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Abstract

Skewness is a well-established statistical concept for continuous and to a lesser extent for

discrete quantitative statistical variables. However, for ordered categorical variables almost

no literature concerning skewness exists, although this type of variables is common for behavi-

oral, educational, and social sciences. Suitable measures of skewness for ordered categorical

variables have to be invariant with respect to the group of strictly increasing, continuous

transformations. Therefore, they have to depend on the corresponding maximal-invariants.

Based on these maximal-invariants we propose a new class of skewness functionals, show that

members of this class preserve a suitable ordering of skewness and derive the asymptotic dis-

tribution of the corresponding skewness statistic. Finally, we show the good power behavior

of the corresponding skewness tests and illustrated these tests by applying real data examples.
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Maximalinvariants
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1. Introduction

Ordered categorical data become more and more important for various fields of research.

Thus, for political and medical research non-income dimensions such as patient life quality,

life satisfaction, political philosophy, or level of education are of increasing interest. In the

business sector, customers are often asked to rate a product’s quality, their customer sa-

tisfaction, or the quality of an order process, with companies adjusting their processes and

strategies according to those answers. In online trading, recommender systems rely on custo-

mers’ evaluation of a product to be able to offer and advertise on a more individualized level.

Most of the time, all of these variables are measured using k-point rating scales. Answers to

those scales lead to rating data, thus ordered categorical data, which are characterized by

a fixed number of ordered categories whose differences have no meaningful interpretation.

Moreover, ties occure frequently for this kind of data as the amount of categories is much

smaller than the amount of observations. However, analyzing rating data reveals that the

median is often the middle category choosable, due to social desirability. In general, the me-

dian, besides being a location measure provides also information on skewness. Therefore, the

median increases the more skewed to the left a distribution is, showing that the concept of

location is not completely independent from the concept of skewness. However, for ordered

categorical data the same median can occure for totally differently skewed datasets. Thus,

this paper claims that for ordered categorical variables skewness is more informative than

location, as the concept of skewness unfolds more insights of the whole distribution of this

kind of data. However, certain skewness properties are demanded for measuring skewness

and a formal ordering of distributions with respect to skewness is needed for comparing

ordered categorical datasets by skewness.

Several aspects of ordered categorical variables like dispersion, bipolarization, inequali-

ty, or peakedness are discussed in the literature, while with few exceptions only location

measures are regarded. Moreover, to our knowledge, no discussion exists on what kind of

skewness orderings ordered categorical data should preserve. As differences of ordered ca-

tegorical variables’ values cannot be meaningfully interpreted, orderings and measures for

these variables can only depend on cumulated frequencies but not on the measured values

themselves. Thus, from the very beginning, this important fact excludes the most well-known
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and prominent measures of skewness like the third standardized moment, measures based

on the differences of quantiles, and L-moments. Moreover, orderings like the convex ordering

and weaker alternatives proposed by Oja (1981) are also not approriate for ordered catego-

rical variables. Therefore, this paper proposes new measures of symmetry and new tests on

asymmetry, which will be based on a new formal skewness ordering for ordered categorical

variables. This new formal skewness ordering is based on the previous work of Klein (1999).

The paper is structered as follows: First, a literature review on measurement and testing

of skewness will be given which shows that all formal definitions of skewness are based on an

ordering of skewness that depends on quantile functions, which however is only unique for

continuous distribution functions. Second, a new skewness ordering for ordered categorical

variables will be introduced, which is restricted to a fixed number of categories. Third, new

skewness functionals defined as weighted sums of cumulated probabilities will be proposed

that provide new linear skewness statistics by applying them to observed cumulated fre-

quencies. Fourth, distribution properties of theses statistics will be shown and hypotheses of

symmetry and skewness will be derived from the new skewness ordering. Fifth, alternative

skewness tests for one-sided alternatives and their properties on discrete data will be presen-

ted. Sixth, the power of tests on symmetry will be compared on discrete variables in the one

and two sample cases, showing that the newly introduced test can be optimal in the sense

of Neyman and Pearson for simple hypotheses.

2. Literature Review

This section provides a short literature review on measures of and tests on skewness for

continuous, discrete, and ordered categorical types of data. It will be shown that for conti-

nuous variables major research on various measures and concepts of skewness exist, that for

discrete data rarely now literature on skewness can be found, and that for ordered categorical

data the few existing literature mostly describes descriptive properties of skewness.

First, we focus on the concept of skewness regarding continuous data. In this case, con-

tinuity, by a support on an infinite number of possible values, prevents the occurence of

ties. So far, literature considered generation of skewed distributions, modelling using skewed

distribution, the measurement of skewness, skewness orderings, and statistical inference on
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continuous data. Thus, these skewness considerations can be taken as being the basis of

skewness discussions for other types of data. Generating skewed distributions by a half split

of the scale parameter was proposed by Fechner (1897). As an alternative to this Fechner ap-

proach, Tukey (1960), Azzalini (1985), Fernández and Steel (1998), and Arellano-Valle et al.

(2005) used certain transformations to generate skewness. Theodossiou (1998) and Grottke

(2002) applied the Fechner approach to the t distribution, which provided generalized skewed

t distributions. Ferreira and Steel (2006) proposed a general probability transformation for

generating univariate skewed distributions. Modelling data that follows a skewed distribution

was achieved by Pearson (1895) by applying the Gamma distribution. Thus, Pareto (1897)

used skewed distributions to model economic variables like income. Regarding the measu-

rement of skewness, Pearson (1895) introduced the standardized distance between mean

and modus, while Yule (1912) used the standardized distance between mean and median.

Charlier (1905) and Edgeworth (1904) independently from each other proposed the standar-

dized third moment as a measure of skewness and Bowley (1920) defined a quantile based

measure, which is more robust with respect to outliers. All of these proposals of skewness

measures follow a pragmatic way of introducing a statistical concept by defining skewness as

the value of skewness measurement. Considerations on the ordering of skewness of absolutely

continuous variables were made by van Zwet (1964) proposing a so-called convex ordering

that reasonable skewness measures have to preserve. Oja (1981) showed that the third stan-

dardized moment preserves this convex ordering and discussed weaker orderings. Moreover,

he demonstrated in which way the theory of measurement can be applied to define sever-

al statistical concepts, including skewness. MacGillivray (1986) and Arnold and Groeneveld

(1995) considered further orderings and axiomatizations. Klein and Fischer (2006) present

that splitting the scale parameter provides a skewness functional preserving the convex orde-

ring of van Zwet (1964). Concerned with inferencial aspects of skewness were Rayner et al.

(1995), Tabor (2010), and Doane and Seward (2011) at comparing the power of various tests

on skewness. Premaratne and Bera (2005) proposed a score test on asymmetry. Inferential

aspects of skewness for continuous distribution functions were also considered in nonpara-

metric statistics. As for the parametric statistics, the assumption of continuity prevents the

occurrence of ties and insures that the test statistics are distributional free under the null
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hypothesis of symmetry. Apart from this assumption nonparametric statistics does not requi-

re quantitative data. Proposed tests on symmetry mainly differ in the regarded alternative.

Lehmann (1953) considered a special alternative to symmetry and shows that the Wilcoxon

signed rank test is locally most powerful for this alternative. Hájek and Sidák (1967) dis-

cussed signed rank tests for the null hypothesis of symmetry considering location shifts as

alternative. Yanagimoto and Sibuya (1972) introduced the concept of ‘positively biasedness’

as an alternative to symmetry, while their hypothesis is based on a skewness ordering that

is not relying on the use of the quantile function. Ley and Paindaveine (2009) considered

an optimal rank test for the alternative of Ferreira & Steel asymmetry, and Cassart et al.

(2008) introduced a new rank test for the Fechner asymmetry. Thas et al. (2005) proposed

new one sample tests for symmetry in a specifically constructed contingency table based on

the second and third components of Pearson’s χ2 statistic.

Next, we focus on the concept of skewness regarding discrete quantitative data. In this ca-

se, variables can only take on a certain number of values. With a finite support they are a spe-

cial case of ordered categorical variables. For discrete distributions, Hotelling and Solomons

(1932) derived limits for the standardized difference of mean and median. Majindar (1962)

and Groeneveld (1991) refined and generalized their result. Especially the discussion of

Groeneveld (1991) concerned the skewness of Poisson, Binomial, Geometric, and Zipf dis-

tributions. von Hippel (2005) showed that the comparison of mean, median, and mode

can lead to a wrong decision on what kind of skewness is underlying in the distribution.

Rohatgi and Székely (1989) derived inequalities about skewness and kurtosis. Referring in-

ference on skewness for discrete data, it is worth to note that almost all publications that

discuss tests on skewness, consider locations shifts as alternative not asymmetry. Nonpara-

metric tests on symmetry with only a small number of ties were discussed by Pratt (1959),

Chanda (1963), Conover (1973), and Vorlicková (1972). To our knowledge, skewness proper-

ties and skewness orderings were not considered for discrete distributions, yet. One reason

could be that for discrete data the concepts of location and dispersion are not easily separable

from the concept of skewness as it is in location-scale families.

Finally, we focus on the concept of skewness regarding ordered categorical data. With a

fixed number of categories, this kind of variables are discrete ones while the distances bet-
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ween the categories are not interpretable in a meaningful manner. For measuring skewness

on ordered categorical variables, it was already mentioned that those measures rely on pro-

babilities under mild invariance requirements. Therefore, corresponding skewness statistics

can only depend on observed frequencies following a multinomial distribution. Klein (2001)

considered skewness measures for ordered categorical variables without discussing their sto-

chastic properties. For inferencial aspects, Bowker (1948) discussed skewness in the context

of contingency tables with the help of the χ2 statistic. Bhapkar (1961) and Bhapkar (1966)

developed a generalized likelihood ratio test for linear restrictions on the probability vector

of a multinomial distribution while special linear restrictions provide the concept of symme-

try. Robertson and Wright (1981) tested against order restrictions of the probability vector.

Dykstra et al. (1995), Dykstra et al. (1995b), and Bhattacharya (1997) provided likelihood

ratio tests on skewness. Bhattacharya and Nandram (1996) proposed a Bayes procedure for

inference concerning multinomial populations under stochastic ordering.

Thus, for ordered categorical variables, a discussion of skewness properties and skewness

orderings as well as a skewness functional that only depends on cumulated frequencies is

needed.

3. Skewness Properties and Skewness Ordering

The theory of measurement states a statistical measure to be a structure preserving map

of a basic qualitative structure into the equivalent quantitative structure defined on the

real numbers. By applying a structure preserving map it is ensured that assertions on the

quantitative structure have a meaning in the context of the underlying qualitative structure.

For the concept of skewness this rather fundamental way of measuring statistical concepts

means to determine skewness properties for indicating a distribution to be symmetric or

skewed to the left (right) and to determine an ordering of skewness for comparison of different

distributions. In addition, it means to define a measure of skewness as a map from the basic

relations into the real numbers such that the skewness properties and the skewness ordering

are preserved.
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3.1. Skewness Properties

Accordingly, an appropriate measure of skewness should take the value 0 if the distribu-

tion is symmetric, the value -1 if it is extremeley skewed to the left, and the value +1 if the

distribution is extremely skewed to the right to preserve the skewness properties.

Regarding ordered categorical variables, skewness properties can only rely on a vector of

probabilities, as no meaningful interpretation of the values’ differences can be made. Thus,

let p = (pi, ..., pk) be a vector of probabilities, then symmetry can be described by

pi = pk+1−i, i = 1, 2, . . . , k.

Let Pi denote the cumulative probabilities with Pi =
∑i

j=1 pj , then symmetry can alterna-

tively be described by

Pi = 1− Pk−i or Qi =
Pi + Pk−i

2
=

1

2
, i = 1, 2, . . . , k − 1.

Using Pi and Qi, i = 1, 2, . . . , k− 1, a distribution can be defined as being skewed to the left

or skewed to the right. In the following, let l = [k/2] be the integer part of k/2 (see Klein

(2001) and Dykstra et al. (1995)).

Definition 3.1. Let p = (p1, p2, . . . , pk) with
∑k

i=1 pi = 1. Then p is called skewed to the

left (right) if

Qi ≤
1

2
(Qi ≥

1

2
), i = 1, 2, . . . , l = [k/2]. (1)

Skewness to the left (right) is as well called negative (positive) skewness. Extremely negative

skewness is characterized by pi = 0, Pi = 0 and Qi = 0 for i = 1, 2, . . . , k − 1. Extremely

positive skewness is characterized by p1 = 1, Pi = 1 and Qi = 1, i = 1, 2, . . . , k−1. Moreover,

defintion 3.1 is identical with the characterization of asymmetry by Dykstra et al. (1995) in

case of k being odd and mass points being −l,−l−1, . . . ,−1, 0, 1, . . . , l instead of 1, 2, . . . , k.

In analogy to Dykstra et al. (1995) we can consider definitions of asymmetry that are

stronger than (1).

Lemma 3.1. Let p = (p1, ..., pk) be a vector of probabilities. p is skewed to the left if

p1 ≤ p2 ≤ . . . ≤ pk, (2)
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or

pi ≤ pk+1−i, i = 1, 2, . . . , l = [k/2]. (3)

Obviously, (2) is stronger than (3), while both skewness definitions are stronger than (1)

as examples 3.1 and 3.2 show.

Example 3.1. We consider a discrete random variable following a binomial distribution

with parameters n = 6 and success probability p0 = 2/3. This random variable has 7 ordered

categories illustrating a so called 7-point rating scale, which is often used in questionnaires.

Here, Qi < 1/2, i = 1, 2, . . . , 6 characterizing the vector of probabilities p to be skewed to

Table 1: Probabilities from a binomial distribution with parameters n = 6 and success probability 2/3

category i pi Pi Qi

1 0.001 0.001 0.457

2 0.017 0.018 0.334

3 0.083 0.101 0.211

4 0.219 0.320 0.211

5 0.329 0.649 0.334

6 0.263 0.912 0.457

7 0.088 1.000

the left by (1). Additionally, pi < p8−i for i = 1, 2, 3 = l = [7/2] characterizing the vector

of probabilities p to be skewed to the left by (3). However, p5 � p6, such that p cannot be

characterized to be skewed to the left by (2).

Thus, example 3.1 showed that skewness property definitions (1) and (3) are preserved,

while (2) is not.

Example 3.2. For p = (0.1, 0.3, 0.2, 0.1, 0.3) the vector of cumulated probabilities is P =

(0.1, 0.4, 0.6, 0.7, 1.0) and Q = (0.1, 0.2, 0.2, 0.3, 0.2).

Here, Qi < 1/2 for i = 1, 2 = l = [5/2], while p2 > p6−2=4. Therefore p is characterized

to be skewed to the left with respect to (1), but p is not characterized to be skewed to the left

if skewness is defined by (3).
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Finally, example 3.3 shows that there are vectors of probabilities that can neither be

classified as being skewed to the left nor skewed to the right.

Example 3.3. We choose a vector of probabilities p such that categories 1 and 6 are both

modi of this distribution. Here, p cannot be classified as skewed to the left or skewed to the

Table 2: Probabilities p from a distribution such that p is neither skewed to left nor skewed to the right

category i pi Pi Qi

1 0.214 0.214 0.572

2 0.071 0.286 0.393

3 0.071 0.357 0.393

4 0.071 0.429 0.393

5 0.071 0.500 0.393

6 0.429 0.929 0.572

7 0.071 1.000

right by either skewness definition. Regarding skewness definition (1), no characterization of

skewness can be made as Q1 = (P1 + P6)/2 > 0.5 while Q2 = (P2 + P5)/2 < 0.5. Regarding

skewness definition (2), no characterization of skewness can be made as p5 ≤ p6, while

p1 � p2. Regarding skewness definition (3), no characterization of skewness can be made as

p2 ≤ p6, while p1 � p7.

3.2. Skewness Orderings

Applying a structure preserving map for the concept of skewness means to not only de-

termine skewness properties but also a well defined ordering of skewness so that statistical

hypotheses can be formulated and distributions can be compared with respect to skewness

(MacGillivray (1986)). No approach exists yet to define a skewness ordering by apply-

ing the theory of measurement in the sense of Oja (1981) for ordered categorical variables

with a fixed number of categories. Several skewness orderings were proposed explicitly or

implicitly based on well defined and unique quantile functions, which requires (absolute) con-

tinuous distribution functions (see e.g. van Zwet (1964), Oja (1981), MacGillivray (1986),

Arnold and Groeneveld (1995)). Thus, even for the case of discrete quantitative random
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variables these orderings are not suitable. Therefore, an alternative ordering of skewness is

needed in the case of discrete distributions and especially in the case of ordered categorical

random variables.

Implicitly, Dykstra et al. (1995) consider a skewness ordering for discrete distributions

by restricting their discussion of several alternative hypotheses of asymmetry to regarding

a random variable X that is symmetrically distributed around 0. Here, symmetry can be

characterized not considering the quantile function but the distribution or probability mass

function by the fact that X and −X are identically distributed. Thus, special kinds of

asymmetry are given if X is stochastically greater than −X or P (X = j) ≥ P (X = −j),
j > 0. This definition of asymmetry can be generalized to a skewness ordering for ordered

categorical variables as shown by Klein (1999). A supposed shortcoming of this definition is

that only vectors of probabilities with equal length can be compared, which corresponds to

the fact that only measurements on the same rating scale are comparable.

Definition 3.2. Let pi, p
′

i ≥ 0, i = 1, 2, . . . , k with
∑k

i=1 pi =
∑k

i=1 p
′

i = 1. Pi, P
′

i , i =

1, 2 . . . , k are the corresponding cumulative probabilities and Qi = (Pi +Pk−i)/2, Q
′

i = (P ′

i +

P ′

k−i)/2, i = 1, 2, . . . , k − 1. Then, p = (p1, p2, . . . , pk) is called more skewed the left than

p′ = (p′1, p
′

2, . . . , p
′

k) (shortly: p � p′) ⇐⇒

Qi ≤ Q′

i, i = 1, 2, . . . , l = [k/2]. (4)

The following lemma states that several sufficient conditions for a vector of probabilities

exist to preserve (4).

Lemma 3.2. Let pi, p
′

i ≥ 0, i = 1, 2, . . . , k with
∑k

i=1 pi =
∑k

i=1 p
′

i = 1. Pi, P
′

i , i = 1, 2 . . . , k

are the corresponding cumulative probabilities and Qi = (Pi + Pk−i)/2, Q
′

i = (P ′

i + P ′

k−i)/2,

i = 1, 2, . . . , l = [k/2]. Then Qi ≤ Q′

i, i = 1, 2, . . . , l if

1. Pi ≤ P ′

i , i = 1, 2, ..., k − 1

or

2. qi ≤ q′i, i = 1, 2, ..., l (5)

with qi = (pi + p′k+1−i)/2, q′i = (p′i + pk+1−i)/2.
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The second condition (5) is the well-known stochastic ordering of distributions. For two

distributions with the same finite support the distribution that is stochastically larger au-

tomatically is more skewed to the left. Condition (5) obviously defines a stronger ordering

than (4) because

Qi ≤ Q′

i ⇐⇒
i∑

j=1

(qi − q′i) ≤ 0

for i = 1, 2, . . . , l.

Example 3.4. Consider the simple example

(P1, P2, P3) = (0.1, 0.3, 0.7) and (P ′

1, P
′

2, P
′

3) = (0.15, 0.35, 0.66).

The corresponding Qi and Q
′

i are

(Q1, Q2, Q3) = (0.4, 0.3, 0.4) and (Q′

1, Q
′

2, Q
′

3) = (0.405, 0.35, 0, 405).

This means that P ′

3 < P3, while Qi ≤ Q′

i, i = 1, 2, . . . , k − 1.

Klein (2001) showed that the third standardized moment does not preserve skewness ordering

(4) for integer-valued random variables.

4. New Class of Skewness Measures and Functionals

Appropriate skewness measures and functionals for ordered categorical variables should

preserve the skewness properties and skewness orderings presented in section 3.

4.1. Skewness Measures

Classical measures of skewness like Pearson’s skewness measure as standardized distance

betweeen mean and modus or the standardized third moment rely on a meaningful interpre-

tation of the values’ differences. However, for ordered categorical variables such a meaningful

interpretation of the values’ differences is missing. Therefore, these classical measures are

not suitable for ordered categorical variables, because the corresponding ordinal scale can be

transformed by an arbitrarily chosen strictly increasing transformation, which changes the

values’ differences.
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Klein (1994) gives a formal proof that measures of skewness for ordered categorical vari-

ables can only depend on cumulated probabilities but not on actual values ui, i = 1, 2, . . . , k.

The only necessary assumption is that the skewness measure is comparison invariant for all

strictly increasing transformations and absolute invariant with respect to translations. This

restricts an appropriate measure of skewness for ordered categorical variables to the class of

measures that depend on cumulated probabilities.

Moreover, a measure of skewness’s definition is required to include a suitable skewness

ordering (Oja (1981)). Such a suitable skewness ordering ’�’ was presented in section 3 as

(4) or (5). Consequently, a suitable measure of skewness for ordered categorical variables

can be defined as follows.

Definition 4.1. S : A → R is a measure of skewness with A = {p ∈ [0, 1]k|p′ι = 1} for

ι′(1, 1, . . . , 1) iff:

1. Let p = (p1, p2, . . . , pk) ∈ A and p′ = (pk, pk−1, . . . , p1). Then S(p) = −S(p′).

2. Let p, p′ ∈ A with p � p′. Then S(p) ≤ S(p′).

Klein (2001) proved that a special class of so-called linear skewness functionals are skew-

ness measures in the sense of definition 4.1 if skewness ordering (4) is applied. Functionals

of this special class of linear skewness measures have the form

Sb(P ) =
1

k − 1

k−1∑

i=1

b(Qi) (6)

with a generating function b with properties

1. b : [0, 1] → R,

2. b is continuous in (0, 1),

3. b is antisymmetric, this means b(p) = −b(1 − p) for p ∈ (0, 1),

4. b is constraint and strictly increasing in [0, 1].
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Without loss of generality we assume that b(0) = −1 and b(1) = 1 to restrict the domain of

Sb to the interval [−1, 1]. These limits will be attained by an extremely negatively skewed

(−1) or extremely positively skewed (+1) distribution.

Suitable generating functions are easy to find, as is shown in example 4.1.

Example 4.1. Examples for generating functions b.

• Kiesl (2003) discusses a so called position-based measure of dispersion.Transferring the

generating function of this measure of dispersion to the skewness measurement situation

leads to

b1(p) = 2(p− 1/2), p ∈ [0, 1].

• Transferring the generating function that was applied for the measurement of dispersion

by Gini (1955) leads to

b2(p) =





4(p2 − 1/4) for p ≤ 1/2

4(p− 1/2)(3/2− p) for p > 1/2
.

• In the context of skewness measurement for quantitative variables Premaratne and Bera

(2005) discuss the generating function

b3(p) =
tan−1(p− 1/2)

tan−1(1/2)
.

Generating functions b1(p), b2(p), and b3(p) are displayed in figure 4.1.
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Figure 4.1: The generating functions of example 4.1.

Figure 4.1 shows that the generating functions b1(p) and b3(p) are very similar. Due to

this, we will only discuss the generating functions b1(p) and b2(p) in the following. Moreover,

Sb1 will be called SK referring to the generating function applied by Kiesl (2003) and Sb2

will be called SG referring to the generating function applied by Gini (1955).

As the concept of skewness is not completely independent from the concept of location, it

is of interest to show that the position-based measure of skewness SK can be represented as

the expectation of an integer-valued random variable. If pi will be considered as probabilities

of an equally spaced integer-valued random variable and due to the fact that arithmetic

means can be calculated by integrating the distribution function and the survival function,

SK can be identified as a function of the arithmetic mean.

Lemma 4.1. Let U be a random variable with support {i1, i1 + 1, . . . , i1 + (k − 1)}, i1 ∈ Z.

Let pi = P (U = i1 + (i − 1)), i = 1, 2, . . . , k. µ = E(U) =
∑k

i=1(i1 + (i − 1))pi is the
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expectation of U . Then it holds

SK(P ) =
2

k − 1

(
ki1 +

k − 1

2
− µ

)
. (7)

Thus, the skewness measure SK(P ) shows a distribution to be more skewed to the left the

bigger the distribution’s mean.

4.2. Skewness Functionals

Up to now we defined measures of skewness for a vector of probabilities. For using

these measures as test statistics, they have to be applied to the random vector of relative

frequencies f = (n1/n, . . . , nk/n). Consequenly, the sample measure of skewness itself is a

random variable following a certain distribution. This skewness measure explicitly depends

on Hi = (Fi + Fk−i)/2, i = 1, 2, . . . , k − 1 with cumulated frequencies Fi =
∑i

j=1 fj, i =

1, 2, . . . , k.

The linear sample skewness measure has the form

Sb(F ) =
1

k − 1

k−1∑

i=1

b(Hi)

with a generating function b. In the following, we call Sb(F ) the linear skewness statistic.

This statistic as well as the difference Sb(F ) − Sb(F ′) can be used to test hypotheses of

symmetry and identical asymmetry against alternatives of asymmetry. Therefore, the exact

or limiting distribution of this test statistic under the null hypothesis is needed for the one

sample case as well as for the two sample case.

One sample case

The exact distribution of the linear skewness statistic depends on the vector p = (p1, . . . , pk)

of the population’s probabilities. If p is known, the distribution can be calculated by total

enumeration or by simulation. For total enumeration all partitions of the number n in k

non negative integers has to be generated. Simulation requires drawing samples from the

multinomial distribution. For larger values of n and k the calculation of the exact distribution

is rather tedious. In this case the limiting distribution of Sb(F ) is needed.
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Theorem 4.1. Let N = (N1 . . . , Nk) be multinomially distributed with parameters n and

p = (p1, . . . , pk) with
∑k

i=1Ni = n and
∑k

i=1 pi = 1. Denote Fi =
∑i

j=1Ni/n, Pi =
∑i

j=1 pj

and Hi = (Fi + Fk−i)/2, Qi = (Pi + Pk−i)/2, i = 1, 2, . . . , k − 1. If b : [0, 1] → [−1, 1] is

differentiable on (0, 1) and b′(Qi) 6= 0 for i = 1, 2, . . . , k − 1, then Sk(N) =
∑k−1

i=1 b(Hi) is

asymptotically normally distributed with mean
∑k−1

i=1 b(Pi) and variance

σ2
n =

1

n

(
k−1∑

i=1

Pi(1− Pi)b
′(Qi)

2 + 2

k−2∑

i=1

k−1∑

j=i+1

Pi(1− Pj)b
′(Qi)b

′(Qj)

)
.

This variance can consistently be estimated by

σ̂2
n =

1

n

(
k−1∑

i=1

Fi(1− Fi)b
′(Hi)

2 + 2

k−2∑

i=1

k−1∑

j=i+1

Fi(1− Fj)b
′(Hi)b

′(Hj)

)
.

See appendix for proof of theorem 4.1. For the asymptotic distribution under the null hy-

pothesis of symmetry b′(1/2) 6= 0 has to be required. Considering special cases of generating

functions b(Hi), the asymptotic distributions can be formulated as follows.

Example 4.2. Asymptotic distributions of the linear skewness statistic for special cases of

generating functions.

• For b1(p) it is b′1(p) = 2 6= 0 for p ∈ (0, 1). The asymptotic variance of SK(N) =

1
k−1

∑k−1
i=1 2(Hi − 1/2) for Qi = 1/2, i = 1, 2, . . . , k − 1 is

σ2
n =

4

n(k − 1)2

(
k−1∑

i=1

Pi(1− Pi) + 2
k−2∑

i=1

k−1∑

j=i+1

Pi(1− Pj)

)

• For b2(p) it is

b′2(p) =





8p for p ∈ (0, 1/2)

8(1− p) for p ∈ (1/2, 1)

This derivative does not vanish in (0, 1). The asymptotic variance of SG(N) for Qi =

1/2, i = 1, 2, . . . , k − 1 is

σ2
n =

1

n(k − 1)2

(
k−1∑

i=1

Pi(1− Pi)b
′

2(Qi)
2 + 2

k−2∑

i=1

k−1∑

j=i+1

Pi(1− Pj)b
′

2(Qi)b
′

2(Qj)

)
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Two sample case

For the two sample case, a test can be based on the difference Sb(f1)− Sb(f2) of the values

of a linear skewness statistic Sb for two independent samples with observed frequencies

fi′ = (ni′1/n, . . . , ni′k/n), i = 1, 2, . . . , k and i′ = 1, 2. Sb(fi′) is asymptotically normally

distributed. Hence, the difference also asymptotically follows a normal distribution

Sb(f1)− Sb(f2)
a∼ N

(
0, σ2

n1
+ σ2

n2

)
.

4.3. Statistical Hypotheses

Considering the skewness properties and the skewness orderings presented in section 3,

statistical hypotheses for one and two sample tests can be derived. These hypotheses can be

tested applying the linear rank statistic and its distribution presented in section 4.

For the one sample case, symmetry means that pi = pk+1−i, i = 1, 2, . . . , k−1. Thus, the

null hypothesis of symmetry can be stated as

H0 : Qi = 1/2, i = 1, 2, . . . , l = [k/2].

For the two sample case, the null hypothesis of identical symmetry of two populations p =

(p1, . . . , pk) and p
′ = (p′1, . . . , p

′

k) can be stated as

H ′

0 : Qi = Q′

i i = 1, 2, . . . , l = [k/2]

or equivalently

H ′

0 : qi = qk+1−i, i = 1, 2, . . . , l = [k/2].

This means that the null hypothesis of identical skewness of two independent samples can

be reformulated as null hypothesis of symmetry for the synthetic vector of probabilities

q = (q1, . . . , qk) (see Lemma 3.2 (5)).

Statistical testing distinguishes between so-called one-sided and two-sided alternatives

to the null hypotheses of symmetry and identical asymmetry. As two-sided alternatives are

of minor interest for a directed concept like asymmetry, we focus on one-sided alternatives.

Two-sided alternatives can be discussed in a similar way.
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For the one sample case, the alternative hypothesis that p = (p1, . . . , pk) is skewed to the

left, or for the two sample case, the alternative hypothesis that p is more skewed to the left

than p′ = (p′1, . . . , p
′

k) leads to H1 \H0 or H ′

1 \H ′

0 with

H1 : Qi ≤ 1/2 for i = 1, 2, . . . , l

H ′

1 : Qi ≤ Q′

i for i = 1, 2, . . . , l.

5. Alternative Skewness Tests for One-Sided Alternatives

To evaluate the performance of tests based on the new class of skewness statistics intro-

duced in section 4, which is so far the only class of skewness statistics suitable for ordered

categorical data, size and power comparisons have to be performed applying discrete vari-

ables. Discrete quantitative random variables are also ordered categorical random variables.

Therefore, alternative skewness tests based on the third standardized moment, linear rank

tests, and a likelihood ratio test under order restrictions as well as their distributions in case

of discrete quantitative variables are presented in the following.

5.1. Skewness Test Based on The Third Standardized Moment

The asymptotic distribution of the third standardized moment is well known in the case

of continuous quantitative random variables. However, its distribution in case of discrete

quantitative random variables is required.

One sample case

Definition 5.1. Let u1 < u2 < . . . < uk be the realizations of a discrete random variable U .

Set pi = P (U = ui), i = 1, 2, . . . , k. Then the functional

SK(u, p) =

∑k
i=1(ui − µ)3pi
(σ2)3/2

with

µ =
k∑

i=1

uipi, σ2 =
k∑

i=1

(ui − µ)2pi

is the third standardized moment of the distribution of U .
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Applying this functional to the relative frequencies f = (f1, . . . , fk) leads to the third stan-

dardized sample moment SK(u, f),which can be used for a test of symmetry. In line with

Premaratne and Bera (2005) we call this test
√
b1 test. Its exact distribution can be de-

rived either by total enumeration or simulation. The asymptotic distribution is given by the

following theorem.

Theorem 5.1. Let u1 < u2 < . . . < uk be the realizations of a discrete random variable U .

Set pi = P (U = ui), i = 1, 2, . . . , k. Let N = (N1 . . . , Nk) be multinomially distributed with

parameters n and p = (p1, . . . , pk) with
∑k

i=1Ni = n. f = (f1, . . . , fk) = N/n. The third

standardized sample moment

SK(u, f) =
M3(u, f)

(S2(u, f))3/2

with

M3(u, f) =

k∑

i=1

(ui −M1(u, f))
3fi, S2(u, f) =

k∑

i=1

(ui −M1(u, f))
2fi

and M1(u, f) =
∑k

i=1 uifi is asymptotically normally distributed with mean SK(u, p) and

variance ∇′Σ∇. ∇ is the gradient vector with elements

∂SK(u, f)

∂fi
= −3

ui√
S2(u, f)

+
(ui −M1(u, f))

3

S2(u, f)3/2
− 3

2
SK(u, f)

u2i − 2M1(u, f)ui
S2(u, f)

,

i = 1, 2, . . . , k, and Σ denotes the covariance matrix with elements

σij = Cov(fi, fj) =





pi(1− pi)/n for i = j

−pipj/n for i 6= j

See appendix for the proof of this theorem.

Two sample case

The difference between two independent samples’ third standardized sample moments can

be used to test the equality of skewness if u is a k-dimensional vector of discrete val-

ues. Therefore, SK(u, f1) − SK(u, f2) is asymptotically normally distributed with mean

SK(u, p1)−SK(u, p2) and variance-covariance matrix ∇′

1Σ1∇1 +∇′

2Σ2∇2. The elements of

∇i′ are

∂SK(u, fi′)

∂fi′i
= −3

ui√
S2(u, fi′)

+
(ui −M1(u, fi′))

3

S2(u, fi′)3/2
− 3

2
SK(u, fi′)

u2i − 2M1(u, fi′)ui
S2(u, fi′)

,
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i = 1, 2, . . . , k and i′ = 1, 2. The covariance matrix Σi′ is given by the elements

σij = Cov(fi′i, fi′j) =





pi′i(1− pi′i)/n for i = j

−pi′ipi′j/n for i 6= j

for i, j = 1, 2, . . . , k and i′ = 1, 2.

5.2. Skewness Tests Based on Linear Rank Statistics

Signed rank tests were developed for testing the location of symmetric distributions.

Hájek and Sidák (1967) titled section III.5.1 of ‘Theory of Rank Statistics’ as ‘Tests of

Symmetry’, but discussed in this section a test on location shift for families of symmetric

distributions. Therefore, Yanagimoto and Sibuya (1972) p. 423, stated explicitly:

‘‘The purpose of this paper is to make clear the notion of a ‘positively biased’

one-dimensional random variable as an alternative to ‘symmetric about zero’. This

notion is useful to make more precise statements on the test of symmetry than

discussed in previous publications [...] .”

To these previous publications belongs Hájek and Sidák (1967)’s ‘Theory of Rank Statistics’.

Thus, Yanagimoto and Sibuya (1972) considered ‘positively biasedness’ as alternative to

‘symmetric about zero’.

Let X1, . . . , Xn be a simple random sample from the distribution F (.), |X|(1), . . . , |X|(n)

the ordered statistics of the absolute values of Xi, i = 1, 2, . . . , n and Zi = 1 (= −1) if |X|(i)

corresponds to a positive (negative) Xi, i = 1, 2, . . . , n. Then

S =

n∑

i=1

a(i)Zi

defines a signed rank test statistic with scores a(i), i = 1, 2, . . . , n. Yanagimoto and Sibuya

(1972) proved that S can be applied for an unbiased test of the null hypothesis of symmetry

against the alternative H1 \ H0 if the scores are nondecreasing, i.e. a(1) ≤ . . . ≤ a(n).

Examples of nondecreasing scores are Median scores (a(i) = 1), Wilcoxon scores (a(i) = i),

normal scores (a(i) = Φ−1(i/(n+ 1)), and expected normal scores (E(Φ−1(U (i))).

An extremely skewed probability vector p contains elements pi being 0 or 1. Due to

this, the score function a(.) should have a constrained range. This excludes e.g. normal
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scores or expected normal scores. Thus, power comparisons in section 6 between tests based

on the new class of linear skewness functionals and tests based on linear rank statistics

can be made based on Median and Wilcoxon scores. We restrict our analysis to those

based on Wilcoxon scores as the Median test was shown to provide lower power than the

Wilcoxon-Mann-Whitney test, even in the double exponential family at small sample sizes

(see Freidlin and Gastwirth (2000), Ramsey (1971)). Applying Sa(.) to the vector f of

observed frequencies n1/n, . . . , nk/n gives the linear rank skewness statistic. The exact

distribution can either be calculated by total enumeration or simulation.

A test based on linear rank statistics with Wilcoxon scores for the one sample case is

identical to the Wilcoxon signed rank test. Its limiting distribution is given by a normal

distribution with mean 0.25(1 + 1/n). In the presence of ties the variance of the limiting

distribution can be corrected to achieve a better approximation for small sample sizes:

σ2
W =

n(n+ 1)(2n+ 1)

24n4
− 1

48n4

k∑

j=1

((nbj)
3 − nbj)

with

bj = pj + pk+1−j, j = 1, 2, . . . , l

(Büning and Trenkler (1994)). A test based on linear rank statistics with Wilcoxon scores for

the two sample case is identical to the Wilcoxon-Mann-Whitney test. Adapted for ordered

categorical data,

W =

∑n1

i=1

∑n2

j=1 ψ(pn1, p
′n2)

n1n2
,

with ψ(x1, x2) = 1 if x1 > x2, ψ(x1, x2) = 0.5 if x1 = x2, and ψ(x1, x2) = 0 otherwise.

This statistic is asymptotically normally distributed with mean 0.5 and variance

σ2
W =

n(1−
∑k

i=1 /(t
3
k/n

3))

12(n− 1)npp′
,

with n = n1 + n2, pi = ni/n, ti = (pn1)i + (p′n2)i, while k denotes the number of categories

(see Zhao et al. (2008)).

5.3. Likelihood Ratio Skewness Test under Order Restrictions

The general linear hypotheses H0 : pi = pk+1−i, i = 1, 2, . . . , k. and H ′

0 : Qi = Q′

i, i =

1, 2, . . . , k − 1 against an unspecified alternative can be tested using a generalized likelihood
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ratio test. To do so, we have to maximize the logarithmic likelihood function under the

restriction of the null hypothesis. The Wald test is asymptotically equivalent to the general-

ized likelihood ratio test and avoids this optimization under restrictions. Tests on categorical

data and especially the equivalence of the χ2- and the Wald test was discussed by Bhapkar

(1961) and Bhapkar (1966). For ordered categorical variables we have specified or directed

alternatives. For these one-sided alternatives, Dykstra et al. (1995) discussed likelihood ra-

tio tests for symmetry of discrete distributions for the one sample case.

One sample case

Dykstra et al. (1995) discussed discrete distributions with support {1, 2, . . . , 2l+1}, hence
an odd number k = 2l + 1 of mass points. For this special case they discuss an alternative

that is equivalent to the skewness property (1):

H1 : Pi ≤ 1− Pk−i, i = 1, 2, . . . , l

For the test of symmetry H0 against H1 \H0 the likelihood ratio statistic

T1 = 2

k∑

i=1

ni(ln p̂
(1)
i − ln p̂

(0)
i )

is used, with ni being the sample frequency of i, p̂0i = (ni+nk+1−i)/(2n) being the Maximum

Likelihood (ML) estimator of pi under H0, and p̂
1
i being the ML estimator of pi under the

restriction of the alternative H1 for i = 1, 2, . . . , k.

Using results from isotonic regression, the following theorem states states that p̂1i , i =

1, 2, . . . , k is given by the least squares projection onto the cone of nondecreasing vectors.

Theorem 5.2. (Dykstra et al. (1995), p. 722) Let p̂i = ni/n > 0, i = 1, 2, . . . , k. Set

p̂− = (p̂k+1−i, p̂k−i, . . . , p̂1). Then the ML estimator p̂1 of p = (p1, p2, . . . , pk) subject to the

restriction H1 is given by

p̂(1) = p̂Ep̂

(
p̂+ p̂−
2p̂

|I
)
.

Ew(x|I) denotes the least squares projection with weights w of the vector x onto the cone I

of nondecreasing vectors.
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The least squares projection can be computed by the pool adjacent violators algorithm

(PAVA) which is implemented in R (see De Leeuw et al. (2010)). The exact distribution

can be derived by total enumeration or simulation. Dykstra et al. (1995) derive the limiting

distribution of the likelihood ratio statistic T1 under the null hypothesis of symmetry if the

alternative is H1 \H0 as a mixing of χ2 distributions.

Theorem 5.3. (Dykstra et al. (1995), p. 724) If p satisfies H0 and pi > 0, i = 1, 2, . . . , k =

2l + 1, then

lim
n→∞

P (T1 ≥ t) =
k∑

i=l+1

p(i, k, pr)P (χ
2
k−i ≥ t)

where p(0, k, pr) is the probability that Epr(Vr|J) is identically 0, p(i, k, pr) for i = 1, 2, . . . , l

is the probability that Epr(Vr|J) has i distinct non-zero values, and pr is the restriction of p

to {l + 2, ..., k}. Furthermore, the least favorable asymptotic distribution is

sup
p

lim
n→∞

P (T1 ≥ t) =
1

2
P (χ2

(k−1)/2−1 ≥ t) +
1

2
P (χ2

(k−1)/2 ≥ t)

Tests on similar alternatives to symmetry as discussed in Dykstra et al. (1995) are pro-

vided by Bhattacharya (1997).

Two sample case

Tests on asymmetry for the two sample case considering the stronger alternative hypoth-

esis pi < p′i were discussed in Dykstra et al. (1995b). However, we consider a less restrictive

alternative and the null hypothesis that two vectors of probability p = (p1, . . . , pk) and

p′ = (p′1, . . . , p
′

k) have the same amount of skewness

H ′

0 : Qi = Q′

i, i = 1, 2, . . . , l = [k/2].

This null hypothesis can be reformulated to a one sample hypothesis

qi = qk+1−i, i = 1, 2, . . . , l

with qi = (pi + p′k+1−i)/2, i = 1, 2, . . . , k (see (5)). Due to the skewness ordering (4) p is

more skewed to the left if

H ′

1 : Qi ≤ Q′

i, i = 1, 2, . . . , l
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or equivalently if

H ′

1 :

i∑

j=1

qj ≤
i∑

j=1

qk+1−j i = 1, 2, . . . , l

holds. Thus, the alternative hypothesis for the two sample case is H ′

1\H ′

0. Reformulating the

alternative hypothesis into a one sample problem gives the advantage that the one sample

likelihood ratio test under order restrictions proposed by Dykstra et al. (1995) can be used

for testing. Thus, this likelihood ratio test’s procedure and its asymptotic distribution have

to be applied to the probability vector q. Without any restriction the ML estimator q̂i of qi

is (ni/n+ n′

k+1−i/n
′)/2 for i = 1, 2, . . . , k. Under H ′

0, the ML estimator q̂0i of qi is

q̂
(0)
i =

ni/n+ n′

k+1−i/n
′ + n′

i/n
′ + nk+1−i/n

4

for i = 1, 2, . . . , k. From theorem (5.2) we know that the ML estimator of qi under H
′

1 \H ′

0

q̂ = (q̂
(1)
i , . . . , q̂

(1)
i ) is

q̂(1) = q̂E

(
q̂ + q̂−
2q̂

|I
)
.

The likelihood ratio test statistic for testing H ′

0 against H ′

1 \H ′

0 is given by

T1 = 2
k∑

i=1

(ni + n′

k+1−i)(ln q̂
(1)
i − ln q̂

(0)
i )

Its asymptotic distribution is analogous to the one sample case.

6. Power Comparisons

Power comparisons of skewness tests based on the new class of linear skewness function

with alternative skewness tests have to be performed on a parametric discrete distribution

with suitable support and a well-defined skewness parameter which can be varied. Several

such discrete distributions exist.

One possible distribution is the binomial distribution. For this distribution the skewness

statistic SK is uniformly most powerful for one sided alternatives. Let U be distributed

according to

f(u; k − 1, p0) =

(
k − 1

u

)
pu0(1− p0)

(k−1)−u, u = 0, 1, . . . , k − 1
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with µk = E(X) = (k− 1)p0. This distribution is symmetric around the median if p0 = 1/2.

For p0 > 1/2 (p0 < 1/2) we get a distribution that is skewed to the left (right). Thus,

we can manipulate the skewness of the distribution by manipulating p0. The corresponding

standardized third moment is

SK =
1− 2p0√

(k − 1)p0(1− p0)
, p0 ∈ (0, 1).

The linear skewness function is given by

SK = 1− 2p0,

due to µ = (k − 1)p0 and the fact that SK can be represented as the expectation of an

integer valued variable (see (7)). Let X1, . . . , Xn be a simple random sample from the

binomial distribution. Then, the Maximum Likelihood estimator for p0 is given by

p̂0 =
1

n(k − 1)

k∑

i=1

Xi.

Due to the invariance property of Maximum Likelihood estimators the ML estimators for

SK and SK are given by

ŜK =
1− 2p̂0√

(k − 1)p̂0(1− p̂0)

and

ŜK = 1− 2p̂0.

DenoteNi as the number of random draws resulting in the realization i−1 for i = 1, 2, . . . , k−
1. If Fi =

∑i
j=1Nj/n, i = 1, 2, . . . , k − 1, then there is a simple relationship between the

ML estimator p̂0 and the linear sample skewness measure SK(F ):

p̂0 = 1− 1

k − 1

k−1∑

i=1

Fi =
1

2
− SK(F )

2
.

SK(p(.; p0)) = 1− 2

k − 1
(k − 1)p0 = 1− 2p0.

This means that the linear sample skewness statistic SK(F ) and the ML estimator ŜK are

identical. Thus, for the binomial distribution a test on symmetry is identical to a test on
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the probability parameter p0. The Neyman-Pearson test for this parameter gives a most

powerful test for

H0 : p = p0 against H1 : p = p1.

It is easy to derive that this most powerful test can be based on the ML estimator p̂0.

Because the third standardized sample moment ŜK and the linear skewness statistic SK(F )

are monotone functions of p̂0, the Neyman-Pearson test can be based on these statistics

equivalently.

Another parametric discrete distribution with suitable support is the truncated negative

binomial distribution, as every discrete distribution with support that is a subset of all

integers can be truncated such that the support is restricted to D = {i1, i1+1, . . . , i1+k−1}
for i1 ∈ Z and k ∈ N. Consider the negative binomial distribution with probability mass

function

f(x; r, p) =

(
x+ r − 1

x

)
pr(1− p)x, x = 0, 1, 2, . . . , r > 0, 0 < p ≤ 1.

Let i1 = 0 and

P (D) =
k−1∑

x=0

f(x; r, p)

then

f(x; r, p|X ≤ k − 1) =
f(x; r, p)

P (D)
, x = 0, 1, 2, . . . , k − 1 (8)

defines the truncated negative binomial distribution.

Lemma 6.1. Let X be negative binomially distributed with parameters r, p and X|X ≤ k−1

be a random variable with probability mass function (8).

1. If µ = E(X) = r(1− p)/p then

E(X|X ≤ k − 1) = µ− (k − 1 + r)
1− p

p

f(k − 1; r, p)

P (D)

2. E(X|X ≤ k − 1) is monotonic decreasing in p, p ∈ (0, 1].

E(X|X ≤ k− 1) is a skewness functional and the one-to-one relationship ensures that p can

also be considered as a skewness parameter.
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Next to these distributions, the Zipfian distribution also meets the requirements:

f(x; s,N) =
1/xs∑N
y=1 1/y

s
, x = 1, 2, . . . , k, N ∈ N, s > 0

with y = 1, 2, ...k. By varying the parameter s, the skewness of the distribution can be

manipulated.

Another way of generating skewed distributions is by considering the Lehmann alternative

F (x)λ for λ 6= 1. The Wilcoxon signed rank test is locally optimal for γF + (1− γ)F 2, with

F being the cumulative distribution function, γ ∈ [0, 1]. Lehmann (1953) presented this as

being the ’simplest choice’ of generating a specific alternative to the null hypothesis of equal

distributions. Let p = (p1, . . . , pk) be symmetric and P ′

i = P λ
i , λ > 1, then

Q′

i ≤ 0.5, i = 1, 2, . . . , k − 1.

Thus, p′ = (p′1, . . . , p
′

k) with p
′

i = P λ
i − P λ

i−1, i = 1, 2, . . . , k, and P0 = 0 is skewed to the left

(Lehmann (1953)).

Using these distributions, we compared the power of tests based on the new class of

skewness statistics with generating functions b1 and b2 to the power of the alternative tests of

skewness presented in section 5. As the SK test is the uniformly most powerful for testing on

symmetry for the exponential distribution family on simple hypotheses, power comparisons

for the one sample case were not only conducted using binomially distributed samples, but

also by generating skewness using the method of Lehmann (1953). Furthermore, for the

two sample cases, the tests’ power was evaluated using two truncated negative binomially

distributed samples as well as two Zipfian distributions. In addition, the skewness parameters

were stochastically determined to not only show the new skewness tests’ performance on

simple, but also on composite hypotheses.

The number of categories for all simulations was set at k = 7. Moreover, sample sizes

were set to be m = n = 20, m = n = 100, and m = n = 1000 to cover small, moderate and

large sample sizes. Simulation repetitions were performed 10 000 times.
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6.1. Power Comparisons for the One Sample Case

For the one sample case, power comparisons were performed on the binomial distribution

and using the Lehmann alternative. Skewness was manipulated for the binomial distribu-

tion by varying the parameter p1 from 0.50 (symmetry) to 0.9 (skewed to the left) (see

table 3). For the Lehmann alternative, a random probability vektor p was drawn from a

Dirichlet distribution to generate p with hyperparameter α = (1, 1, ..., 1) of length k. Let

p = (p1, . . . , pk) ∈ ∆k, then p
s = (p+(pk, . . . , p1))/2 provides a symmetric probability vector

with cumulated probabilties P s
i =

∑i
j=1 p

s
j. Therefore, Pi = (P s

i )
λ, i = 1, 2, . . . , k is an

alternative of ’skewed to the left’ to the null hypothesis of symmetry. λ was varied from 1

(symmetry) to 5 (skewed to the left) (see table 4).

Results of the power comparisons for the one sample case demonstrate that the linear

skewness tests introduced in section 4 provide good power for the binomially distributed

sample (see table 3) as well as for the Lehmann alternativ (see table 4). Table 3 displays

that at binomial distributions, the SK test, by being the uniformly most powerful test,

outperforms all alternative tests even at low sample sizes. However, regarding the Lehmann

alternative, table 4 displays that the Wilcoxon test’s power is slightly higher than that of

tests based on the new class of linear skewness functionals. Throughout all conditions for

the one sample case, the SK test and the SG test show to have similar performances, while

the SK test provides a slightly higher power. As expected, the
√
b1 test provides the lowest

power, as it is influenced by the categories’ assigned values.
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Table 3: Power comparisons for the one sample case on binomial distribution with p0 = 0.5; k=7

SK SG
√
b1 Wilcoxon GLR

p1 exact asy. exact asy. exact asy. exact asy. exact asy.

n = 20

0.5 0.059 0.043 0.055 0.028 0.049 0.05 0.051 0.022 0.051 0.032

0.52 0.128 0.099 0.124 0.070 0.056 0.058 0.116 0.054 0.087 0.059

0.55 0.311 0.261 0.306 0.203 0.068 0.069 0.281 0.158 0.199 0.145

0.6 0.729 0.680 0.723 0.604 0.089 0.091 0.672 0.494 0.534 0.448

0.7 0.999 0.998 0.999 0.996 0.155 0.157 0.997 0.983 0.987 0.975

0.8 1.000 1.000 1.000 1.000 0.277 0.278 1.000 1.000 1.000 1.000

0.9 1.000 1.000 1.000 1.000 0.603 0.604 1.000 1.000 1.000 1.000

n = 100

0.5 0.051 0.048 0.052 0.040 0.051 0.053 0.052 0.037 0.055 0.038

0.52 0.263 0.249 0.261 0.226 0.067 0.068 0.260 0.202 0.198 0.155

0.55 0.793 0.781 0.791 0.756 0.115 0.118 0.786 0.725 0.657 0.596

0.6 1.000 1.000 1.000 0.999 0.218 0.220 1.000 0.999 0.996 0.995

0.7 1.000 1.000 1.000 1.000 0.546 0.550 1.000 1.000 1.000 1.000

0.8 1.000 1.000 1.000 1.000 0.910 0.911 1.000 1.000 1.000 1.000

0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 1000

0.5 0.056 0.055 0.055 0.051 0.045 0.047 0.054 0.044 0.054 0.034

0.52 0.927 0.925 0.925 0.919 0.128 0.132 0.920 0.907 0.846 0.793

0.55 1.000 1.000 1.000 1.000 0.388 0.396 1.000 1.000 1.000 1.000

0.6 1.000 1.000 1.000 1.000 0.873 0.876 1.000 1.000 1.000 1.000

0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Power comparisons for the one sample case with Lehmann Alternative

SK SG
√
b1 Wilcoxon GLR

δ exact asy. exact asy. exact asy. exact asy. exact asy.

n = 20

1.0 0.056 0.098 0.051 0.060 0.051 0.099 0.052 0.014 0.050 0.053

1.05 0.069 0.119 0.068 0.079 0.067 0.122 0.075 0.021 0.061 0.064

1.1 0.090 0.154 0.089 0.105 0.086 0.153 0.102 0.033 0.074 0.078

1.2 0.158 0.235 0.147 0.172 0.130 0.213 0.170 0.062 0.107 0.112

1.5 0.370 0.501 0.356 0.392 0.294 0.400 0.447 0.236 0.275 0.285

2.0 0.728 0.825 0.697 0.734 0.511 0.614 0.809 0.620 0.629 0.638

3.0 0.948 0.964 0.933 0.942 0.710 0.772 0.980 0.945 0.942 0.945

5.0 0.993 0.997 0.980 0.983 0.812 0.852 0.998 0.996 0.995 0.995

n = 100

1.0 0.048 0.053 0.046 0.036 0.047 0.077 0.045 0.039 0.048 0.041

1.05 0.092 0.112 0.093 0.078 0.089 0.132 0.102 0.093 0.082 0.070

1.1 0.175 0.196 0.173 0.143 0.144 0.200 0.192 0.177 0.136 0.120

1.2 0.401 0.432 0.399 0.342 0.294 0.370 0.449 0.431 0.317 0.292

1.5 0.927 0.939 0.921 0.903 0.681 0.730 0.951 0.946 0.892 0.878

2.0 1.000 1.000 1.000 1.000 0.835 0.854 1.000 1.000 0.999 0.999

3.0 1.000 1.000 1.000 1.000 0.880 0.890 1.000 1.000 1.000 1.000

5.0 1.000 1.000 1.000 1.000 0.922 0.929 1.000 1.000 1.000 1.000

n = 1000

1.0 0.059 0.091 0.059 0.034 0.048 0.063 0.050 0.058 0.050 0.043

1.05 0.357 0.453 0.356 0.267 0.232 0.277 0.363 0.391 0.249 0.223

1.1 0.781 0.842 0.782 0.703 0.540 0.585 0.806 0.825 0.665 0.634

1.2 0.993 0.999 0.993 0.990 0.850 0.866 0.999 0.999 0.995 0.994

1.5 1.000 1.000 1.000 1.000 0.919 0.922 1.000 1.000 1.000 1.000

2.0 1.000 1.000 1.000 1.000 0.924 0.926 1.000 1.000 1.000 1.000

3.0 1.000 1.000 1.000 1.000 0.934 0.935 1.000 1.000 1.000 1.000

5.0 1.000 1.000 1.000 1.000 0.961 0.962 1.000 1.000 1.000 1.000
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6.2. Power Comparisons for the Two Sample Case

For the two sample case power comparisons were performed using two truncated negativ

binomially distributed samples as well as two Zipfian distributed samples. The truncated neg-

ative binomial distributions are applied with stochastically determining the parameter p1 by

drawing a random number from the uniform distribution, while parameter p2 = (p1+δ) ≤ 1,

with δ varied between 0 (identical skewness) to 0.4 (sample two is more skewed to the right).

In addition, both distributions were designed to be slightly skewed to the left by setting

r = 5 (see table 5). For the Zipfian distributions, the parameter p1 was as well randomly

drawn from a uniform distribution, while parameter p2 = (p1+δ) ≤ 1, with δ varied between

0 (identical skewness) to 0.4 (sample two is more skewed to the right) (see table 6).

Results of the two sample power comparisons demonstrate that the tests based on the

new linear skewness functionals provide good power in comparison to the alternative tests

even at composite hypotheses. At both two sample cases, the SK test together with the

Wilcoxon-Mann-Whitney test, outperform the alternative tests. For the two truncated neg-

ative binomially distributed samples, the SK shows slightly higher power than the Wilcoxon-

Mann-Whitney test, especially at low sample sizes. For the two Zipfian distributions the

situation is reversed. Moreover, as the test based on the third moment (
√
b1 test) is sensitive

to the assigned values of the categories, to ensure a positive value of the test’s estimated

variance, the categories’ values were set to equal 1.5, ..., 7.5 in this special case. Nonetheless,

this test shows through all power comparison cases the worst performance.
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Table 5: Power comparisons for the two sample case on two truncated negativ binomial distributions with

k=7; r=5

SK SG
√
b1 Wilcoxon GLR

δ exact asy. exact asy. exact asy. exact asy. exact asy.

n = 20

0.0 0.054 0.054 0.054 0.079 0.054 0.089 0.052 0.050 0.051 0.039

0.02 0.079 0.077 0.078 0.106 0.058 0.107 0.071 0.069 0.056 0.042

0.05 0.119 0.120 0.120 0.171 0.074 0.108 0.105 0.104 0.078 0.054

0.1 0.241 0.243 0.244 0.314 0.101 0.180 0.217 0.233 0.133 0.108

0.2 0.583 0.584 0.553 0.616 0.205 0.325 0.560 0.545 0.375 0.326

0.3 0.829 0.830 0.787 0.833 0.399 0.521 0.814 0.814 0.645 0.602

0.4 0.960 0.961 0.938 0.957 0.618 0.716 0.954 0.952 0.856 0.836

n = 100

0.0 0.052 0.047 0.053 0.077 0.055 0.014 0.049 0.048 0.052 0.029

0.02 0.101 0.097 0.102 0.146 0.073 0.038 0.097 0.096 0.070 0.042

0.05 0.253 0.244 0.243 0.306 0.122 0.047 0.236 0.249 0.146 0.095

0.1 0.569 0.557 0.504 0.566 0.288 0.243 0.562 0.548 0.370 0.298

0.2 0.912 0.914 0.819 0.882 0.684 0.688 0.914 0.913 0.762 0.710

0.3 0.996 0.995 0.981 0.992 0.911 0.861 0.996 0.996 0.959 0.935

0.4 0.999 0.999 1.000 1.000 0.988 0.978 1.000 1.000 0.999 0.999

n = 1000

0.0 0.046 0.049 0.048 0.078 0.046 0.020 0.047 0.048 0.046 0.025

0.02 0.304 0.306 0.280 0.348 0.132 0.097 0.292 0.289 0.182 0.123

0.05 0.745 0.740 0.604 0.676 0.484 0.462 0.758 0.749 0.535 0.470

0.1 0.980 0.981 0.906 0.948 0.868 0.901 0.984 0.983 0.880 0.836

0.2 1.000 1.000 1.000 1.000 0.998 0.999 1.000 1.000 1.000 1.000

0.3 0.999 0.999 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000

0.4 0.999 0.999 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000
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Table 6: Power comparisons for the two sample case on two Zipfian distributions with k=7

SK SG
√
b1 Wilcoxon GLR

δ exact asy. exact asy. exact asy. exact asy. exact asy.

n = 20

0.0 0.054 0.046 0.054 0.033 0.049 0.026 0.054 0.049 0.049 0.045

0.02 0.060 0.051 0.061 0.046 0.054 0.030 0.060 0.055 0.052 0.045

0.05 0.068 0.058 0.067 0.047 0.056 0.031 0.067 0.062 0.056 0.048

0.1 0.082 0.070 0.078 0.054 0.063 0.036 0.078 0.075 0.062 0.054

0.2 0.114 0.099 0.099 0.064 0.091 0.050 0.111 0.110 0.078 0.074

0.3 0.159 0.139 0.138 0.106 0.120 0.069 0.165 0.154 0.102 0.089

0.4 0.202 0.188 0.161 0.164 0.144 0.084 0.196 0.206 0.128 0.120

m = 100, n = 100

0.0 0.047 0.045 0.047 0.059 0.050 0.026 0.047 0.048 0.051 0.039

0.02 0.058 0.055 0.057 0.054 0.058 0.030 0.057 0.058 0.056 0.043

0.05 0.075 0.073 0.072 0.060 0.067 0.036 0.074 0.075 0.065 0.050

0.1 0.116 0.112 0.107 0.106 0.093 0.052 0.118 0.119 0.085 0.067

0.2 0.232 0.229 0.204 0.186 0.163 0.098 0.240 0.244 0.146 0.123

0.3 0.380 0.387 0.317 0.342 0.277 0.166 0.388 0.410 0.253 0.213

0.4 0.580 0.571 0.495 0.493 0.390 0.263 0.599 0.603 0.382 0.336

m = 1000, n = 1000

0.0 0.049 0.049 0.048 0.041 0.053 0.023 0.050 0.049 0.051 0.036

0.02 0.084 0.088 0.084 0.090 0.082 0.037 0.088 0.088 0.069 0.052

0.05 0.165 0.179 0.160 0.190 0.128 0.067 0.168 0.183 0.114 0.096

0.1 0.430 0.424 0.412 0.368 0.272 0.169 0.445 0.439 0.267 0.231

0.2 0.899 0.897 0.879 0.885 0.678 0.551 0.908 0.909 0.770 0.722

0.3 0.996 0.996 0.993 0.994 0.933 0.876 0.997 0.997 0.980 0.977

0.4 0.999 0.999 0.999 0.999 0.994 0.988 1.000 1.000 1.000 1.000
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7. Applications

In this section the new class of skewness measures and tests were applied to two different

datasets. The first dataset which is on reactions towards an anti-smoking advertisement

was used by Bhattacharya and Nandram (1996) as one of examples that should illustrate

possible gains in precision can be achieved by applying a stochastic order restriction when

using bayesian methods at multinomial populations. The second dataset considers political

left-right self reporting data gathered by the the German research institute for social sciences

’GESIS’ in 2016.

Application 1: Anti-Smoking Advertisement

The dataset for the first application was used by Bhattacharya and Nandram (1996)

and provided by Gelb and Pickett (1983). Reactions to an anti-smoking advertisement were

gathered via questionnaire with one of its items asking the subjects to indicate on the ques-

tion ’I dislike the advertisement’ on a 5-point rating scale ranging from ’strongly agree’ to

’strongly disagree’. This question was answered by 97 smokers and 281 non-smokers. De-

note fS and fN the vectors of relative frequencies for the five ordered categories of smokers

respectively non-smokers. F S and FN are the corresponding vectors of cumulated frequen-

cies. The vectors QS and QN are given by QS
i = (F S

i + F S
k−i)/2 and QN

i = (FN
i + FN

k−i)/2,

i = 1, 2, . . . , k − 1 = 4.

Table 7: Relative frequencies of smokers and non-smokers (Gelb and Pickett (1983))

strongly agree agree neutral disagree strongly disagree

Smokers

fS
i 0.082 0.144 0.361 0.216 0.196

F S
i 0.082 0.227 0.588 0.804 1.000

QS
i 0.443 0.407 0.407 0.443

Non-Smokers

fN
i 0.110 0.149 0.278 0.217 0.246

FN
i 0.110 0.260 0.537 0.754 1.000

QN
i 0.432 0.399 0.399 0.432
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Table 7 shows that the median is on the middle category ’neutral’ for the frequency

distributions of smokers as well as non-smokers. However, as can be seen by Qi′i < 1/2,

i′ = 1, 2, the frequency distributions of smokers as well as non-smokers are skewed to the

left. This assumption was tested and thus table 8 provides results of all considered tests

for the one sample case on the alternative that the smokers’ distribution, respectively the

non-smokers’ distribution is skewed to the left.

Table 8: One sample tests on skewness to the left for smokers and non-smokers

sample value critical value p value critical value p value

(exact) (exact) (asy) (asy)

Smokers

SK -0.1495 -0.0825 0.0012 -0.0835 0.0016

SG -0.2753 -0.1577 0.001 -0.167 0.0033
√
b1 -0.1776 -0.2713 0.1398 -0.2696 0.1393

Wilcoxon 0.3353 0.3075 0.0077 0.3146 0.0136

GLR 6.024 4.8804 0.0308 5.1324 0.0317

Non-Smokers

SK -0.169 -0.0498 0 -0.0491 0

SG -0.3084 -0.0956 0 -0.0981 0
√
b1 -0.2714 -0.1547 0.0025 -0.1627 0.003

Wilcoxon 0.3324 0.2837 0 0.2843 0

GLR 18.3343 4.6746 0 5.0373 0

Almost all tests on skewness do foster the descriptive statistics’ indication that both

samples of smokers and non-smokers are skewed to the left. This can be interpreted as both

groups rather liked than disliked the anti-smoking advertisment.

As can be seen in table 7, QS
i > QN

i for i = 1, 2, . . . , k − 1 = 4, implies that the

skewness measures from class Sb preserve the skewness ordering and the smokers’ frequency

distribution is more skewed to the right than the non-smokers’ one. This is in line with

Bhattacharya and Nandram (1996) that expected non-smokers to have a more positive reac-

tion towards the anti-smoking advertisment than smokers. However, Bhattacharya and Nandram
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(1996) found that the stochastic ordering restriction is not appropriate for this dataset and

thus no gains in precision for bayesian inference could be achieved by applying this ordering

restriction. Nonetheless, table 8’s descriptive results foster the expectation of fN being more

skewed to the left than fS. Moreover, due to the skewness properties provided in section 3

the non-smokers’ distribution is more skewed to the left than the smokers’ distribution as

SK
Non−Smokers < SK

Smokers and S
G
Non−Smokers < SG

Smokers.

Table 9 shows the two sample tests’ results of all considered tests on skewness for the

alternative that the non-smokers’ distribution is more skewed to the right than the smokers’

ones. In line with Bhattacharya and Nandram (1996), no significant differences in skewness

Table 9: Two sample tests on non-smokers more skewed to the left than smokers

sample value critical value p value critical value p value

(exact) (exact) (asy) (asy)

SK 0.0196 0.1392 0.4118 0.1638 0.4222

SG 0.033 0.2316 0.4095 0.2775 0.4224
√
b1 0.0938 0.2983 0.298 0.2468 0.2659

Wilcoxon 0.5133 0.435 0.6304 0.4455 0.6556

GLR 1.5533 9.2241 0.5434 5.1378 0.3363

could be found for the smokers’ compared to the non-smokers’ distribution. Despite not be-

ing significant, results from table 8 provides the indication that non-smokers did not dislike

the anti-smoking advertisment as much as smokers.

Application 2: Political Left-Right Self Reporting

The German research institute for social sciences ’GESIS’ periodically asks the German

population on general and recent subjects using a questionnaire called ALLBUS (see GESIS

(2017)). One of its items concerns the political ’left-right self reporting’. This self reporting is

measured by a 10-point rating scale, while ’1’ means an extremely left and ’10’ an extremely

right political position. In the 2016 ALLBUS, this question was answered by 2221 persons

fromWest Germany and 1114 persons from East Germany (former GDR). Denote fW and fE

the vectors of relative frequencies for the ten ordered categories in West and East Germany.
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FW and FE are the corresponding vectors of cumulated frequencies. The vectors QW and

QE are given by QW
i = (FW

i + FW
k−i)/2 and QE

i = (FE
i + FE

k−i)/2, i = 1, 2, . . . , k − 1 = 9.

Table 10: Relative frequencies for the political left-right self reporting for West and East Germany

i 1 2 3 4 5 6 7 8 9 10

West Germany

fW
i fi 0.022 0.036 0.113 0.124 0.247 0.276 0.116 0.050 0.009 0.007

FW
i 0.022 0.058 0.171 0.294 0.542 0.818 0.934 0.984 0.993 1.000

QW
i 0.507 0.521 0.552 0.556 0.542 0.556 0.552 0.521 0.507

East Germany

fE
i 0.034 0.066 0.153 0.110 0.239 0.260 0.083 0.037 0.008 0.010

FE
i 0.034 0.101 0.253 0.364 0.602 0.863 0.945 0.982 0.990 1.000

QE
i 0.512 0.541 0.599 0.613 0.602 0.613 0.599 0.541 0.512

Table 10 shows that the median is the category ’5’ for both frequency distributions of

West and East Germany. However, as can be seen by Qi′i > 1/2, i′ = 1, 2, the frequency

distributions of West and East Germany are skewed to the right. This can be interpreted as

both groups stated to be more politically left than right.

This assumption was tested and thus table 11 provides results of all considered tests for

the one sample case on the alternative that fW , respectively fE is skewed to the right.
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Table 11: One sample tests on skewness to the right for the political left-right self reporting of West and

East Germany

sample value critical value p value critical value p value

(exact) (exact) (asy) (asy)

West Germany

SK 0.07 0.0116 0 0.0128 0

SG 0.1335 0.0229 0 0.0233 0
√
b1 -0.1963 0.0709 0.9999 0.0728 1

Wilcoxon 0.2047 0.24 0 0.2402 0

GLR -115.4078 -8.5946 0 0 0

East Germany

SK 0.1408 0.0166 0 0.0194 0

SG 0.2552 0.0324 0 0.0317 0
√
b1 -0.0677 0.1013 0.8674 0.1012 0.8645

Wilcoxon 0.1602 0.236 0 0.2362 0

GLR -164.0569 -9.0464 0 0 0

Almost all tests on skewness do foster the descriptive statistics’ indication that both

samples of West and East Germany are skewed to the right. The only exception is the
√
b1

test, whose results are not in line with the alternative tests’ results throughout all tests made

to this point. This behavior can be explained by its poor power performance shown in tables

3 to 6.

Moreover, table 10 shows that West Germany’s distribution is more skewed to the left

than East Germany’s one, as QW
i < QE

i , i = 1, 2, ..., k − 1 = 9. In addition, this result

implies that skewness measures from the class Sb preserve the skewness ordering. Table 11

fosters this indication as SK
West < SK

East and S
G
West < SG

East. Table 12 shows the two sample

tests’ results of all considered tests on skewness for the alternative that West Germany’s

distribution is more skewed to the left than East Germany’s distribution.

The tests show that West Germany’s distribution is significantly more skewed to the left

than East Germany’s distribution. This result can be interpreted by subjects from East
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Table 12: Two sample tests on the political left-right self reporting of West Germany is more skewed to the

left than East Germany’s one

sample value critical value p value critical value p value

(exact) (exact) (asy) (asy)

SK -0.0708 -0.0177 0 -0.0675 0.0421

SG -0.1217 -0.0325 0 -0.1184 0.0454
√
b1 -0.1286 -0.1194 0.0366 -0.1403 0.0658

Wilcoxon 0.4484 0.4857 0 0.4829 0

GLR -30.0674 0.3319 0 0.4732 0

Germany reported to be politically more right than subjects from West Germany.

8. Conclusion

In summary, this paper first discussed skewness properties suitable for ordered categor-

ical data and introduced a new skewness ordering which is restricted to a fixed number

of categories. Based on these proposals, skewness functionals and skewness statistics were

presented that are defined as weighted sums of cumulated frequencies. Therefore, a test on

asymmetry for ordered categorical variables is provided. Power comparisons to alternative

tests of symmetry on discrete data with restricted support demonstrated the good power

performances of these new tests on asymmetry. Finally, two examples were provided to

show possible applications and interpretations of the new class of linear skewness measures

and tests.
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Klein, I. (1994). Mögliche Skalentypen, invariante Relationen und wissenschaftliche Gesetze.

Vandenhoeck & Ruprecht, Göttingen.

Klein, I. (1999). Systematik der Schiefemessung für ordinalskalierte Merkmale. Diskussion

Paper der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Friedrich-Alexander Uni-

versität Erlangen - Nürnberg, 26.

Klein, I. (2001). Schiefemessung ordinalskalierter Merkmale mittels Rangordnungsstatis-

tiken. Allgemeines Statistisches Archiv, 85:67–78.

Klein, I. and Fischer, M. (2006). Skewness by splitting the scale parameter. Communications

in Statistics - Theory and Methods, 35(7):1159–1171.

Lehmann, E. L. (1953). The power of rank tests. The Annals of Mathematical Statistics,

24(1):23–43.

Ley, C. and Paindaveine, D. (2009). Le cam optimal tests for symmetry against Ferreira and

Steel’s general skewed distributions. Journal of nonparametric statistics, 21(8):943–967.

MacGillivray, H. L. (1986). Skewness and asymmetry: measures and orderings. Annals of

Statistics, 14:994–1011.

Majindar, K. L. (1962). Improved bounds on a measure of skewness. The Annals of Mathe-

matical Statistics, 33(3):1192–1194.

42



Oja, H. (1981). On location, scale, skewness and kurtosis of univariate distributions. Scan-

dinavian Journal of Statistics, 18:154–168.
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Appendix

Proof of theorem 4.1:

Due to the limit theorem of deMoivre & Laplace (F1, F2, . . . , Fk−1) is asymtotically nor-

mally distributed with mean (P1, P2, . . . , Pk−1) and covariance matrix 1
n
Σ with elements

σij = Cov(Fi, Fj) =





Pi(1− Pi)/n für i = j

Pi(1− Pj)/n für i < j

Pj(1− Pi)/n für i > j
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for i, j = 1, 2, . . . , k − 1 (see e.g. Kiesl (2003) p. 98).

Sb(N) = 1
k−1

∑k−1
i=1 b(Hi) is a differentiable function of (F1, F2, . . . , Fk−1). If the differen-

tial of Sb(F ) does not vanish at µ = (P1, . . . , Pk−1), then S
b(F ) is asymptotically normally

distributed with mean
∑k−1

i=1 b(Pi) and variance

1

n

(
∂Sb(F )

∂F1
, . . . ,

∂Sb(F )

∂Fk−1

)
Σ

(
∂Sb(F )

∂F1
, . . . ,

∂Sb(F )

∂Fk−1

)′

(see Serfling (1980), p. 124).

∂Sb(F )

∂Fi
=

1

k − 1
b′(Hi)

∂Hi

∂Fi
,

while Hi = (Fi + Fk−i)/2 for i = 1, 2, . . . , k − 1, leads to the variance of the asymptotic

distribution. �

Proof of theorem 5.1:

Let (n1, . . . , nk) be multinomially distributed with parameters n =
∑k

i=1 ni and p =

(p1, . . . , pk),
∑k

i=1 pi = 1. Let ν = E(f) = p and Σ denotes the covariance matrix of

f = (f1 = n1/n, . . . , nk/n) with
∑k

i=1 fi = 1, then the elements of Σ are

σij = Cov(fi, fj) =





pi(1− pi)/n for i = j

−pipj/n for i 6= j

for i, j = 1, 2, . . . , k. If u1, . . . , uk are fixed values such that pi is the probability that ui

occurs and fi is the relative frequency of ui in the sample of size n, then the standardized

third moment

SK(u, f) =
M3(u, f)

(S2(u, f))3/2

with

M3(u, f) =
k∑

i=1

(ui −M1(u, f))
3fi, S2(u, f) =

k∑

i=1

(ui −M1(u, f))
2fi, M1(u, f) =

k∑

i=1

uifi

is a function of f . The gradient w.r.t f exists. The elements of this gradient are

∂SK(u, f)

∂fi
= −3

ui√
S2(u, f)

+
(ui −M1(u, f))

3

S2(u, f)3/2
− 3

2
SK(u, f)

u2i − 2M1(u, f)ui
S2(u, f)
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due to
∂M1(u, f)

∂fi
= ui,

∂S2(u, f)

∂fi
= u2i − 2M1(u, f)ui

and
∂M3(u, f)

∂fi
= −3S2(u, f)ui + (ui −M1(u, f))

3

for i = 1, 2, . . . , k. Denote ∇(f) the gradient of SK w.r.t to f . Due to Serfling (1980), p.

124

SK(u, f)
asy∼ N

(
SK(u, p),

1

n
Σ

)

if ∇(f) 6= 0 for f = p. �
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