordeiro (no year) gives an overview about other

generalizations of the logistic distribution that are completely different to (20). Nassar &

Elmasry (2012) and Tripathi et al. (2017) are also concerned with generalizations of the

logistic distribution.

It remains to identify the entropy generating function Φ belonging to (19). By simple

integration, we get the partial sum function

µ(u) =
1

α− 1

(∫ u

0
((1− p)/p)α−1dp− u

)
=

1

α− 1

(∫ u

0
p1−α(1− p)α−1dp− u

)
=
B(2− α, α)

α− 1

(
β(u; 2− α, α)− u

B(2− α, α)

)
with β(.; a, b) as the distribution function of the β(a, b) distribution. Then, Φ(u) = −µ(u),

u ∈ [0, 1] with Φ(1/2) = 0 and Φ(1) = −µ = /1(α− 1)(1−B(2−α, α) for 1/2 < α < 3/2,

α 6= 1 hold.

Figure 6 demonstrates Φ together with the density of the GLO distribution. The logistic
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distributions serves as a reference (α = 1). The other settings show left-skewed (α = 0.6)

and two right-skewed distributions (α = 1.2 and α = 1.4).

Figure 6: Entropy generating function and density for the generalized logistic (GLO) dis-
tribution with parameter α = 0.6, 1, 1.2, 1.4.

4.4 ”New” skewed logistic and Tukey λ distributions

In Klein et al. (2016) entropy generating functions of the symmetric form

Φ(u) = ϕ(u) + ϕ(1− u), u ∈ [0, 1]

with ϕ concave on [0, 1] have been discussed. Again, we quote the result that for ϕ(u) =

−u lnu we get the logistic and for ϕ(u) = u(uα−1 − 1)/(1 − α) the Tukey λ distribution

as ME distributions under the constraint of given mean and variance.

In the following, we consider the more general case that

Φ(u) = ϕ1(u) + ϕ2(1− u), u ∈ [0, 1]
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with ϕi, i = 1, 2 concave on [0, 1]. More special is the form

Φ(u) = α1ϕ(u) + α2ϕ(1− u), u ∈ [0, 1],

where αi > 0, and ϕi concave on [0, 1], i = 1, 2. If ϕ is symmetric around 1/2, then

Φ(u) = (α1 + α2)ϕ(u), u ∈ [0, 1]. α1 + α2 only plays the role of an scale parameter.

This case will be not considered in the following since we are interested in skewed ME

distributions.

Examples for asymmetric functions are

ϕ(u) =

{
−uuλ−1

λ for u ∈ [0, 1], λ 6= 0

−u lnu for u ∈ [0, 1], λ = 0
(21)

We look for ME distributions in this special case. To get only one skewness parameter,

we set α1 +α2 = 1 such that α1 = α and α2 = 1−α for α ∈ [0, 1]. The following corollary

informs about the corresponding ME quantile function.

Corollary 4.4. Let Φ(u) = αϕ(u) + (1 − α)ϕ(u), u ∈ [0, 1], α ∈ [0, 1] with ϕ from (21)

the entropy generating function. Then the corresponding ME quantile function is

Q(u) =

{
(2α− 1) + (λ+ 1)

(
αu

λ−1
λ − (1− α) (1−u)λ−1

λ

)
for u ∈ [0, 1], λ 6= 0

(2α− 1) + α lnu− (1− α) ln(1− u) for u ∈ [0, 1], λ = 0
(22)

with support depending on α and λ > −1/2

λ α support

(−1/2, 0] 0 [−1,∞)

1 (−∞, 1]

(0, 1) (−∞,∞)

(0,∞) 0 ([1,−1 + (λ+ 1)/λ]

1 [1− (λ+ 1)/λ, 1]

(0, 1) [2α− 1− α(λ+ 1)/λ, 2α− 1 + (1− α)(λ+ 1)/λ]

Proof: The claim follows immediately by calculating the derivative Φ′ and the fact that

Q(u)) = −Φ′(u), u ∈ [0, 1]. The variance exists for λ > −1/2. The support is easily

verified by calculating Q(0) and Q(1). �

For α 6= 1/2, the entropy generating function gives different weight to small and large

values of u which leads to a asymmetric ME quantile function determined by the negative

of the derivative of Φ. In the case of α = 1/2, we get the well-known Tukey λ and the

logistic distribution. Therefore, (4.4) can be considered as the quantile function of a skewed

Tukey λ distribution or an skewed logistic distribution. Both seems to be a new alternative

to the already discussed generalized Tukey λ and the GLO-distribution. But this is not

completely true. In his Ph.D. thesis, van Staden (2013) introduce already this alternatives.

In his joint paper with King (2014) he investigates the properties of the skewed logistic
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distribution intensively. Now, we know how the cumulative paired Φ entropy looks like

for which this distributions are ME distributions under the constraint of known mean and

variance. van Staden (2013) and van Staden & King (2015) derive explicit expressions for

the ML estimators for the location, the scale parameter and the parameter α and λ and

their asymptotic standard errors. The latter parameters together control skewness and

kurtosis. King % van Staden (2014) fit the skewed logistic distribution to a data set from

biology.

Figure 7: Entropy generating function and density for the skewed logistic (λ = 0) and the
skewed Tukey λ distribution for λ = −0.4, 2 and α = 0.1, 0.5, 0.7, 0.9.
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More precisely, van Staden (2013) discuss the quantile function

Q(u) ==

{
a+ b

(
αu

λ−1
λ − (1− α) (1−u)λ−1

λ

)
for u ∈ [0, 1], λ 6= 0

a+ b (α lnu− (1− α) ln(1− u)) for u ∈ [0, 1], λ = 0

with a location parameter a and a scale parameter b > 0. With this terminology Q belongs

to the setting a = 2α− 1 and b = λ+ 1.

Figure 7 gives an impression of the different entropy characterizing function Φ and the

density of the skewed logistic (λ = 0) and the skewed Tukey λ distribution (λ = −0.4. The

symmetric logistic and Tukey λ distribution (α = 1/2) serve as a point of reference. The

parameter setting α = 0.1 results in left-skewed logistic and Tukey λ distributions. For

α = 0.7 and α = 0.9, we get a right-skewed distribution. At last, in figure 7, the parameter

λ was set to 2.0. This means a compact support and an extremely skewed distribution.

4.5 Fechner approach of skewness

There are many other proposals to introduce a skewness parameter into a symmetric

distribution. One proposal can be traced back to Fechner (1897), pp. 295. He proposes

to use different values of a scale parameter for the left and the right half of a symmetric

distribution. Klein & Fischer (2006) show that such a split of the scale parameter leads

to a skewed distribution in the sense that the skewness parameter attains the skewness

ordering of van Zwet (1964). Arrelano-Valle et al. (2006) picks up the Fechner proposal

and introduce one parameter of skewness γ by considering functions f1(γ) and f2(γ) as

different scale parameters for the both halves of a symmetric distribution. This approach

includes the proposal made by Fernandez et al. (1995) with f1(γ) = 1/γ) and f2(γ) = γ,

γ > 0. Let f be the density being symmetric around 0. Then, a density with skewness

parameter γ is given by

f(x, γ) =
2γ

1 + γ2
(f(x/γ)I(x < 0) + f(xγ)I(x ≥ 0)) (23)

for x ∈ R, γ > 0. The corresponding distribution function is

F (x, γ) =

{
2γ2/(1 + γ2)F (x/γ, γ = 1) for x < 0

2/(1 + γ2)(F (0, γ = 1)(γ2 − 1) + F (xγ, γ = 1)) for x ≥ 0
(24)

We want to follow the generalized cumulative Φ approach. This means to identify the

entropy generating function Φ such that (23) is a ME distribution under the constraint of

fixed mean and variance.

Corollary 4.5. Let f be a density symmetric around 0 and Q the corresponding quantile

function. Constraints are given by fixing mean and variance. Then, (23) is the density of
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the ME distribution with entropy generating function

Φ(u) =


−2γ3/(1 + γ2)

∫ u
0 Q(v)dv

for u ≤ γ2/(1 + γ2)

−2/(γ(1 + γ2))
∫ 0.5(1+γ2)u+0.5(1−γ2)

0.5 Q(z)dz

for u > γ2/(1 + γ2)

Proof: By inverting the distribution function (24), we get the quantile function

Q(u, γ) =

{
γQ((1 + γ2)/(2γ2)u, γ = 1) for u < γ2/(1 + γ2)

1/γQ((1 + γ2)/2u, γ = 1) + (1− γ2)/2 for u ≥ γ/(1 + γ2)

Summing up this quantile function leads to the partial mean function

µ(u, γ) =

∫ u

0
Q(v, γ)dv =


2γ3/(1 + γ2)

∫ u
0 Q(v)dv

for u ≤ γ2/(1 + γ2)

2/(γ(1 + γ2))
∫ 0.5(1+γ2)u+0.5(1−γ2)

0.5 Q(z)dz

for u > γ2/(1 + γ2)

The negative of the partial mean function determines the entropy generating function Φ

such that (8) is a ME distribution under the constraint of given man and variance. �

As an illustrating example, we consider the skewed normal distribution.

Example 4.1. Let fN (F−1
N ) be the density (quantile function) of the standard normal

distribution. From
∫ u

0 F
−1
N (v)dv = fN (F−1

N (u)), u ∈ [0, 1] we get

µ(u, γ) =


2γ3/(1 + γ2)fN (F−1

N (u)) for u ≤ γ2/(1 + γ2)

2/(γ(1 + γ2))
(
fN (F−1

N (0.5((1 + γ2)u+ 1− γ2))− 1/
√

2π)
)

for u > γ2/(1 + γ2)

Figure 8 shows the entropy generating function and the density of the skewed normal

distribution for different values of the skewness parameter γ. The symmetric standard

normal distribution (γ = 1) serves as a point of reference.

Up to now, we there is no constraint on the ME distribution’s support f.e. in the form

Q(0) = 0. We could always apply theorem 3.1. In the following two subsections, the

support of the ME distribution has to be non-negative and the property Q(0) = 0 will

be required as an additional constraint for the ME task. Due to the non-negativity, it is

possible to derive ME distributions under the constraint of a given mean and more general

under a given k-th power moment for k ≥ 2.

4.6 Cumulative residual Shannon entropy and the Weibull distribution

We consider ME distributions with Q(0) = 0. We can apply theorem 3.2 to get the

ME distribution if the mean µ and the k-th moment are fixed. At first, we consider the
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Figure 8: Entropy generating function and density for the skewed normal distribution with
parameter values γ = 0.5, 1.0, 1.2, 2.

entropy generating function Φ(u) = −(1−u) ln(1−u), u ∈ [0, 1] with Φ(1) = Φ(0) = 0 and

Φ′(u) = ln(1− u)− 1, u ∈ [0, 1] such that Φ′(0) = −1 and −Φ′(u) + Φ′(0) = − ln(1− u),

u ∈ [0, 1] of the cumulative residual Shannon entropy and receive the Weibull distribution

as ME solution. In a modified form, this result is known from Rao (2005).

Corollary 4.6. Let Φ(u) = −(1− u) ln(1− u), u ∈ [0, 1] the entropy generating function

and the constraints are that the mean µ and the k-th power moment µ′k are fixed. Then

the corresponding ME distribution is given by a Weibull distribution with scale parameter

λ = µ/Γ(1 + 1/(k − 1)) and shape parameter r = (k − 1) if

µ′k
µk

=
Γ(1 + k/(k − 1))

Γ(1 + 1/(k − 1))k
. �

Proof: The Weibull distribution is defined by a quantile function

QW (u) = λ(− ln(1− u))1/r, u ∈ [0, 1], r > 0.

The support is given by [QW (0, γ) = 0, QW (1, γ) =∞) and the mean is λΓ(1+1/r). From
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(12) we get the quantile function

Q(u) =
(− ln(1− u))1/(k−1)∫ 1

0 (− ln(1− u))1/(k−1)du
µ, u ∈ [0, 1].

This means that Q(u) is proportional to the quantile function QW of a Weibull distribution

with shape parameter r = (k − 1). With∫ 1

0
(− ln(1− u))1/(k−1)du = Γ (1 + 1/(k − 1))

and λ ≡ µ/Γ(1 + 1/(k− 1)) we get the wanted quantile function of a Weibull distribution

with scale parameter λ and shape parameter r = (k − 1). It is easy to verify that

µ′k
µk

=
Γ(1 + k/(k − 1))

Γ(1 + 1/(k − 1))k
.

For k = 2 we get an exponential distribution with scale parameter λ = µ if µ′2/µ
2 =

Γ(1 + 2)/Γ(2)2 = 2.

It is an obvious task to substitute the generating function of the cumulative resid-

ual Shannon entropy by the more general generating function of the cumulative residual

Havrda-Charvát entropy. This will lead to a generalized Weibull distribution, also known

as extended Burr XII distribution) as will be shown in the next subsection.

4.7 Cumulative residual Havrda-Charvát entropy and the extended Burr XII

distribution

The entropy generating function of the cumulative residual Shannon entropy can be gen-

eralized to

Φ(u) = (1− u)((1− u)α−1 − 1)/(1− α), u ∈ [0, 1], α 6= 1. (25)

Again we get Φ(1) = Φ(0) = 0. The derivative Φ′ is

Φ′(u) =
1

1− α
(1− α(1− u)α−1) = 1− 1

1− α
(
α((1− u)α−1 − 1)

)
, u ∈ [0, 1]

such that Φ′(0) = 1 and

−Φ′(u) + Φ′(0) =
1

1− α
(
α((1− u)α−1 − 1)

)
, u ∈ [0, 1].

Now, we look for the corresponding ME distribution if Q(0) = 0 and µ, µ′k are fixed.

The following corollary states that this ME distribution generalizes the Weibull distribu-

tion. For the sake of simple notation, we introduce a two-parametric generalization of the

complete Γ function as

Γ2(r, λ) =

∫ 1

0

(
−u

λ − 1

λ

)r−1

du, r > 0.
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Notice that Γ2(r, λ)→ Γ(r) for λ→ 0.

Corollary 4.7. Let Φ(u) = (1− u)((1− u)α−1 − 1)/(1− α), u ∈ [0, 1], α 6= 1 the entropy

generating function and the constraints are that the mean µ and the k-the power moment

µ′k are fixed. Then the corresponding ME distribution is given by the quantile function

Q(u) =

(
1

1−α
(
(1− u)α−1 − 1

))1/(k−1)

Γ2(1 + 1/(k − 1), α− 1)
µ u ∈ [0, 1], α 6= 1 (26)

if the following relation holds between µ and µ′k:

µ′k
µk

=
Γ2(1 + k/(k − 1), α− 1)

Γ2(1 + 1/(k − 1), α− 1)k
. (27)

Proof: With∫ 1

0

(
1

1− α
(
α((1− u)α−1 − 1)

))1/(k−1)

du = α1/(k−1)Γ2(1 + 1/(k − 1), α− 1)

the assertion follows immediately. �

Mudholkar et al. (1996) introduce the quantile function (26) with a different parametriza-

tion and call the corresponding distribution ”generalized Weibull distribution”. Due to the

fact that the Burr XII distribution (cf. Burr (1942)) is a special case (in our parametriza-

tion for α = 2), Shao et al. (2004) use the term ”extended Burr XII distribution” (EBXII).

A recent paper, discussing this distribution, is Ganora & Laio (2015). They are concerned

with parameter estimation (see also Shao (2004), Nadaraja & Kotz (2006), Usta, (2013)).

Applications are lifetimes of devices with a bathtub hazard rate (cf. Mudholkar et al.

(1996)) and flood frequency and duration analysis (cf. Shao et al. (2004), Nadarajah &

Kotz (2006), Ganora & Laio (2015)).

The EBXII density is given by

f(x) =
k − 1

λ

(x/λ)k−2

(1 + (1− α)(x/λ)k−1)
1−1/(α−1)

, x > 0,

with λ = µ/Γ2(1 + 1/(k − 1), α− 1), k > 1, α 6= 1. The support is (0, λ(1/(α− 1)1/(k−1))

for α > 1 and (0,∞) for α < 1).

Figure 9 shows the entropy generating function (25) as well as ME densities under the

constraint of a fixed power moment µ′k for k = 2, 4, 8. The setting k = 2 leads to density

with a shape similar to an exponential distribution. The constraint (27) means a fixed

coefficient of variation (cf. Rao et al. (2004)).

5 Estimating the entropy generating function

Can we learn something from data about the entropy generating function Φ for which the

data generating distribution is a ME distribution under the constraint of given mean and
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Figure 9: Entropy generating function and extended Burr XII density for α = 0.5, 1, 2 and
k = 2, 4, 8.

variance? The entropy generating function Φ is given by the partial mean function

µ(u) = uE[X|X ≤ Q(u)] u ∈ [0, 1].

Therefore, it is obvious to estimate this partial mean function to get an estimator for Φ.

Let X1, . . . , Xn be identical and stochastic independent distributed random variables.

X(n:1), . . . , X(n:n) denote the corresponding sequence of order statistics. For a fixed value

u ∈ [0, 1] such that nu ∈ {1, 2, . . . , n} we consider an estimator of the form

Φ̂(u) = −µ̂(u) = −u 1

nu

nu∑
i=1

X(n:i), nu ∈ {1, 2, . . . , n}

for the entropy generating function Φ.
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We would like to demonstrate the usefulness of this estimator by an example.

Example 5.1. The first data set consists of the S&P500 standardized daily logarithmic

returns from 10-05-2012 to 10-04-2017 2. This gives 1256 data points. We have to notice

that the mean and the variance are fixed to the values 0 and 1. In figure 10, we compare the

estimated entropy generating function (−µ̂(u)) with the entropy generating functions of the

standardized t distribution with 4 degrees of freedom and the standard normal distribution.

Standardizing gives also the mean value 0 and the variance 1 for the t distribution. The

entropy generating function of the t distribution must be calculated by numerical integra-

tion. We choose the number of degrees of freedom by trail and error. But, ML estimation

gives a value not far away from 4.

Figure 10: Estimated entropy generating function and estimated density for the S&P500
standardized daily log returns from from 10-05-2012 to 10-04-2017.

We know from (15) that for a non-negative random variable with Q(0) = 0 and fixed

mean µ and fixed k-th power moment µ′k the entropy generating function Φ is given by

Φ(u) = µ′k−1u− µk−1(u) = µ′k−1u− uE[Xk−1|X ≤ Q(u)].

2The data is available from https://fred.stlouisfed.org/series/SP500
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For this entropy generating function. Q is a ME quantile function.

To get an estimator for Φ. it is only necessary to estimate the (k − 1)-th power mean

µ′k−1 and the partial (k − 1)-th power mean function µk−1(u). For a fixed value u ∈ [0, 1]

(such that nu ∈ {1, 2, . . . , n}), a natural estimator for the partial (k − 1)-th power mean

function is

µ̂k−1(u) = u
1

nu

nu∑
i=1

Xk−1
(n:i), nu ∈ {1, 2, . . . , n}.

An estimator for the entropy generating function Φ is given by

Φ̂(u) = u

(
1

n

n∑
i=1

Xk−1
(n:i) −

1

nu

nu∑
i=1

Xk−1
(n:i)

)
, nu ∈ {1, 2, . . . , n}.

We want to demonstrate that this estimator works really good for a real data set and

the Weibull distribution. To do this, we need the partial (k − 1)-th power mean function

for the Weibull distribution with shape parameter r and scale parameter λ. For this

distribution, it holds

µk−1(u) =

∫ u

0
(λ(−(1− v)r))k−1 dv = λk−1Γ

(
k − 1

r
+ 1

)
Γ

(
− ln(1− v);

k − 1

r
+ 1, 1

)
for u ∈ [0, 1]. Γ(x; a, b) denotes the distribution function of a Γ distribution with shape

parameter a and scale parameter β. The corresponding entropy generating function Φ

such that this Weibull distribution is CEΦ maximal under Q(0) = 0 and the constraints

of fixed mean µ and fixed k-the power moment is

Φ(u) = uλk−1Γ

(
1 +

k − 1

r

)(
1− Γ

(
− ln(1− u);

k − 1

r
+ 1, 1

))
, u ∈ [0, 1].

k determines the shape parameter r by the relation

µ′k
µk

=
Γ(1 + k/r)

Γ(1 + 1/r)k
.

Example 5.2. Let X be a random variable representing the duration in days between two

explosions in the mines of a specific region. From Schlittgen (1996), we get the following

data set with the duration between 41 mine explosions:

378 36 15 31 215 11 137 4 15 72

96 124 50 120 203 176 55 93 59 315

59 61 1 13 189 345 20 81 286 114

108 188 233 28 22 61 78 99 326 275

We set k = 2. This means that for every potential ME distribution µ′2/µ
2 = 1.762 has

to hold. This implies r = 1.148 for the shape parameter r of the Weibull distribution.

In figure 11, the estimated entropy generating function is compared with µk−1(u) for this
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Weibull distribution. The fit seems to be rather good in view of the relative small sample

size.

Figure 11: Estimated entropy generating function and estimated density for a data set
with time intervals between 41 mine explosions.

Further work will be to estimate the number of degrees or parameters of other flexible

distributions by minimizing the distance between the easy to calculate empirical entropy

generating function, and the entropy generating function of the distribution, we suppose

the data could be generated from. The advantage of this procedure could be that the

empirical entropy generating function is rather smooth. Therefore, minimizing the dis-

tance between the entropy generating functions could be more accurate than considering

the distance between the empirical quantile functions, a density estimator or the empir-

ical distribution functions and the corresponding theoretical counterpart. But this will

investigated in future research.

6 Conclusion

Maximizing Shannon’s differential entropy under different moment constraints is a well-

known task. Without any constraint, the differential entropy will be maximized by an
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uniform distribution representing the situation of no information. Instead of the dif-

ferential entropy, a cumulative entropy can be used. This entropy depends either on the

distribution (direct) or on the survival function (residual) or on both (apired). Maximizing

this entropy without any constraint gives a extremely bi-modal (= bipolar) distribution.

This distribution represents so-called contradictory information since an event and the

complement can happen with equal probability. In this situation, it is extremely hard to

make a forecast, even harder than for an uniformly distributed random variable. Under

the constraint of fixed mean and variance, maximizing the cumulative entropy tries to

transform a distribution in the direction of a bipolar distribution as far as it is allowed by

the constraints. For so-called cumulative paired, entropies and the constraints that mean

and variance are known, solving the maximizing problem lead to symmetric ME distribu-

tions like logistic and the Tukey λ distribution (cf. Li & Liu (2008), Klein et al. (2016)).

Other ME distributions were found for the cumulative paired Leik and Gini entropy (cf.

Klein (2016 et al., Dai & Chen (2012), Dai (2017)). We generalize the cumulative paired

entropy in several ways. First, we introduce the cumulative paired Mielke(r) entropy and

derive the ME distributions. The results already known for the cumulative paired Leik

and Gini entropy are included for r = 1 and r = 2. Then, we turn around the research

question, consider the generalized maximum entropy approach and derive the entropy

generating function such that a pre-specified skewed distribution is a ME distribution.

The generalized λ distribution serves as an example. The generalized logistic distribution

(GLO) is another example for an ME distribution. Starting with a natural generalization

of the derivative of the entropy generating function known from the logistic distribution,

we arrive at the GLO immediately. Considering a linear combination of entropy generat-

ing functions leads to new ME distributions with skewness properties. Fechner’s proposal

to define different values of a scale parameter for both halves of a distribution also gives

skewed distributions. Again, we derive the corresponding entropy generating function.

The skewed normal distribution serves as an illustrative example. In the literature, the

ME task was considered mainly for lifetime distributions with the special property that the

support is [0,∞), and it holds Q(0) = 0. Under this additional constraint, we derive the

ME distribution for fixed mean and k-the power moment. This gives the extended Burr

XII distribution. At last, we propose an estimator for the cumulative entropies generating

function representing all the properties of the underlying ME data generating distribution.

The usefulness of this estimator can be demonstrated for two real data sets.
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59. Rényi, A. (1961). On measures of entropy and information. Fourth Berkeley Sym-

posium on Mathematical Statistics and Probability, 547-561.

60. Sankaran, P.G. & Sunoj, S.M. (2017). Quantile-based cumulative entropies. Com-

munications in Statistics - Theory and Methods 46, 805-814.
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