
Friedrich-Alexander-Universität Erlangen-Nürnberg
Institute for Economics

https://www.iwf.rw.fau.de/research/iwf-discussion-paper-series/

No. 02/2018

Machine learning for time series
forecasting - a simulation study

Thomas Fischer
University of Erlangen-Nürnberg

Christopher Krauss

University of Erlangen-Nürnberg

Alex Treichel
University of Erlangen-Nürnberg

ISSN 1867-6707

Discussion Papers
in Economics

https://www.iwf.rw.fau.de/research/iwf-discussion-paper-series/

Machine learning for time series forecasting - a simulation study

Thomas Fischera,1,, Christopher Kraussa,1,, Alex Treichela,1,

aUniversity of Erlangen-Nürnberg, Department of Statistics and Econometrics, Lange Gasse 20, 90403
Nürnberg, Germany

Wednesday 24th January, 2018

Abstract

We present a comprehensive simulation study to assess and compare the performance of

popular machine learning algorithms for time series prediction tasks. Specifically, we consider

the following algorithms: multilayer perceptron (MLP), logistic regression, naïve Bayes, k-

nearest neighbors, decision trees, random forests, and gradient-boosting trees. These models

are applied to time series from eight data generating processes (DGPs) – reflecting different

linear and nonlinear dependencies (base case). Additional complexity is introduced by adding

discontinuities and varying degrees of noise. Our findings reveal that advanced machine

learning models are capable of approximating the optimal forecast very closely in the base

case, with nonlinear models in the lead across all DGPs – particularly the MLP. By contrast,

logistic regression is remarkably robust in the presence of noise, thus yielding the most

favorable accuracy metrics on raw data, prior to preprocessing. When introducing adequate

preprocessing techniques, such as first differencing and local outlier factor, the picture is

reversed, and the MLP as well as other nonlinear techniques once again become the modeling

techniques of choice.

Introduction

Time series forecasting has been subject to research for many years. By adding a dis-

turbance term to harmonic time series models Yule (1927) effectively introduces the notion

that a time series is a realization of a stochastic process. Based on this idea, many con-

cepts have emerged ever since. With the seminal work of Box and Jenkins (1970), research

Email addresses: thomas.g.fischer@fau.de (Thomas Fischer), christopher.krauss@fau.de
(Christopher Krauss), alex.treichel@fau.de (Alex Treichel)

in time series analysis has gained further momentum - driven by the introduction of the

autoregressive integrated moving average (ARIMA) model and the Box-Jenkins methodol-

ogy, an approach for “identification, estimation, and verification” of time series (Gooijer and

Hyndman, 2006, p. 447). ARIMA models are quite flexible but effectively limited by the

assumption of linear intertemporal dependencies. Therefore, they are not able to efficiently

capture nonlinear stylized facts, which are often present in real world applications (Zhang

et al., 1998, 2001; Gooijer and Hyndman, 2006). Many attempts have been made in that re-

spect - leading to a variety of nonlinear time series models, e.g., bilinear model (Granger and

Anderson, 1978), threshold autoregressive (TAR) model (Tong, 2012; Tong and Lim, 1980),

smooth transition autoregressive (STAR) model (Chan and Tong, 1986), autoregressive con-

ditional heteroscedastic (ARCH) model (Engle, 1982), generalized autoregressive conditional

heteroscedastic (GARCH) model (Bollerslev, 1986; Taylor, 1987), or jump processes (Cox

and Ross, 1976), among others. Unfortunately, the majority of these models work well for

specific problems, but they do not exhibit a good ability to generalize to other nonlinear

modeling tasks.

This insufficiency and the growth of computing power has led to the rise of machine

learning models which, compared to classic (nonlinear) time series analysis, do not require

prior assumptions about the underlying structure of the data (Zhang et al., 2001; Zhang,

2003). Nonsurprisingly, academics have devoted tremendous work to improving these models

and to comparing their forecasting performance with traditional time series methods on

artificial and on real world data sets. Today, there exist several interesting areas of research.

The first strand of literature focuses on artificial neural networks (ANN) and their relative

advantage compared to traditional time series models - see, for example, Chakraborty et al.

(1992); Callen et al. (1996); Hill et al. (1996); Kaastraa and Boyd (1996); Zhang et al.

(1998); Alon et al. (2001); Zhang et al. (2001); Zhang and Qi (2005). Building upon that, a

second strand is devoted to “hybrid methods”, i.e., the combination of machine learning with

traditional time series approaches such as ARIMA models - see Zhang (2003); Xiao et al.

(2012). A third strand focuses on a great variety of (mostly non-ANN) machine learning

models in a time series context - see, for example, Kim (2003); Krollner et al. (2010); Ahmed

et al. (2010); Bontempi et al. (2013). These three strands of literature share one commonality

2

- addressing time series prediction tasks with machine learning is gaining momentum in the

academic community. Significant innovation occurs in this domain - a few distinct examples

follow: Robinson and Hartemink (2010) design a new class of Bayesian networks allowing to

cope with nonstationary data generating processes. Durante et al. (2014) develop a locally

adaptive factor process that incorporates locally varying smoothness in the mean as well as

in the covariance matrix. Finally, Khaleghi et al. (2016) formulate an effective clustering

algorithm that assigns two time series to the same class if they were generated from the

same distribution. The bottom line is - machine learning research produces powerful and

innovative tools for time series analysis tasks.

With our study, we aim at further exploring this exciting field of research at the inter-

section of machine learning and time series. Specifically, we target the following question:

How well do widely used machine learning models fare in forecasting a diverse set of linear

and nonlinear time series - in a baseline setting, and when complexity is further increased

by introducing jumps or additional noise. Specifically, the contribution of this paper can be

divided into three parts.

First, we propose a Monte Carlo study design that allows for comparing the forecasting

quality of eight machine learning models (two MLPs, logistic regression, naïve Bayes, k-

nearest neighbors, decision trees, random forests, gradient-boosting) across eight linear and

nonlinear data generating processes (autoregressive model, bilinear model type 1, bilinear

model type 2, nonlinear autoregressive model, nonlinear moving average model, signum au-

toregressive model, smooth transition autoregressive model, threshold autoregressive model).

The salient point is that we make use of a binary target. If the time series rises or remains

constant, a “1” is assigned, and a “0” otherwise. This binary response allows for classification

accuracy as evaluation metric - which is simple, easy to interpret, and comparable across

vastly different DGPs.

Second, we empirically assess the forecasting ability of each machine learning algorithm

for each DGP. On a similar note, we derive insights about the “forecastability” of each DGP

- by benchmarking the machine learning models against the optimal forecast that can be

achieved upon knowledge of the actual process equation. Furthermore, we evaluate the

robustness of these findings in light of jumps and varying degrees of noise. We find that the

3

MLP produces the best results across all considered DGPs in absence of disturbances. By

contrast, logistic regression yields the best results in light of noise and high jumps.

Third, we evaluate the effect of different feature engineering and preprocessing techniques

to answer the question, whether disturbances can be effectively mitigated and hence learning

facilitated. Most notably, we find that outlier detection procedures can significantly enhance

the overall accuracy in light of jumps. Also, adding first differences as additional features

has a positive net effect.

The remainder of this paper is organized as follows: Section 2 describes the study design,

data generation, preprocessing, model training, and evaluation. Section 3 covers the results

obtained in the experiments. Section 4 concludes and summarizes the key findings.

Methodology

The methodology covers the entire content and process for setting up our Monte Carlo

experiments. First, we discuss how we generate time series data from eight different linear

and nonlinear DGPs - including the potential introduction of disturbances via jumps or noise

(2.1). Second, we show how we derive features and targets from these time series data, and we

introduce different preprocessing techniques, i.e., standardization and outlier removal (2.2).

Third, we briefly elaborate on the eight machine learning algorithms we apply, and we discuss

how models are trained and how performance is measured (2.3). Fourth, for each DGP, we

derive the optimal forecast as ambition level, i.e., the maximum forecasting accuracy that can

possibly be attained by any learner (2.4). Finally, we present the parameter configurations

for the 29 Monte Carlo experiments we conduct to answer the research questions raised in

the introduction (2.5).

Data generation

We use eight linear and nonlinear stochastic processes with normally distributed innova-

tions from which we generate data (2.1.1). To introduce further complexity, we can superpose

each DGP either with a compound Poisson jump process (2.1.2) to trigger sudden regime

shifts, or with a random walk to inject noise (2.1.3). These DGPs - in combination with

controlled distortions, allow for simulating time series data with a varying amount of struc-

4

ture that can be made arbitrarily difficult to capture for the machine learning algorithms.

From each of these DGPs, we simulate time series of length N = 2500, whereof the first

2000 observations are used for training and the last 500 for evaluating the performance of

the machine learning algorithms out-of-sample.

Eight linear and nonlinear data generating processes

We choose eight DGPs - an autoregressive model (AR), a sign autoregressive model

(SAR), a nonlinear autoregressive model (NAR), a nonlinear moving average model (NMA),

a bilinear model of type 1 (BL1), a bilinear model of type 2 (BL2), a smooth transition

autoregressive model (STAR), and a threshold autoregressive model (TAR). There are three

motivations for this selection. First, it is based on the study of Zhang et al. (2001) - one

of the most comprehensive works in this field of research. Second, these DGPs exhibit

varying levels of nonlinearities, ranging from virtually none (AR) to very strong nonlinear

dependencies between present and past values (SAR). Third, these DGPs, while by no means

comprehensive, still compose a representative subset in contemporary time series literature -

for further discussions, see Terasvirta et al. (2010); Terasvirta and Anderson (1992); Granger

and Anderson (1978); Tong and Lim (1980); Tong (2012); Tong et al. (1995). We now briefly

introduce each DGP. All error terms εt are i.i.d. N (0, 1), unless otherwise specified.

Autoregressive (AR) model

AR(2) : st = 0.5st−1 + 0.45st−2 + εt. (1)

Sign autoregressive (SAR) model

SAR(2) : st = sign(st−1 + st−2) + εt, (2)

where

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0.

5

Nonlinear autoregressive (NAR) model

NAR(2) : st =
0.7|st−1|
|st−1|+ 2

+
0.35|st−2|
|st−2|+ 2

+ εt. (3)

Nonlinear moving average (NMA) model

NMA : st = εt − 0.3εt−1 + 0.2εt−2 + 0.4εt−1εt−2 − 0.25ε2t−2. (4)

Bilinear (BL) model

BL(1) : st = 0.7st−1εt−2 + εt, (5)

BL(2) : st = 0.4st−1 − 0.3st−2 + 0.5st−1εt−1 + εt. (6)

Smooth transition autoregressive (STAR) model

STAR(2) : st = 0.3st−1 + 0.6st−2 + (0.1− 0.9st−1 + 0.8st−2)[1 + exp(−10st−1)]
−1 + εt.

(7)

Threshold autoregressive (TAR) model

TAR(2) : st =

0.9st−1 + 0.05st−2 + εt for |st−1| ≤ 1

−0.3st−1 + 0.65st−2 − εt for |st−1| > 1.

(8)

Jump process

Jumps represent a form of discontinuity in the series. Depending on number of occurrence

and size, they can have a substantial impact on the machine learning models’ performance,

e.g., by provoking a mean shift. In some Monte Carlo settings, we pollute the original DGP

st with jumps by superposing st with a compound Poisson process jt as follows,

xt = st + jt, (9)

6

where xt denotes the resulting DGP. The compound Poisson jump process jt is defined as in

Ross (2007) by

jt =
Nt∑
i=1

Di with Di ∼ N (0, s2p) and Nt ∼ P(λp), (10)

where sp controls the jump size and λp the jump rate, at which the jumps are expected to

occur. For the jump experiments we set sp to 0.1, 1, and 10, i.e., 10 %, 100 %, or 1000

% of the standard deviation of a regular innovation to reflect increasingly higher levels of

disturbance. The larger sp, the larger the variance of the distribution from which the jumps

are drawn, and the larger is the average jump in magnitude (while the mean over positive

and negative jumps is still zero). The parameter λp is set to N/10, where N denotes the

length of the generated time series. In other words, a jump is supposed to occur after the

passing of λp periods in expectation. Thus, for N = 2500, 10 jump events are expected to

happen, corresponding to 0.4% of all observations. This parameter is selected in accordance

with the jump analysis of Jondeau et al. (2015). Superposing the DGP st with the compound

Poisson Jump process results in a corresponding mean shift by the actual jump size that

occurred at each jump event. With the jump size parameter sp, we can hence adjust the

expected level of distortion occurring at each event.

Noise process

In some Monte Carlo settings, we pollute the original DGP st with a stochastic mean

drift by superposing st with a random walk nt as follows,

xt = st + nt, (11)

where xt denotes the resulting DGP, and where nt is given by

nt = nt−1 + εt with εt ∼ N (0, σ2
N). (12)

As is customary in the fields of electrical and telecommunications engineering, the realization

of different levels of noise leads to our definition of the signal to noise ratio, SNR. We

compute it as the ratio of the unconditional variance of the structured process σ2
S and the

7

variance of the innovations of the random walk1 σ2
N ,

SNR =
σ2
S

σ2
N

, (13)

where σ2
S is empirically derived.

For this simulation, we choose four different noise levels:

• No noise: SNR→∞

• Low noise: SNR = 20

• Medium noise: SNR = 4

• High noise: SNR = 2

With the superposition in equation (11), we achieve a resulting DGP xt that is globally

nonstationary due to the random walk overlay. However, depending on SNR, the process

may still be locally predictable - as long as the stochastic mean drift remains small compared

to the deterministic components in the original DGP st. By decreasing SNR, we can hence

increase the level of pollution by stochastic mean drift - and assess the reaction of different

machine learning algorithms.

Prediction target, feature engineering and preprocessing

Prediction target

As outlined in the beginning, we use a binary prediction target to ensure comparability

of the results across DGPs - even irrespective of the introduced distortions, i.e., jumps and

noise. In particular, we compute a binary target yt specifying whether the realization of the

process (xt)t∈T at time t is larger than or equal to its value in t− 1 or not2

yt =

 1 if xt − xt−1 ≥ 0

0 otherwise.
(14)

1We use the variance of the innovations of the random walk, given that its unconditional variance grows

linearly with t.
2Please note that unless otherwise stated, xt always refers to the process regardless of whether or not is

is superposed with noise or jumps. Specifically, xt equals st in case no distortions are present.

8

Feature engineering

Feature engineering is a crucial element in data science. In our context, features are

generally derived from historical time series data prior to or at the time of prediction. We

use a variety of features in different combinations to examine their impact on the results

(Ahmed et al., 2010).

• Lagged values xt−1, xt−2, ..., xt−N (LAGS): In the default case, we take the past two

lagged time series values as features. Furthermore, we vary the number of lagged

values between one and five to analyze their impact on the quality of the predictions.

Regarding our DGPs outlined in subsection 2.1.1, two lags would be optimal, but we

aim to assess the robustness versus using fewer or more lags (model mis-specification).

• First differences ∆xt−1,t−2,∆xt−2,t−3, ...,∆xt−N−1,t−N (DIFF): The first backward dif-

ference of the time series. We expect this feature to improve classification accuracy

under the influence of nonstationarity, given that first differences are independent of

the level of the time series. When using first differences as features, we always feed the

last two lagged values, i.e., ∆xt−1,t−2,∆xt−2,t−3.

• Moving averages (MA): Smoothed representations of the time series by simple moving

averages with window sizes W of 2, 4, and 8:

z
(W)
t =

1

W

W∑
i=1

xt−W+i (15)

where z(W)
t denotes the time series value at time t smoothed over a window of size W .

We hypothesize that these features may improve classification accuracy by smoothing

out noise (Ahmed et al., 2010). When adding MA, we use the first lagged value of each

moving average as input feature, i.e., z(W)
t−1 .

Preprocessing

We perform two kinds of preprocessing, standardization and outlier removal.

Standardization: Standardizing means bringing each column in a feature matrix to the

same scale. Features of varying scale are hurtful to the learning process of many algo-

rithms. For example, distance-based algorithms typically malfunction, if features contribute

unequally to the total distance (Qian et al., 2004). But standardization can also have a pos-

9

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

20

1500 2000 500 1000 750 250 1250 1750

Step 1: Identify outliers in first differences of raw time series (depicted below is the raw time series)

Step 2: Construct estimated compound Poisson process

–

= Step 3: Compute residual time series by subtracting the estimated compound Poisson process from raw time series

–

=

Step 4: From the residual time series, compute the section-wise mean between the jumps

Step 5: Subtract the section-wise mean from the residual time series

Figure 1: Procedure to remove jumps with LOF.

itive effect on training times. For example, algorithms relying on stochastic gradient descent

(SGD) typically converge faster when training on normalized data (Ioffe and Szegedy, 2015).

We standardize by subtracting the column mean from each column in the feature matrix

and dividing by the column standard deviation both obtained from the training set, i.e., the

features corresponding to the first 2000 observations of the time series.

Outlier removal: The outlier removal procedure is based on the well known anomaly

detection algorithm “local outlier factor” (LOF) by Breunig et al. (2000). For each data

point, a local density is estimated based on its k nearest neighbors and a score is computed

with that density. If a data point’s outlier factor significantly deviates from those of its

neighbors, it is considered an outlier. This procedure hence requires multiple steps and is

depicted in figure 1.

First, we start by identifying the outliers and their positions in the time series with

10

the LOF algorithm by applying it to the first differences of the time series. Second, we

assume that each of these outliers results in a mean shift, and we construct a time series

of successive mean shifts - a compound Poisson process. Third, we subtract the estimated

compound Poisson process from the raw time series. This procedure can be understood

as the empirical inverse to (9), whereby jump position and sizes are estimated from the

data in order to eliminate the mean shifts. Finally, for the residual series, we compute the

mean, section-by-section between jumps, and subtract it from the residual series - hence

eliminating all remaining mean shifts. To avoid look-ahead bias, we perform this procedure

in an expanding window approach. Specifically, we apply these steps on the whole training

set, then on the whole training set and the first out of sample observation, then on the whole

training set and the first two out of sample observations, and so forth.

Model training and evaluation

Overview of applied models

It is impossible to consider the abundance of machine learning models existing today.

Therefore, we only concentrate on the most common algorithms which are also accessible

through the Python package scikit-learn (Pedregosa et al., 2011).

Model parametrization and validation are very challenging tasks. Ideally, one would

specify a range for each parameter, iterate through it in a grid search manner and validate

the models to identify the optimal parameter constellation from the grid. This approach

is extremely time consuming and exceeds the scope of our simulation study by far. Just

to clarify - we would have to conduct such parameter tunings one time for each model and

DGP - resulting in a total of 64 grid searches for each Monte Carlo setting. Instead, we

parameterize our models with specifications that are supposed to work across a wider range

of applications, following recommendations from the literature.

Multilayer perceptron (MLP)

The MLP is a very popular form of artificial neural networks that can be applied to both

regression and classification problems (Zhang et al., 1998; Zhang, 2003; Hastie et al., 2008).

MLPs are fully connected multilayer feedforward networks composed of several layers. Hereby,

11

the first layer represents the input of the network and the last layer provides its output. Be-

tween these layers, one or more so called, hidden layers are arranged. We apply the most

widely used form of MLPs which consists of exactly one hidden layer.

Mathematically, MLPs can be interpreted as nonlinear function mappings fk(X) from the

inputs to the outputs. For a general K-class classification problem, we can hence describe

the network as a series of equations (Hastie et al., 2008):

Zm = σ(α0m + αT
mX), m = 1, ...,M,

Tk = β0k + βT
k Z, k = 1, ..., K,

fk(X) = gk(T), k = 1, ..., K.

(16)

Thereby, X denotes the input vector of P features, α0m, β0k are bias units, αm, βk are the

weights connecting the mth hidden neuron with each of the P features, and the kth output

neuron with each of the M hidden neurons respectively. Furthermore, σ(·) and gk(·) denote

activation functions. The three equations work as follows. First, each of the M hidden

neurons receives a linear combination of the P inputs, and nonlinearly transforms it with

σ(·) to a derived feature Zm. Second, the M derived features are fed into each of the K

output neurons with their respective weight, where they are nonlinearly transformed with

gk(·) to K outputs - corresponding to K classes.

In the literature, there is a very wide range of choices and rules of thumb for the number

of hidden layers, neurons, and activation functions. We hence decide to work with two

generic MLPs. The first, smaller net contains one hidden layer with M = 10 hidden neurons

(MLP10); the second, larger net has one hidden layer with M = 100 neurons. In case of

two input features, this results in 41 parameters that need to be trained for the MLP10 and

401 for the MLP100 respectively3. In both networks, we make use of the rectifier linear unit

function in the hidden layer - a common, typically well-performing choice and the default in

scikit-learn (Pedregosa et al., 2011). For the output layer, we only use one neuron with a

sigmoid activation function. Hence, the output f1(X) can be interpreted as the probability

32×10+10×1 coefficients and 10+1 bias terms for the MLP10; 2×100+100×1 coefficients and 100+1

bias terms for the MLP100.

12

that our time series rises or remains constant in period t (corresponding to class “1”). The

probability that the time series falls in t (class “0”) is hence 1−f1(X).4 Note that the number

of input neurons is given by the number of features for both architectures.

Logistic regression (LR)

Despite its name, it should be emphasized that logistic regression is an algorithm for clas-

sification settings. It has been developed to model the posterior probabilities of K possible

outcomes (classes) by linearly combining the inputs x. Hereby, the LR model ensures that

the probabilities of all possible classes K sum up to 1 while each individual probability has

a value between 0 and 1. For a K-class classification problem, the model consists of K − 1

log odds of the following form (Hastie et al., 2008):

log
P (K = 1|X = x)

P (K = K|X = x)
= β10 + βT

1 x

log
P (K = 2|X = x)

P (K = K|X = x)
= β20 + βT

2 x

. . .

log
P (K = K − 1|X = x)

P (K = K|X = x)
= β(K−1)0 + βT

(K−1)x

(17)

Hereby, P (K = k|X = x) with k ∈ {1, 2, ..., K − 1} is the posterior probability of class k

given the input vector of observation x. Furthermore, βk0 denotes the intercept and βk the

coefficients for the respective class k. As our classification problem consists of two classes

(“upward” and “downward”), the model becomes a single linear function, i.e., β10 + βT
1 x that

can be estimated by maximum likelihood using the N observations from the training data:

L(β) =
N∑
i=1

{
yiβ

Txi − log(1 + exp(βTxi))
}

(18)

In the above loss function L, β comprises {β10, β1} and the input vector xi is extended by

the constant “1” to also incorporate the intercept.

For this study we use LogisticRegressionCV from the scikit-learn package (Pedregosa

et al., 2011) as LR implementation which performs a grid search on the l2 regularization

4Alternatively, a softmax activation function with K = 2 output neurons could have been chosen.

13

parameter in the range from 10−4 to 104. Furthermore, we set max_iter to 5000 and use

the default algorithm liblinear as solver.

Naïve Bayes (NB)

Naïve Bayes classifiers are based on the Bayes’ theorem and have proven to be fast, reliable

and very effective in many different applications including spam filtering, taxonomic studies,

and decision making in medical treatments (Raschka, 2014). The designation “naïve” relates

to the NB assumption that the features are mutually independent - an assumption which

in general is not true (Raschka, 2014; Hastie et al., 2008). Nonetheless, NB classifiers often

outperform more complex machine learning models, even though its assumptions are not fully

met (Hastie et al., 2008; Lewis, 1998; Hand and Yu, 2001). The base principle behind NB

classifiers is the calculation of posterior probabilities, i.e., the probability P (K = k|X = x)

that an observation x belongs to class k given its features. Following Raschka (2014), this

can be formalized as:

P (K = k|X = x) =
P (X = x|K = k)P (K = k)

P (X = x)
(19)

The predicted class label for an observation x is then the class k which has the highest

posterior probability according to equation (19).

For our simulation study we use the GaussianNB classifier from the scikit-learn package,

where the likelihood of the features is assumed to be Gaussian (Pedregosa et al., 2011).

k-Nearest neighbors (kNN)

The kNN classifier is one of the simplest machine learning techniques. The class of a given

data point x0 is found by performing a majority vote among the k neighbors which are closest

in distance di to x0 (Bishop, 2007). A number of distance metrics are possible but the most

common one is the Euclidean distance, given as.

di = ||xi − x0||. (20)

In our experiments, we take 5 neighbors into account, reflecting the default value in the

scikit-learn package - often a good compromise to limit overfitting (which occurs for small

k) while still obtaining meaningful decision boundaries (Pedregosa et al., 2011).

14

Classification and regression trees (CART)

As suggested by the name “classification and regression trees”, CARTs can be applied to

both classification and regression problems. They operate by learning a series of decision

rules from the training data, based on which they infer the value (regression) or class label

(classification) of new observations (Raschka, 2015). Hereby, the decision rules are computed

in a way that they separate the samples of each class as effectively as possible, i.e., by

maximizing the information gain at each split5. This procedure starts at the root of the

tree and is recursively repeated at each node until the samples in all child nodes of the tree

are pure or another stop criterion, e.g., maximum tree depth is reached. Following Raschka

(2015), the information gain IG for a binary split can be formalized as

IG(Dparent, f) = I(Dparent)−

[
Nleft_child

Nparent

I(Dleft_child) +
Nright_child

Nparent

I(Dright_child)

]
. (21)

Thereby, Dparent, Dleft_child and Dright_child denote the data sets prior to and after the

split with feature f , Nparent, Nleft_child and Nright_child denote the corresponding number

of samples, and I(·) denotes the applied impurity measure. The information gain IG is

then defined as the difference in impurity prior to (I(Dparent)) and after the split (weighted

impurities I(Dleft_child) and I(Dleft_child)).

For our study, we make use of the DecisionTreeClassifier implementation from the scikit-

learn package with the gini impurity measure (scikit-learn default) and a maximum tree

depth of 10 (Pedregosa et al., 2011).

Random forests (RF)

Random Forests (Breiman, 2001; Ho, 1995) are an ensemble technique averaging the predic-

tions of a large number of decorrelated decision trees. They usually show good performance

with better generalization properties than individual trees, are relatively robust to outliers

and require virtually no parameter tuning (Raschka, 2015). Random forests are built on two

main ideas - bagging to build each tree on a different bootstrap sample of the training data,

5A potential decision rule based on the feature “value of the time series as lag 1” could be whether or not

the value is larger than 0.5.

15

and random feature selection to decorrelate the trees. The training algorithm is fairly simple

and can be summarized along the lines of Hastie et al. (2008): For each of the B trees in

the ensemble, draw a bootstrap sample Z from the training data. When growing the tree Tb

on Z, randomly draw m of the p features which are available as candidates for the split in

the respective node. Finally, add the grown tree Tb to the ensemble. During inference, each

of the B trees makes a prediction ĉb(x) for the class label of the new observation x. The

final prediction of the random forest ĉRF (x) is then the majority vote of the B trees, i.e.,

ĉRF (x) = majority vote{ĉb(x)}B1 .

Inspired by Breiman (2001) we proceed with a RF containing 100 trees, each with a max

depth of 10 for our simulation study. All our trees use cross-entropy as impurity measure

and we set m =
√
p features - the default choice for classification settings.

Gradient boosting trees (GBT)

Boosting (Schapire, 1990) is another ensemble technique, which additively combines many

weak learners to a powerful ensemble. As opposed to random forests, where each tree is inde-

pendently built on a bootstrap sample, GBT grows a sequence of trees Tm(x), m = 1, 2, 3, . . .

on repeatedly adjusted versions of the training data (Hastie et al., 2008). Specifically, after

each boosting iteration (one iteration is the fitting of one tree), the weights of the previously

misclassified observations are increased and the weights of the correctly classified samples

are decreased. As a result, all successive trees in the sequence put more attention on the

“difficult” observations. During inference, and as in the random forest case, each of the M

trees make its prediction f̂m(x). The final prediction of the GBT f̂GBT (x) is then a weighted

majority vote:

f̂GBT (x) = sign
(M∑
m=1

wmf̂m(x)
)
. (22)

Thereby, wm, m = 1, 2, 3, . . . denotes the weight of the prediction of the respective tree

f̂m(x) which has been computed by the boosting algorithm during the training phase.

For our simulation study, we follow Friedman (2002) and employ a GBT consisting of

100 shallow decision trees with a maximum depth of 3. Furthermore, we set the learning

rate to 0.1 - the default value in the scikit-learn software package (Pedregosa et al., 2011).

16

Comparison metric and model performance evaluation

Even though recent research focuses of cross-validation techniques (CV) (Kohavi et al.,

1995; Bergmeir and Benítez, 2012; Bergmeir et al., 2014, 2015), we apply a classic out-of-

sample validation scheme. The latter is still highly accepted, commonly used, less computa-

tionally expensive, and preserves the time structure of our data. To be precise, we perform

an 80/20 split. Therefore, the first 2000 observations of the time series belong to the training

set and the last 500 observations to the holdout test set, on which the results are evaluated.

As evaluation metric, we opt for classification accuracy. The proportion of correctly classified

samples to all samples is very easy to interpret and allows us to compare between DGPs with

different structure. Also, this metric is numerically stable and works well for all models.

Obtaining the benchmark - ambition level analysis

Prior to evaluating the different machine learning models against each other, we take

one intermediate step to establish a benchmark for each DGP. Specifically, we compute the

optimal forecast, using the model equation of the respective DGP. The predictive accuracy

of the optimal forecast constitutes an “ambition level”, i.e., the best result we could possibly

attain with a machine learning algorithm. Note that a related exercise has also been con-

ducted by, e.g., Connor et al. (1994) in a different setting.

To derive the ambition levels, we proceed as follows. For each DGP, we use the respective

process equation as outlined in subsection 2.1.1 to compute the optimal forecast ŝt as

ŝt = E(st|Ft−1) = E(st|st−1, st−2, . . .), (23)

where F denotes the information set up until time t− 1. When computing expectations, we

set εt to its expected value of zero and all other lagged terms to their true values. Then, we

transform this forecast value into a binary prediction by assigning a “1” in case ŝt is larger

or equal to st−1, and a “0” otherwise. Finally, we compute the achieved accuracy by com-

paring the prediction with the actual binary target6. To increase robustness of the results,

we perform 1000 replications in a Monte Carlo setting, and average the results per DGP.

6Again, a “1” is assigned in case st is larger than or equal to st−1, and a “0” otherwise.

17

Table 1 shows the ambition level for each DGP. We make two main observations. First, the

analysis clearly underlines the stochastic nature of the DGPs. Even though we have perfect

knowledge of the process equations, the highest predictive accuracy is 80.71% (NMA). Sec-

ond, the analysis reveals strong differences in terms of “forecastability” between the DGPs,

ranging from an accuracy of 65.55% for AR(2) up to 80.71% for NMA7. The differences can

be attributed to the relative importance of the error term εt compared to the deterministic

part. The intuition is as follows: The stronger the deterministic movement (|ŝt − st−1|), the

higher εt needs to be in order to change the direction of the overall movement. Such an

event is more likely, when the deterministic movement is small.

DGP AR(2) BL(1) BL(2) NAR(2) NMA SAR(2) STAR(2) TAR(2) ∅

Accuracy 65.55% 76.40% 73.82% 73.81% 80.71% 71.70% 77.73% 76.21% 74.49%

Table 1: Ambition levels, i.e., best possible accuracy that can be achieved with the optimal forecast for each

of the eight DGPs.

Another angle to look at the results is the complexity of the decision boundary, i.e.,

the hyperplane separating the two classes (Dreiseitl and Ohno-Machado, 2002). Figure 2

shows the decision boundary obtained from the optimal forecast8. Each plot can be read as

follows: The x-axis represents the value of the process realization at time t − 1 (i.e., st−1)

and the y-axis the value at t − 2, (i.e., st−2). Each contour plot hence spans a grid with

all possible combinations of st−1 and st−2 with the shading of the areas denoting the value

of the prediction9. The lighter shaded areas represent a prediction of “1”, i.e., ŝt ≥ st−1,

and the darker areas a prediction of “0”. For illustrative purposes, we have included the

decision boundary for an AR(1) process in the upper left corner. As expected, we make two

observations. First, and as the AR(1) process equation suggests, the forecast solely depends

on the value of st−1 and the decision boundary hence runs in parallel to the y-axis. Second,

7Please note that the findings in table 1 are specific to the concrete coefficients of the process equations

outlined in subsection 2.1, i.e., they do not imply that an AR(2) process is in general harder to predict than

an NMA process.
8An introduction on contour plots to visualize decision boundaries is available in Raschka (2015).
9An exception forms the NMA process where the x-axis represents εt−1 and the y-axis εt−2.

18

Figure 2: Optimal decision boundaries by DGP. The lighter shaded areas indicate a forecast value of “1”, i.e.,

ŝt is larger than or equal to st−1; the darker shaded areas a forecast value of “0”. The x-axis denotes st−1,

the y-axis st−2. An exception forms the NMA process, where the x-axis denotes εt−1 and the y-axis εt−2.

Furthermore, we have omitted the BL2 process, as it cannot be plotted in the same logic in two dimensions.

the forecast is “1” for all values st−1 ≥ 0 and “0” for all values st−1 < 0. This corresponds

to the mean reversion property of the AR(1) process. All other plots can be interpreted in

a similar manner - even though some of the decision boundaries have a more complex, in

some cases clearly nonlinear shape. Surprisingly, DGPs such as STAR2 with its coefficients

obtained from the literature (see Zhang et al. (1998)) seem to be almost linearly separable -

despite their general ability to describe nonlinear intertemporal dependencies.

Monte Carlo simulations

In total, we conduct 29 Monte Carlo experiments in in four groups - base analysis, lag

analysis, jump effect analysis, and noise analysis. Each group aims at answering the research

questions raised in the introduction. Details are presented here below and in table 2.

(1) Base analysis : The objective is to predict directional movement of time series gener-

ated from the DGPs outlined in subsection 2.1. We use the past two lags as input features,

19

and do not introduce any additional form of disturbance on top of the stochastic nature of

the error terms εt. This analysis is conducive in two respects. First, we are able to assess

how close each of the machine learning algorithms gets to the ambition level. Second, in

subsequent experiments, the findings serve as a base case to analyze the impact of further

distortions.

(2) Lag analysis : The second group analyses the impact of the number of lagged values as

input features. In the base case, we feed two lagged values - corresponding to the number of

lags in the underlying DGPs. The lag analysis reveals the impact of model mis-specification,

i.e., when using a higher or lower number of lags ranging from 1 to 5.

(3) Jump effect analysis : We evaluate the impact of permanent jumps of different sizes

by superposing compound Poisson jump processes on the original DGPs - see subsection

2.1. Subsequently, we evaluate different variants of feature engineering and preprocessing

to balance the adversarial effect of jumps. Specifically, we consider only lags as features

(3a), lags and first differences (3b), lags and LOF preprocessing (3c), as well as lags, first

differences, and LOF preprocessing (3d). For a review of these techniques, see subsections

2.2.2 and 2.2.3. As outlined in subsection 2.1.2, each DGP is expected to exhibit 10 jumps

on average with magnitudes of 0.1, 1, and 10. The number of lags and the degree of noise is

the same as in the base case.

(4) Noise analysis : In the fourth group, we evaluate the impact of stochastic mean drifts

by superposing a random walk on the original DGPs - see subsection 2.1.3. Next, we assess

whether feature engineering may help to eliminate some of the noise. Specifically, we con-

sider only lags as features (4a), lags and first differences (4b), lags and moving averages (4c),

as well as lags, first differences, and moving averages (4d). Noise levels are low, medium,

and high, following the definitions in 2.1.3.

For each Monte Carlo experiment, we generate 1000 time series of length 2500 from each

DGP. The first 2000 observations are used for training, and the last 500 observations for

validation. All eight models are individually trained and validated on each of the 1000 time

series per DGP. Averaging predictive accuracies over all 1000 time series per DGP per model

provides us with a statistically robust assessment of model performance.

20

Distortions Applied feature engineering &

preprocessing

Group # Jump size Noise level MA DIFF LAGS LOF

Base analysis 1 no noise 2

Lag analysis

2 no noise 1

2 no noise 3

2 no noise 4

2 no noise 5

Jump analysis

3a 0.1 no noise 2

3a 1 no noise 2

3a 10 no noise 2

3b 0.1 no noise + 2

3b 1 no noise + 2

3b 10 no noise + 2

3c 0.1 no noise 2 +

3c 1 no noise 2 +

3c 10 no noise 2 +

3d 0.1 no noise + 2 +

3d 1 no noise + 2 +

3d 10 no noise + 2 +

Noise analysis

4a low noise 2

4a medium noise 2

4a high noise 2

4b low noise + 2

4b medium noise + 2

4b high noise + 2

4c low noise + 2

4c medium noise + 2

4c high noise + 2

4d low noise + + 2

4d medium noise + + 2

4d high noise + + 2

Table 2: Overview of conducted Monte Carlo experiments.

21

Empirical results

In this chapter we finally apply the machine learning models to the outlined prediction

task. For illustration of the effects of our mitigation and improvement measures we make

use of the relative change to the base case in percent given by
(

New absolute value
Abolute base case value

− 1
)
×100.

Where appropriate, we selectively include plots of the obtained decision boundaries to further

illustrate some of the observed effects.

Base analysis

The goal of the base analysis is threefold. First, we aim to determine how close the differ-

ent machine learning models come to the best possible result obtained during the ambition

level analysis (see subsection 2.4). Second, we wish to identify differences in “predictability”

between DGPs, i.e., whether certain DGPs are easier or harder to predict across all our

applied machine learning models. Third, we aim to spot particularities on the level of DGP

and model, e.g., whether specific models should be avoided for certain DGPs.

Panel A Panel B

DGP
Ambition ML models

LR MLP10 MLP100 CART RF GBT kNN NB
level ∅

AR(2) 65.55% 63.37% 65.47% 65.35% 65.48% 60.45% 63.31% 64.15% 60.72% 62.07%

BL(1) 76.40% 72.72% 74.14% 73.86% 73.83% 69.66% 72.60% 73.23% 70.79% 73.66%

BL(2) 73.82% 69.64% 68.70% 71.50% 72.00% 67.76% 70.56% 71.22% 68.81% 66.55%

NAR(2) 73.81% 72.49% 73.64% 73.63% 73.69% 69.80% 72.53% 72.88% 70.24% 73.52%

NMA 80.71% 78.76% 79.76% 79.91% 79.97% 75.85% 78.70% 79.29% 77.21% 79.42%

SAR(2) 71.70% 65.80% 61.18% 67.81% 69.05% 66.63% 69.61% 70.57% 66.81% 54.72%

STAR(2) 77.73% 76.03% 77.54% 77.54% 77.57% 72.38% 75.96% 76.82% 74.51% 75.95%

TAR(2) 76.21% 75.51% 76.10% 76.04% 75.97% 74.34% 75.12% 75.41% 74.87% 76.20%

∅ 74.49% 71.79% 72.07% 73.21% 73.44% 69.61% 72.30% 72.95% 70.49% 70.26%

Table 3: Panel A and B summarize the achieved accuracies of the machine learning models in the base case.

Panel A contrasts the best possible accuracy (ambition level) with the average performance achieved across

all our machine learning models. Panel B further details the results for each model and DGP individually

and shows the results on model-level, i.e., the average performance of a specific machine learning model

across all DGPs (column average at the very bottom). The highest value of the respective column/row is

highlighted in bold.

Model performance: Looking at the column average in Panel B of table 3, we see that the

MLP100 (73.44%), the MLP10 (73.21%), and the GBT (72.95%) cope best with the broad

22

mix of linear and nonlinear DGPs. All three models come close to the overall ambition level

of 74.49%. In particular, the MLP100 achieves first place in five of the eight examined DGPs

and is only outperformed once by the GBT in case of the SAR(2) process with a clear margin

of 1.52% (69.05% vs. 70.57%). The underlying reason is related to the straight edges and

rectangular shape of the decision boundary of the SAR(2) process which is natural to and

hence advantageous for the GBT as well as the other tree-based machine learning models

(see also deep dive on decision boundaries further below).

With an average accuracy of 72.07%, the LR still presents a good choice in many cases,

especially when considering its usually low computational costs. Looking at the details in

Panel B, we find the LR to be competitive when applied to most of the DGPs - the exception

are BL(2) and SAR(2), where its performance drops significantly. Both of these DGPs are

characterized by strongly nonlinear decision boundaries (see figure 2), where simpler model

classes reach their limit.

The lower end of the ranking consists of CART (69.61%) followed by NB (70.26%) and

kNN (70.49%). All of these models, with the exception of NB for TAR(2), clearly fall

behind the top tier. In case of CART, the underperformance can be attributed to overfitting

caused by the relative high tree depth of 10. In case of NB, the root cause for the poor

performance lies in the autocorrelated nature of the DGPs, leading to correlated features,

and thus violating the NB assumption of independence between every pair of features.

Looking at the different DGPs in general (see Panel A of table 3), we see that the DGPs

with linear decision boundaries (group 1), e.g., AR(2) can be well predicted with both linear

and nonlinear machine learning models. Group 2, i.e., STAR(2) and TAR(2) which both

show weak nonlinearities, are still a good fit for linear models such as the LR, as the model

learns a fairly good approximation of the decision boundary. Finally in group 3 (SAR(2)

and BL(2)), the performance of the linear models drops significantly as the nonlinearities of

the DGPs become too strong.

Deep dive on decision boundaries: To further illustrate some of the insights described

above, we visualize the decision boundaries learned by the different machine learning models.

Figure 3 exemplarily depicts the decision boundaries for the SAR(2) process. The sub plot

on the top left corresponds to the decision boundary obtained from the optimal forecast

23

(see subsection 2.4). The other eight sub plots show the decision boundaries learned by

the different machine learning models. Each of these plots can be interpreted similar to

section 2.4 (ambition level analysis) with the lighter shaded areas denoting the prediction of

an “upward” and the darker shaded areas the prediction of a “downward” movement of the

process in the next period t. The colored points follow the same color coding and represent

a subset of the actual observations that were used to fit the machine learning models. We

make the following observations: Looking at the optimal decision boundary on the plot on

the top left, we see that the prediction (“1” versus “0”) is almost solely dependent on the

value of the SAR(2) process at time t− 1 (x-axis). Two exceptions can be observed around

the middle of the plot where the value of the process at time t − 2 has an impact on the

prediction. Moreover, we observe straight edges and a rectangular shape of the optimal

decision boundary that can be attributed to the SAR(2) process equation.

When looking at the decision boundaries learned by the individual machine learning

models, we gain a series of further insights: As expected, the LR model can only poorly

approximate the strong nonlinearity of the SAR(2) decision boundary with a straight line

resulting in the rather low performance in terms of predictive accuracy. Second, the two

MLPs, the three tree based methods (CART, RAF, and GBT) and even kNN produce fairly

good results with a decision boundary more or less resembling the optimum. In addition, we

see signs of overfitting for the CART, i.e., very fine grained sub-areas throughout the plot.

Lastly, the poor performance of NB (see previous paragraph) is also visually reflected in its

decision boundary (see sub plot on the bottom right in figure 3).

Summary: From the base analysis we obtain the following key takeaways. First, MLPs

and GBT are well suited for a broad variety of DGPs and come quite close to the ambition

level. Second, in case of none or only weak nonlinearities, LR is a good choice. Third, NB,

kNN, and CART are less suitable for time series prediction.

Lag analysis

The goal of the lag analysis is to assess how sensitive the performance of our machine

learning models reacts to varying numbers of lagged values that are used as input features.

This analysis is of particular importance as in general, we do not know the true, underlying

24

Figure 3: Decision boundaries obtained for SAR(2) process. The lighter shaded areas indicate a forecast

value of “1”, i.e., ŝt is larger than or equal to st−1; the darker shaded areas a forecast value of “0”. The x-axis

denotes st−1, the y-axis st−2. The dots represent a subset of the actual observations that were used to fit

the models with the color coding being similar to the one of the areas.

DGP that we aim to predict. In other words, we assess the effect of model mis-specifications,

i.e., that a researcher selects too many or too few lags as input features.

Model performance: Table 4 depicts the average accuracy of our machine learning models

25

Model
Base Panel A: Number of lags

∅
Panel B: Relative change to base case

∅
case 1 3 4 5 1 3 4 5

LR 72.07% 69.85% 72.10% 72.10% 72.10% 71.54% -3.08% 0.05% 0.05% 0.05% -0.73%

MLP10 73.21% 71.33% 73.10% 72.99% 72.84% 72.56% -2.57% -0.15% -0.30% -0.50% -0.88%

MLP100 73.44% 71.66% 73.46% 73.38% 73.25% 72.94% -2.42% 0.02% -0.09% -0.27% -0.69%

CART 69.61% 68.85% 69.19% 68.85% 68.61% 68.87% -1.09% -0.61% -1.09% -1.43% -1.05%

RF 72.30% 69.03% 72.74% 72.67% 72.77% 71.80% -4.52% 0.61% 0.52% 0.65% -0.69%

GBT 72.95% 70.71% 72.99% 72.95% 72.90% 72.39% -3.07% 0.06% 0.01% -0.06% -0.76%

kNN 70.49% 68.05% 70.29% 69.87% 69.32% 69.38% -3.47% -0.29% -0.88% -1.66% -1.58%

NB 70.26% 69.14% 69.57% 69.62% 69.33% 69.42% -1.59% -0.98% -0.91% -1.32% -1.20%

∅ 71.79% 69.83% 71.68% 71.55% 71.39% 71.11% -2.74% -0.16% -0.33% -0.56% -0.94%

Table 4: Panel A and B summarize the average accuracies of the machine learning models across all DGPs

for different number of lags that are used as input features. Panel A contrasts the achieved accuracies with

the base case in which two lagged values are used as input features. The column average at the bottom of

Panel A depicts the average performance for a given number of lags across all models and DGPs. Panel

B depicts the results of Panel A as relative change compared to the base case. The highest value of the

respective column/row is highlighted in bold.

for a varying number of lagged values used as input features. When looking at the column

average in Panel A, we see that the highest average accuracy of 71.79% is achieved in the

base case in which the past two lagged values are used as features. This result is consistent

with the process equations of the DGPs (see subsection 2.1.1) which all depend on the past

two lagged values. We further notice that the inclusion of too few lagged values in the feature

space, i.e., only one lag, leads to an average accuracy of 69.83% and hence has a significantly

stronger negative effect than including more than two lags (average accuracy between 71.39%

and 71.68%). Again, this is no surprise, as some of the DGPs, i.e., STAR(2), BL(2) and

AR(2) heavily depend on the process realization at lag 2.

Looking at each of the machine learning models individually exhibits a more diverse

picture. Again, the performance of all models decreases with one lag, however, we observe

that this does not hold true for all models when using more than two lags as input features.

Specifically, the RF benefits from feeding a larger number of lagged values leading to an

increase in average accuracy from 72.30% in the base case up to 72.77% when the past five

lags are used. We assume that the additional features lead to a stronger decorrelation of the

trees and hence to a better prediction as result of reduced overfitting.

Summary: From the lag analysis we obtain the following key takeaways. First, using too

26

few lags has a more negative effect on model performance than using too many. Second,

random forests can even profit from additional lagged values.

Jump effect analysis

The goal of the jump effect analysis is twofold. First, we aim at assessing the impact of

jumps on our machine learning models, i.e., we analyze the change in predictive accuracy for

varying jump sizes. Second, we wish to compare different techniques to remove the jumps

from the time series or to reduce their impact. In particular, we investigate the effect of

using first differences (DIFF) as additional features as well as the effect of jump removal

with the local outlier factor (LOF) method.

Model performance: Table 5 depicts the average accuracy of our machine learning models

for jumps of size 0.1, 1 and 10 (see subsection 2.1.2). Looking at the column average in Panel

A, we see a strong deterioration of the accuracies from 71.79% in the base case (no jumps) to

60.33% in case of large jumps. This result is well in line with the expectation that introducing

greater discontinuities causes stronger mean shifts which in turn lead to a loss in predictive

accuracy.

Model
Base Panel A: Absolute jump size ∅ Panel B: Rel. change to base case ∅

case 0.1 1 10 0.1 1 10

LR 72.07% 71.34% 66.28% 66.22% 67.95% -1.00% -8.03% -8.11% -5.72%

MLP10 73.21% 72.13% 66.61% 60.91% 66.55% -1.46% -9.01% -16.79% -9.09%

MLP100 73.44% 72.32% 66.85% 63.89% 67.69% -1.53% -8.97% -13.01% -7.84%

CART 69.61% 68.25% 62.52% 58.40% 63.06% -1.95% -10.19% -16.11% -9.41%

RF 72.30% 70.91% 64.88% 60.26% 65.35% -1.92% -10.26% -16.65% -9.61%

GBT 72.95% 71.50% 65.27% 60.33% 65.70% -1.98% -10.53% -17.30% -9.94%

kNN 70.49% 69.19% 63.94% 60.91% 64.68% -1.85% -9.30% -13.60% -8.25%

NB 70.26% 69.67% 59.85% 51.74% 60.42% -0.83% -14.82% -26.37% -14.01%

∅ 71.79% 70.67% 64.52% 60.33% 65.17% -1.57% -10.12% -15.96% -9.22%

Table 5: Panel A and B summarize the average accuracies of the machine learning models across all DGPs

for different jump sizes. Panel A contrasts the absolute values of the achieved accuracies with the base case.

The column average at the bottom of Panel A depicts the average performance for a given jump size across

all models and DGPs. Panel B depicts the results of Panel A as relative change compared to the base case.

The highest value of the respective column/row is highlighted in bold.

When assessing the machine learning models on an individual level (Panel B of table 5),

27

we obtain further insights. The LR proves to be the most robust machine learning model

with a relative decline in predictive accuracy between -1.00% (small jumps) and -8.11% (large

jumps). On average, the relative decline in accuracy of the LR amounts to -5.72% across all

three jump sizes. In terms of absolute predictive accuracy (see Panel A), the LR even ranks

first at a jump size of 10 rendering it the best model in presence of large jumps. Moreover,

we find MLP100 (-7.84%), kNN (-8.25%) and MLP10 (-9.09%) to be slightly less affected

than the tree-based methods CART (-9.41%), RF (-9.61%) and GBT (-9.94%). Finally, NB

places last with an average relative decline of -14.01%.

Mitigation measures: In the second step, we aim at reducing the negative effect of jumps

on our prediction problem. For the sake of comprehensiveness, we focus on the jump size of

110.

Panel A: Measures Panel B: Rel. change to jump case

Model
Base Jump

DIFF LOF
DIFF ∅

DIFF LOF
DIFF ∅

case case LOF LOF

LR 72.07% 66.28% 68.24% 69.49% 70.00% 69.24% 2.96% 4.85% 5.61% 4.48%

MLP10 73.21% 66.61% 68.60% 69.79% 70.28% 69.56% 2.98% 4.77% 5.51% 4.42%

MLP100 73.44% 66.85% 68.65% 69.97% 70.48% 69.70% 2.69% 4.65% 5.42% 4.25%

CART 69.61% 62.52% 63.89% 65.20% 65.55% 64.88% 2.20% 4.29% 4.86% 3.78%

RF 72.30% 64.88% 66.93% 68.05% 68.86% 67.95% 3.16% 4.88% 6.13% 4.72%

GBT 72.95% 65.27% 67.33% 68.81% 69.50% 68.55% 3.17% 5.44% 6.49% 5.03%

kNN 70.49% 63.94% 65.39% 66.17% 66.90% 66.15% 2.28% 3.49% 4.63% 3.47%

NB 70.26% 59.85% 66.23% 67.51% 69.35% 67.70% 10.66% 12.81% 15.87% 13.11%

∅ 71.79% 64.52% 66.91% 68.12% 68.86% 67.97% 3.70% 5.58% 6.73% 5.41%

Table 6: Panel A and B summarize the average accuracies of the machine learning models for the jump

size of 1 across all DGPs for different mitigation measures, i.e., use of first differences as additional features

(DIFF), jump removal with the local outlier factor method (LOF), and the combination of the two (DIFF

LOF). Panel A contrasts the achieved accuracies with the jump case (no mitigation measures) and the base

case (no jumps). The column average at the bottom of Panel A depicts the average performance for a given

mitigation technique across all machine learning models and DGPs. Panel B depicts the results of Panel A

as relative change compared to the jump case. The highest value of the respective column/row is highlighted

in bold.

10The results for smaller and larger jumps sizes are similar to those at jump size 1 however the effects are

smaller at jump size 0.1 and larger at jump size 10 respectively.

28

Table 6 depicts the impact of different mitigation measures and contrasts them with

the jump case (jumps of size 1 without mitigation measures) as well as the base case (no

jumps). Specifically, we assess the effect of first differences as additional features (DIFF), the

impact of jump removal with LOF, and the combination of the two (DIFF LOF). Looking

at the column average in Panel A, we find a positive effect for all three techniques leading

to an increase in predictive accuracy from 64.52% (jump case) up to 68.86% (+6.73%) when

applying the combination of DIFF and LOF.

Looking at the measures individually, we find LOF to have the strongest individual effect

of +5.58% compared to the jump case. During the preprocessing of the time series with

LOF, a large fraction of the jumps and hence mean shifts is removed. The resulting time

series therefore more closely resembles the one prior to jumps (base case) and the accuracy

improves. Also, the introduction of first differences (DIFF) as additional features helps the

machine learning models to cope with the mean shift. Even though the jumps are still present

in the time series, they now only affect the training samples that capture the time span during

which the jumps occurred and hence only a very small fraction of the observations used to

fit the machine learning models. As result, the accuracy increases by +3.70% relative to the

jump case.

When looking at the machine learning models individually, we find that all models benefit

from the mitigation measures. The ranking of the measure effects is consistent with the

averaged ranking outlined above, i.e., the combination of DIFF and LOF yields better effects

than LOF, which in turn yields better effects than DIFF alone across all models. NB accounts

for the strongest relative improvement (+15.87% for DIFF LOF), however NB had also shown

the strongest decline prior to mitigation measures. The opposite applies to LR which turned

out to be most robust to jumps and hence shows the lowest improvement when applying

mitigation measures.

Summary: From the jump effect analysis we obtain the following key takeaways. First,

jumps significantly worsen the performance across all machine learning models with the ef-

fect increasing with higher jump sizes. Second, LR is fairly robust to jumps and hence a

good choice in absence of mitigation measures. Third, both the use of first differences as ad-

ditional features (DIFF) as well as jump removal with local outlier factor (LOF) significantly

29

improve performance in light of jumps. The best results can be achieved by combining both

techniques.

Noise analysis

The noise analysis serves two purposes. First, we aim at assessing the impact of noise on

our machine learning models by analyzing the change in predictive accuracy when distorting

the DGP with noise of low, medium and high degree. Second, we evaluate and compare

different techniques to reduce the noise. In particular, we examine the effect of using first

differences (DIFF), moving average (MA) as well as the combination of the two (DIFF MA)

as additional features.

Model performance: Table 7 depicts the average accuracy of our machine learning models

when polluting the DGP with varying degrees of noise (see subsection 2.1.3). From the

column average in Panel A, we observe a decline in accuracy from 71.79% in the base case

up until 56.72% in presence of high noise. The underlying reason is as follows: As the time

series is superposed with noise in form of a random walk process, the time series becomes more

and more non-stationary (due to the mean drift) and hence harder to predict. This effect

becomes stronger with increasing variance of the random walk process which corresponds to

higher degrees of noise.

Looking at the row sum of Panel B of table 7, we observe that the negative effect of

noise strongly varies between the individual machine learning models. As in the jump effect

analysis, the LR turns out to be the most robust model with a relative decline in accuracy

of -12.02% compared to the base case and first rank in terms of absolute predictive accuracy

across all degrees of noise. Furthermore, we observe that the tree based models, i.e., CART

(-19.47%), RF (-18.88%), and GBT (-19.27%), react more sensitive to noise compared to the

MLP100 (-14.64%), the MLP10 (-15.73%), and kNN (-17.24%). We assume that the tree-

based methods (DT, RF, and GBT) are more affected by the mean drift as it significantly

changes the threshold values at which splits occur in the nodes of the trees. Finally, NB

ranks last with an average relative decline in accuracy of -25.03%.

Mitigation measures: In step 2, we aim at mitigating the negative effect of noise on

our prediction problem. Again, we focus on one noise level, i.e., medium noise, to keep the

30

Model
Base Panel A: Noise level

∅
Panel B: Rel. change to base case

∅
case low medium high low medium high

LR 72.07% 65.57% 63.28% 61.36% 63.40% -9.02% -12.19% -14.86% -12.02%

MLP10 73.21% 65.11% 61.34% 58.63% 61.69% -11.05% -16.22% -19.91% -15.73%

MLP100 73.44% 65.38% 62.52% 60.17% 62.69% -10.98% -14.87% -18.08% -14.64%

CART 69.61% 59.11% 55.33% 53.72% 56.05% -15.09% -20.51% -22.83% -19.47%

RF 72.30% 61.66% 58.09% 56.20% 58.65% -14.72% -19.66% -22.26% -18.88%

GBT 72.95% 61.90% 58.35% 56.43% 58.89% -15.15% -20.02% -22.65% -19.27%

kNN 70.49% 61.05% 57.89% 56.08% 58.34% -13.39% -17.88% -20.44% -17.24%

NB 70.26% 54.89% 51.98% 51.16% 52.67% -21.88% -26.02% -27.19% -25.03%

∅ 71.79% 61.83% 58.60% 56.72% 59.05% -13.87% -18.38% -20.99% -17.75%

Table 7: Panel A and B summarize the average accuracies of the machine learning models across all DGPs

for different degrees of noise. Panel A contrasts the absolute values of the achieved accuracies with the base

case. The column average at the bottom of Panel A depicts the average performance for a given noise level

(low/medium/high) across all models and DGPs. Panel B depicts the results of Panel A as relative change

compared to the base case. The highest value of the respective column/row is highlighted in bold.

analysis clear and comprehensible11.

Table 8 summarizes the impact of our three mitigation measures and contrasts them with

the medium noise case as well as the base case (no noise). Specifically, we examine the effect

of first differences (DIFF), moving averages (MA) and the combination of the two (DIFF

MA) as additional features. The column average in Panel A indicates a positive effect for all

three techniques leading to accuracies from 59.30% (MA) up to 62.89% (DIFF) compared to

58.60% without mitigation measures. We find DIFF to be the single best technique increasing

accuracy by +7.32% relative to the medium noise case. First differencing (DIFF) makes

the time series fully stationary, facilitating the machine learning models’ ability to identify

meaningful structure. Also, using moving averages as additional features has a positive

effect, however with +1.20% at significantly smaller scale compared to DIFF. Finally, the

combination of DIFF and MA leads to an improvement of +7.03% on average - slightly

lower than DIFF alone. However, when looking at the effects on the machine learning

models individually, we observe that in some cases, i.e., LR, MLP10 and MLP100, DIFF

MA yields slightly better results than DIFF alone. It is hence worth experimenting with this

11The results are similar for low and high noise however at a lower/higher scale.

31

Panel A: Measures Panel B: Relative change

Model
Base Medium

DIFF MA
DIFF

DIFF MA
DIFF

case noise MA MA

LR 72.07% 63.28% 64.97% 65.38% 65.39% 2.66% 3.31% 3.33%

MLP10 73.21% 61.34% 64.74% 62.68% 64.81% 5.55% 2.20% 5.66%

MLP100 73.44% 62.52% 64.93% 64.05% 64.99% 3.84% 2.44% 3.95%

CART 69.61% 55.33% 59.72% 55.26% 59.69% 7.92% -0.14% 7.88%

RF 72.30% 58.09% 62.38% 58.89% 62.31% 7.39% 1.38% 7.26%

GBT 72.95% 58.35% 62.51% 58.94% 62.43% 7.14% 1.02% 7.00%

kNN 70.49% 57.89% 60.49% 58.04% 60.24% 4.49% 0.26% 4.06%

NB 70.26% 51.98% 63.38% 51.18% 61.86% 21.93% -1.54% 19.01%

∅ 71.79% 58.60% 62.89% 59.30% 62.71% 7.32% 1.20% 7.03%

Table 8: Panel A and B summarize the average accuracies of the machine learning models across all DGPs

at medium noise level for different mitigation measures, i.e., use of first differences (DIFF), moving averages

(MA) and the combination of the two (DIFF MA) as additional features. Panel A contrasts the achieved

accuracies with the medium noise case (no mitigation measures) and the base case (no noise). The column

average at the bottom of Panel A depicts the average performance for a given noise reduction technique

across all machine learning models and DGPs. Panel B depicts the results of Panel A as relative change

compared to the medium noise case. The highest value of the respective column/row is highlighted in bold.

combination when working with noisy time series data.

Summary: From the noise analysis we obtain the following key takeaways. First, the

presence of noise in time series data significantly worsens the performance across all machine

learning models. Clearly, the effect increases with higher levels of noise. Second, as in

the jump case, LR proves to be the most robust model for noisy time series data, ranking

first in terms of performance - even after noise mitigation measures. Third, the use of

first differences (DIFF), moving averages (MA), and the combination of both (DIFF MA)

as additional features all lead to improvements in predictive accuracy. Depending on the

applied machine learning model, DIFF leads to slightly better results than the combination

DIFF MA.

Conclusion

In this paper, we perform a comprehensive simulation study contrasting the predictive

performance of eight different machine learning models on a great variety of linear and

32

nonlinear time series. Specifically, we conduct 29 Monte Carlo experiments to thoroughly

analyze the performance of each model as well as the impact of jumps as well as varying

degrees of noise. We make the following key findings.

First, we find machine learning models to achieve solid performance on unknown under-

lying DGPs, compared to the ambition level set by optimal forecasts. In absence of noise

(base case), the results achieved with the machine learning models almost resemble those of

the optimal forecast. Model-wise, MLPs and GBT provide the best results for both, linear

and nonlinear DGPs. For processes with no or only small nonlinearities, the LR presents a

good alternative, especially when considering its low computational cost. We find NB and

single decision trees to deliver worse performance and hence recommend the aforementioned

techniques for time series prediction tasks.

Second, it is better to include too many lagged values in the feature space than to include

too few. We find most machine learning models to be fairly robust to exceeding the number of

required lags suggested by the process equation of the DGP. In case of the RF, the inclusion

of additional features even increases the predictive accuracy. We recommend to start with

one lag and to gradually increase the number of lags monitoring the performance on a hold

out set or with cross validation.

Third, we find jumps to have a very strong negative effect on predictive accuracy with LR

being the most robust machine learning model. To mitigate the negative effects, both adding

first differences to the features space (DIFF) as well as removal of jumps based on the LOF

algoirthm have shown good results. We recommend the combination of both techniques.

Fourth, polluting the time series with noise has the most detrimental effect on predictive

accuracy across all machine learning models. Again, we find that the LR is the most robust

machine learning model in the presence of noise. Moreover, additional mitigation measures,

such as the inclusion of first differences (DIFF) and moving averages (MA) in the feature

space yield improved results.

33

References

Ahmed, N. K., Atiya, A. F., Gayar, N. E., El-Shishiny, H., 2010. An empirical comparison

of machine learning models for time series forecasting. Econometric Reviews 29 (5-6),

594–621.

Alon, I., Qi, M., Sadowski, R. J., 2001. Forecasting aggregate retail sales: A comparison

of artificial neural networks and traditional methods. Journal of Retailing and Consumer

Services 8 (3), 147–156.

Bergmeir, C., Benítez, J. M., 2012. On the use of cross-validation for time series predictor

evaluation. Information Sciences 191, 192–213.

Bergmeir, C., Costantini, M., Benítez, J. M., 2014. On the usefulness of cross-validation for

directional forecast evaluation. Computational Statistics & Data Analysis 76, 132–143.

Bergmeir, C., Hyndman, R. J., Koo, B., 2015. A note on the validity of cross-validation for

evaluating time series prediction. Monash University, Department of Econometrics and

Business Statistics, Tech. Rep.

Bishop, C. M., 2007. Pattern Recognition and Machine Learning (Information Science and

Statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics 31 (3), 307–327.

Bontempi, G., Taieb, S. B., Le Borgne, Y. A., 2013. Machine learning strategies for time

series forecasting. Business Intelligence, 62–77.

Box, G., Jenkins, G., 1970. Time series analysis, forecasting and control. Holden-Day, San

Francisco.

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32.

Breunig, M. M., Kriegel, H. P., Ng, R. T., Sander, J., 2000. LOF: Identifying density-based

local outliers. ACM sigmoid record 29 (2), 93–104.

34

Callen, J. L., Kwan, C. C., Yip, P. C., Yuan, Y., 1996. Neural network forecasting of quarterly

accounting earnings. International Journal of Forecasting 12 (4), 475–482.

Chakraborty, K., Mehrotra, K., Mohan, C. K., & Ranka, S., 1992. Forecasting the behavior

of multivariate time series using neural networks. Neural networks 5 (6), 961–970.

Chan, K. S., Tong, H., 1986. On estimating thresholds in autoregressive models. Journal of

Time Series Analysis 7 (3), 179–190.

Connor, J. T., Martin, R. D., Atlas, L. E., 1994. Recurrent neural networks and robust time

series prediction. IEEE transactions on neural networks 5 (2), 240–254.

Cox, J. C., Ross, S. A., 1976. The valuation of options for alternative stochastic processes.

Journal of Financial Economics 3 (1-2), 145–166.

Dreiseitl, S., Ohno-Machado, L., 2002. Logistic regression and artificial neural network classi-

fication models: a methodology review. Journal of Biomedical Informatics 35 (5), 352–359.

Durante, D., Scarpa, B., Dunson, D. B., 2014. Locally adaptive factor processes for multi-

variate time series. Journal of Machine Learning Research 15 (1), 1493–1522.

Engle, R. F., 1982. Autoregressive conditional heteroscedasticity with estimates of the vari-

ance of United Kingdom inflation. Econometrica 50 (4), 987.

Friedman, J. H., 2002. Stochastic gradient boosting. Computational Statistics & Data Anal-

ysis 38 (4), 367–378.

Gooijer, J. G. d., Hyndman, R. J., 2006. 25 years of time series forecasting. International

Journal of Forecasting 22 (3), 443–473.

Granger, C., Anderson, A. P., 1978. An introduction to bilinear time series models. Vanden-

hoeck & Ruprecht, Göttingen.

Hand, D. J., Yu, K., 2001. Idiot’s Bayes? Not so stupid after all? International Statistical

Review 69 (3), 385–398.

35

Hastie, T., Tibshirani, R., Friedman, J., 2008. The elements of statistical learning: Data

mining, inference, and prediction, 2nd Edition. Springer Series in Statistics, New York.

Hill, T., O’Connor, M., Remus, W., 1996. Neural network models for time series forecasts.

Management Science 42 (7), 1082–1092.

Ho, T. K., 1995. Random decision forests. In: Proceedings of the third International Con-

ference on Document Analysis and Recognition. Vol. 1. IEEE, pp. 278–282.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift. In: Proceedings of the International Conference on Machine

Learning. pp. 448–456.

Jondeau, E., Lahaye, J., Rockinger, M., 2015. Estimating the price impact of trades in

a high-frequency microstructure model with jumps. Journal of Banking & Finance 61,

S205–S224.

Kaastraa, I., Boyd, M., 1996. Designing a neural network for forecasting financial and eco-

nomic time series. Neurocomputing 10 (3), 215–236.

Khaleghi, A., Ryabko, D., Mari, J., Preux, P., 2016. Consistent algorithms for clustering

time series. Journal of Machine Learning Research 17 (3), 1–32.

Kim, K., 2003. Financial time series forecasting using support vector machines. Neurocom-

puting 55 (1-2), 307–319.

Kohavi, R., et al., 1995. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In: Proceeding of the International Joint Conference on Artificial

Intelligence. Vol. 14. Stanford, CA, pp. 1137–1145.

Krollner, B., Vanstone, B., Finnie, G., 2010. Financial time series forecasting with machine

learning techniques: A survey. European Symposium on Artificial Neural Networks: Com-

putational and Machine Learning.

36

Lewis, D. D., 1998. Naive (bayes) at forty: The independence assumption in information

retrieval. In: Proceedings of the European conference on machine learning. Springer, pp.

4–15.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perror, M., Duchesnay, E., 2011. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research 12, 2825–2830.

Qian, G., Sural, S., Gu, Y., Pramanik, S., 2004. Similarity between euclidean and cosine

angle distance for nearest neighbor queries. In: Proceedings of the 2004 ACM symposium

on Applied computing. ACM, pp. 1232–1237.

Raschka, S., 2014. Naive bayes and text classification I - Introduction and Theory. arXiv

preprint arXiv:1410.5329.

Raschka, S., 2015. Python Machine Learning. Packt Publishing, Birmingham.

Robinson, J. W., Hartemink, A. J., 2010. Learning non-stationary dynamic Bayesian net-

works. Journal of Machine Learning Research 11 (Dec), 3647–3680.

Ross, S. M., 2007. Stochastic processes, 2nd Edition. Wiley series in probability and statistics.

Wiley, New York.

Schapire, R. E., 1990. The strength of weak learnability. Machine learning 5 (2), 197–227.

Taylor, S. J., 1987. Forecasting the volatility of currency exchange rates. International Jour-

nal of Forecasting 3 (1), 159–170.

Terasvirta, T., Anderson, H. M., 1992. Characterizing nonlinearities in business cycles using

smooth transition autoregressive models. Journal of Applied Econometrics 7 (S1), S119–

S136.

Terasvirta, T., Tjostheim, D., Granger, C. W., 2010. Modelling nonlinear economic time

series. OUP Catalogue.

37

Tong, H., 2012. Threshold models in non-linear time series analysis. Springer, New York.

Tong, H., Chan, K. S., Cox, D. R., Cutler, C., Guégan, D., Jensen, J. L., Johansen, S.,

Lawrance, A. J., LeBaron, B., Ozaki, T., Nychka, D. W., Ellner, S., Bailey, B. A., Gallant,

A. R., Smith, L. R., Smith, R. L., Wolff, R. C. L., 1995. A personal overview of non-linear

time series analysis from a chaos perspective (with discussion and rejoinder). Scandinavian

Journal of Statistics 22 (4), 399–445.

Tong, H., Lim, K. S., 1980. Threshold autoregression, limit cycles and cyclical data. Journal

of the Royal Statistical Society. Series B 42 (3), 245–292.

Xiao, Y., Xiao, J., Wang, S., 2012. A hybrid model for time series forecasting. Human

Systems Management 31 (2), 133–143.

Yule, G. U., 1927. On a method of investigating periodicities in disturbed series, with special

reference to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 226 (636-646), 267–298.

Zhang, G., Patuwo, B. E., Hu, M. Y., 1998. Forecasting with artificial neural networks: The

state of the art. International Journal of Forecasting 14 (1), 35–62.

Zhang, G. P., 2003. Time series forecasting using a hybrid ARIMA and neural network

model. Neurocomputing 50, 159–175.

Zhang, G. P., Patuwo, B. E., Hu, M. Y., 2001. A simulation study of artificial neural networks

for nonlinear time-series forecasting. Computers & Operations Research 28 (4), 381–396.

Zhang, G. P., Qi, M., 2005. Neural network forecasting for seasonal and trend time series.

European Journal of Operational Research 160 (2), 501–514.

38

	Introduction
	Methodology
	Data generation
	Eight linear and nonlinear data generating processes
	Jump process
	Noise process

	Prediction target, feature engineering and preprocessing
	Prediction target
	Feature engineering
	Preprocessing

	Model training and evaluation
	Overview of applied models
	Multilayer perceptron (MLP)
	Logistic regression (LR)
	Naïve Bayes (NB)
	k-Nearest neighbors (kNN)
	Classification and regression trees (CART)
	Random forests (RF)
	Gradient boosting trees (GBT)

	Comparison metric and model performance evaluation

	Obtaining the benchmark - ambition level analysis
	Monte Carlo simulations

	Empirical results
	Base analysis
	Lag analysis
	Jump effect analysis
	Noise analysis

	Conclusion

