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Abstract

This paper develops the regime classification algorithm and applies it within a fully-fledged

pairs trading framework on minute–by–minute data of the S&P 500 constituents from

1998 to 2015. Specifically, the highly flexible algorithm automatically determines the number

of regimes for any stochastic process and provides a complete set of parameter estimations.

We demonstrate its performance in a simulation study — the algorithm achieves promis-

ing results for the general class of Lévy-driven Ornstein–Uhlenbeck processes with regime

switches. In our empirical back-testing study, we apply our regime classification algorithm

to propose a high-frequency pair selection and trading strategy. The results show statis-

tically and economically significant returns with an annualized Sharpe ratio of 3.92 after

transaction costs — results remain stable even in recent years. We compare our strategy

with existing quantitative trading frameworks and find its results to be superior in terms

of risk and return characteristics. The algorithm takes full advantage of its flexibility and

identifies various regime patterns over time that are well-documented in the literature.
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1. Introduction

Interest in statistical arbitrage opportunities in the equity world grows steadily. One of

the earliest strategies in this context is pairs trading, dating back to 1980s (Vidyamurthy,

2004). The objective of pairs trading is to find pairs of stocks that are historically closely

related. Then, in the event of temporary imbalances, profit opportunities are exploited by

short selling the relatively overvalued share and by buying the relatively undervalued share.

If the historical balance is restored, the trades are reversed and a positive benefit is gained.

Since the first acamedic research study of Gatev et al. (1999, 2006) various quantitative

methods are used to select and trade stocks pairs. The most important studies are given by

Elliott et al. (2005), Gatev et al. (2006), Avellaneda and Lee (2010), Do and Faff (2010),

Cummins and Bucca (2012), Göncü and Akyildirim (2016b), Rad et al. (2016), Liu et al.

(2017), and Stübinger and Endres (2018). Recently, regime switching models become in-

creasingly important because they allow structural changes to be taken into account (Bock

and Mestel, 2009). Specifically, Markov regime switching models are used to distinguish

temporary from permanent spread deviations.

Surprisingly, only a few academic research studies on continuous-time pairs trading apply

regime switching models to incorporate different states of spreads.2 The research is limited to

Yang et al. (2016), Altay et al. (2017) and Bai and Wu (2018). Yang et al. (2016) combine

the Markov regime switching model and the Ornstein–Uhlenbeck (OU) process assuming

that the spread is always divided into two states. Altay et al. (2017) model the spread

by a Gaussian mean-reverting process whose drift rate is modulated by an unobservable

continuous-time finite state Markov chain. The authors provide a numerical analysis for a

two-state Markov chain. Bai and Wu (2018) introduce a regime switching OU model and

give a closed-form expression for the pairs trading value function. Their numerical analysis is

executed for one-state and two-state regime switching models. In summary, there exist two

major research gaps in the area of continuous-time pairs trading based on regime switching

models. First, there is no research study that is able to allow a flexible number of regimes.

Second, there is no research study which takes into account a model that incorporates fat

2In the following, the terms regime and state are used synonymously.
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tails and jumps, e.g., a Lévy-driven OU model within the individual regimes.

Our manuscript complements existing research in several respects. First, we develop the

regime classification algorithm that automatically determines the number of regimes, for

an arbitrary process in each state. Its performance is shown by a simulation study for the

general class of Lévy-driven OU processes that switch between different regimes. Second, we

propose a high-frequency statistical arbitrage strategy based on a regime switching model

accounting for similarities and differences between volatility regimes in different periods of

time — this links well with empirically observed volatility patterns in financial markets (Cai

1994, Hamilton and Susmel 1994, Dahlquist and Gray 2000, Andersen et al. 2001, Bouchaud

et al. 2001, Ang and Bekaert 2002, Nath and Dalvi 2004, Bollerslev et al. 2006, Göncü et al.

2016, Chang 2009, Chevallier and Goutte 2017, Liu et al. 2018). More precisely, we use the

introduced algorithm to identify the optimal number of regimes. In each regime, a Lévy-

driven OU process is applied, reflecting leptokurtosis and discontinuities — both empirical

features of return series (Bertram 2009, Aı̈t-Sahalia and Jacod 2014, Göncü and Akyildirim

2016b, Endres and Stübinger 2017, Kou et al. 2017). The optimal pairs for the trading

period are selected based on mean-reversion speed, volatility, and jump behavior. Third, we

conduct a large-scale empirical study of the introduced statistical arbitrage framework on

the S&P 500 stocks based on minute–by–minute data from January 1998 to December 2015.

The value-add of our strategy is demonstrated by comparing it with established quantitative

trading strategies. We find that our strategy based on the flexible regime switching model

achieves an annualized return of 93.73 percent and a Sharpe ratio of 3.92 after transaction

costs. Hereby, returns are statistically significant and withstand various robustness checks.

The results are clearly superior to the benchmark strategies ranging between 3.93 percent for

a naive buy–and–hold strategy of the S&P 500 index and 47.24 percent for a strategy based

on the regime switching model with a classic OU process in each regime. In stark contrast

to the benchmarks, our strategy achieves positive returns after transaction costs in recent

years. Fourth, we analyze the number of regimes discovered by our algorithm. We vindicate

the value-add of the algorithm’s flexibility compared to approaches where the regime number

is determined in advance. The algorithm is able to detect regime shifts in volatility that are

well-documented in literature.
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The rest of the paper is organized as follows. Section 2 describes the underlying theo-

retical framework. In section 3, we develop the regime classification algorithm and study its

performance by means of a Monte Carlo simulation. Section 4 provides our high-frequency

back-testing study. In section 5, the results and key findings are discussed. Finally, section 6

summarizes our paper and proposes directions for further research.

2. Methodology

Pairs trading strategies have the objective of finding pairs of stocks possessing a long-term

equilibrium relationship — this characteristic is directly associated with a mean-reverting

spread (see Elliott et al. 2005, Do et al. 2006, Baronyan et al. 2010, and Bertram 2010). In

this study, {SA(t)}t≥0 and {SB(t)}t≥0 define the price series of the stocks A and B. The

corresponding spread Xt at time t is specified as

Xt = ln(SA(t)/SA(0))− ln(SB(t)/SB(0)), t ≥ 0

and switches between r different regimes (r ∈ N) in the considered market. This regime

switching behavior is described by a continuous-time Markov chain {Zt}t≥0, where the ran-

dom variable Zt denotes the state of the process at time t. In each regime i (i ∈ {1, . . . , r}),

the corresponding part of the spread follows unique dynamics necessitating r stochastic dif-

ferential equations for each {Xt}t≥0. To be more specific, we model the spread characteristics

in each regime i by the general class of Lévy-driven OU processes. Mathematically, we specify

{Xt}t≥0 by the following stochastic differential equations:

dXt =


θ1 (µ1(t)−Xt) dt+ dL1,t, for Zt = 1

...
...

θr (µr(t)−Xt) dt+ dLr,t, for Zt = r

(1)

with X0 = x. For each regime Zt = i, the process’ parameters are the mean-reversion speed

θi ∈ R and the time-dependent mean-reversion level µi(t) ∈ R. The general Lévy process

{Li,t}t≥0 for regime Zt = i is specified by the Lévy–Khintchine characteristics (bi, σ
2
i , νi) (see

Mai 2012). The triplet implies a decomposition of {Li,t}t≥0 into a linear drift term with

slope bi, a Brownian motion process {Wt}t≥0 with variance Var[Wt] = σ2
i t and diffusion
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parameter σi ∈ R+, and a jump component described by the Lévy measure νi. By the Lévy–

Itô decomposition and in case of finite jump activity, the driving Lévy process of {Xt}t≥0

can be written as

LZt,t =


σ1Wt +

∑N1,t

j=1 ξ1,j, for Zt = 1

...
...

σrWt +
∑Nr,t

j=1 ξr,j, for Zt = r

(2)

for standard Brownian motion {Wt}t≥0, Poisson process {Ni,t}t≥0 with rate λi ∈ R+
0 , and

jump sizes {ξ1,1, . . . , ξ1,N1,t , . . . , ξr,1, . . . , ξr,Nr,t}. The stochastic processes {Wt}t≥0, {Ni,t}t≥0,

and the random variables {ξ1,1, . . . , ξ1,N1,t , . . . , ξr,1, . . . , ξr,Nr,t} are independent.

In each regime, the process follows the dynamics of an OU process driven by a general

Lévy process without switching. Asymptotically efficient estimators for the mean-reversion

rate of these processes are constructed from a discretization of the time-continuous max-

imum likelihood estimators according to Mai (2012, 2014)3. We recover the continuous

part of {Xt}t≥0 in the high-frequency limit via jump filtering. Based on discrete variables

Xt1 , ..., Xtn , the following estimator is obtained:

θ̂n =

∑n−1
i=0 (µti −Xti)∆iX1{|∆iX|≤νn}∑n−1

i=0 (µti −Xti)
2(ti+1 − ti)

, (3)

where ∆iX = Xti+1
− Xti and ∆n = max

1≤i≤n−1
{|∆it|}, ∆it = ti+1 − ti. The continuous part

and the jump part are distinguished because they exhibit a different order of magnitude on

a small time scale. Increments larger than the threshold νn = ∆β
n, β ∈ (0, 1/2) are neglected.

3. Regime classification algorithm

This section introduces a new approach, called the “regime classification algorithm”, to

estimate a full regime switching framework (see subsection 3.1). Unlike existing literature,

our flexible algorithm is able to automatically determine the number of regimes in a time

series. Roughly speaking, we gradually increase the number of regimes r as long as the

relative quality of statistical models improves. Finally, subsection 3.2 validates the regime

classification algorithm by means of Monte Carlo simulation.

3In Mai (2014) the mean-reversion rate is denoted as drift parameter.
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3.1. Theoretical concept

The algorithm starts with the basic case r = 1, i.e., we presume one regime. For a given

time series x ∈ Rn, we estimate all model parameters with the function fit.models and save

them in vector p. The underlying estimation procedure in fit.models is chosen in accordance

with the stylized facts of the time series. In our research study, we apply a Lévy-driven OU

process as outlined in section 2 for each regime. Then, the conditional least squares error

CLSr =
n−1∑
i=1

(Xi+1 − Ep[Xi+1|Xi, ..., X1])2

is calculated based on the one-step ahead prediction (Pinson et al. 2008). Based on CLSr,

the Bayesian information criterion is computed as

BICr = n ln

(
CLSr
n

)
+m ln(n), (4)

where m is the number of estimated model parameters. In the sense of Mota and Esquivel

(2016), we use the Bayesian information criterion as a tool for model selection in our regime

switching framework. The criterion manages the trade-off between the goodness-of-fit and

the complexity of the model. The smaller BICr is, the better the model fits the data. For

r = 1 we save BICr as BIC∗1 .

Next, we increase the number of regimes r step–by–step as long as the Bayesian informa-

tion criterion decreases. For each considered r, the switching between the r regimes depends

on the crossing of the thresholds (Esquivel and Mota 2014, Mota and Esquivel 2014, Bai and

Wu 2018) by the rolling spread’s volatility trajectories v — in this way, different volatility

regimes are identified (Bee and Gatti 2015). We determine the most suitable thresholds

c = (c1, c2, . . . , cr−1) based on the Bayesian information criterion. Without loss of general-

ity, we assume c1 < c2 < · · · < cr−1. Following Mota and Esquivel (2014), we require that

at least each regime includes 15 percent of the total observations. A complete grid-search

across all possible threshold combinations is avoided by implementing a smart procedure.

The functions start.grid and smart.grid control the threshold combinations that should be

tested. For each combination c recommended by the smart grid-search, the data is classified

into r subsets S1 = x[v < c1],S2 = x[v < c2 & v ≥ c1], ...,Sr = x[v ≥ cr−1] by the func-

tion classify.data. Using the observations in each of the regimes, conditional estimators
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p = {p1, ...,pr} are computed by fit.models, applying the estimators for the parameters

in the simple process context. Then, we calculate the corresponding Bayesian information

criterion as in equation (4) and store it as BIC.local. The smart procedure determines the

thresholds to be considered next, always optimizing one threshold of the previous combi-

nation while keeping the others fixed. Generally, all discrete data points of x ∈ Rn are

considered in the pool of possible thresholds. This procedure is carried out for different

threshold combinations until an optimum with lowest BIC.local is found, stored as BIC∗r .

The thresholds cbest corresponding to BIC∗r determine the best setting for r regimes.

If BIC∗r is smaller than BIC∗r−1, then r is increased by one. Otherwise, r−1 is considered

as the optimal number of regimes. In the end, the algorithm provides an optimal number of

regimes and the corresponding parameter estimations.

Algorithm 1 Regime classification algorithm (1/2)

Input: Data series x ∈ Rn

Output: Classification of x into r ∈ N regimes with regime-thresholds c = (c1, . . . , cr−1)

and set of estimated model parameter sets p = {p1, ...,pr}.

Functions:

fit.models(S1, ...,Sr): Function returning estimated model parameter set

p = {p1, ...,pr} based on data sets S1, ...,Sr.

calc.BIC(S1, ...,Sr,p): Function returning BIC for data sets S1, ...,Sr, and corresponding

model parameter set p = {p1, ...,pr}.

start.grid(x, r): Function returning set I ∈ Rz×(r−1) of z possible starting vectors, each

including r − 1 thresholds, given the data series x.

num.start(x, r): Function returning the number l of possible threshold combination sets

I for r regimes and data series x.

classify.data(x, r, c): Function returning r subsets S = {S1, ...,Sr} of data series x,

separated by thresholds c ∈ Rr−1.

smart.grid(x,I, BICI): Function returning next threshold set Inext ∈ Rz×(r−1) for pre-

vious set I with corresponding BICI .
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Algorithm 1 Regime classification algorithm (2/2)

Algorithm:

p← fit.models(x); BIC∗1 ← calc.BIC(x,p);

r ← 2;

loop

I ← start.grid(x, r); l← num.start(x, r);

a← 1; BIC[a]← +∞; cb ← cbest ← (0, ..., 0) ∈ Rr−1;

loop

i← 1;

loop

c← I[i];

S1, ...,Sr ← classify.data(x, r, c);

p← fit.models(S1, ...,Sr);

BIC.local[i]← calc.BIC(S1, ...,Sr,p);

if i = z then break;

i← i+ 1;

end loop

a← a+ 1; cb.prev ← cb;

BIC[a]← min(BIC.local); cb ← I[argmin(BIC.local)];

if BIC[a− 1] < BIC[a] or a− 1← l then break;

I ← smart.grid(x,I,BIC.local);

end loop

cbest.prev ← cbest; cbest ← cb.prev;

BIC∗r ← BIC[a− 1];

if BIC∗r−1 < BIC∗r then break;

r ← r + 1;

end loop

S1, ...,Sr−1 ← classify.data(x, r − 1, cbest.prev);

p← fit.models(S1, ...,Sr−1);

BIC ← calc.BIC(S1, ...,Sr−1,p);
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3.2. Simulation study

In this section, we study the performance of our regime classification algorithm by means

of a Monte Carlo simulation. The finding of this study is twofold. On the one hand, we

show that the algorithm is applicable for Lévy-driven OU processes with regime switches

and produces favorable results. On the other hand, we demonstrate the outperformance of

our jump-based estimation (section 2) compared to estimation of a classic OU process.

In our simulation study, we opt for processes {Xt}t≥0 with r regimes (see section 2). In

regime i (i ∈ {1, ..., r}), the dynamics evolve according to a Lévy-driven OU processes with

parameter set Θi = (µi, θi, σi), finite jump intensity λ ∈ R+
0 , and i.i.d. jump heights following

theN (0, σ2
J)-distribution (see Mai 2012). In N Monte Carlo iterations, we generate the series

Xt1 , ..., Xtn and estimate a full regime switching framework according to algorithm 1.

Table 1 contains simulation results for N = 1000 Monte Carlo iterations and sample size

n = 10000 according to Masuda (2010) and Uehara (2017). For r ∈ {1, 2, 3} the parameter

sets Θ1, Θ2 and Θ3 reflect the dynamics in each of the regimes. We choose Θ1 = (3, 1, 2)

as proposed in Iacus (2008) as well as Θ2 = (3, 2, 1) and Θ3 = (2, 3, 1), which include the

elements of Θ1 in permuted order. The intensity λ = 0.004 and the jump size volatility

σJ ∈ {2σi, 2.5σi, 3σi} as a multiple of the volatility of the regular innovations are selected

in accordance with Mai (2012), Jondeau et al. (2015) and Fischer et al. (2018). Intensity

λ = 0 depicts a process without any jumps. We use a simulation time step of ∆n = 1 and

a jump threshold of ∆β
n with β = 0.3 (according to Mai 2012). For varying r ∈ {1, 2, 3},

λ ∈ {0, 0.004} and σJ ∈ {2σi, 2.5σi, 3σi}, algorithm 1 returns an estimated number of regimes

r̂. In each regime, we estimate either a Lévy-driven OU process according to section 2 (left

side) or a classic OU process neglecting any jumps (right side). In table 1 hit rates and error

rates of both variants are presented — boxes with gray background display cases where the

true number of regimes r coincides with the estimated number r̂. All scenarios based on

estimation of a Lévy-driven OU process produce hit rates, i.e., shares of correctly detected

regime numbers, that are greater than 50 percent. As expected, best results are achieved

for r = 1 and λ = 0, i.e., zero jumps — the estimated number of regimes r̂ matches the true

number r in 94 percent of the cases. With increasing jump activity as well as increasing

number of regimes r the hit rate worsens in most cases. But still, the hit rate of 57 percent
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is satisfactory even for r = 3 and jump size variance of 3σ2
i . Next, we compare the results

based on estimation of a Lévy-driven OU process with those of a classic OU process to

investigate the influence of jumps and their non-consideration. Hit rates of a classic OU

process range between 39 and 76 percent in case of jump activity. Hereby, the hit rates of a

Lévy-driven OU process outperform the classic OU process in all cases because disregarding

of jumps leads to blurring of regime switches on the on hand and distortion on the other.

We may conclude that the regime classification algorithm works properly for a Lévy-driven

OU process, even for higher number of regimes and higher jump activity.

Lévy-driven OU process Classic OU process

r \ r̂ 1 2 3 4 1 2 3 4

λ = 0.000, σJ = 0.0σi

1 0.94 0.06 0.00 0.00 0.94 0.06 0.00 0.00

2 0.13 0.87 0.00 0.00 0.12 0.88 0.00 0.00

3 0.00 0.18 0.82 0.00 0.00 0.09 0.85 0.06

λ = 0.004, σJ = 2.0σi

1 0.91 0.09 0.00 0.00 0.76 0.24 0.00 0.00

2 0.13 0.85 0.02 0.00 0.24 0.72 0.04 0.00

3 0.00 0.32 0.66 0.02 0.00 0.14 0.48 0.38

λ = 0.004, σJ = 2.5σi

1 0.82 0.18 0.00 0.00 0.60 0.40 0.00 0.00

2 0.00 0.79 0.20 0.01 0.04 0.56 0.40 0.00

3 0.00 0.33 0.63 0.04 0.00 0.16 0.46 0.38

λ = 0.004, σJ = 3.0σi

1 0.62 0.38 0.00 0.00 0.39 0.61 0.00 0.00

2 0.00 0.67 0.32 0.01 0.00 0.57 0.43 0.00

3 0.00 0.38 0.57 0.05 0.00 0.19 0.50 0.31

Table 1: Hit and error rates of estimation of Lévy-driven OU process (left) and classic OU process (right)

given a Lévy-driven OU process with r regimes, jump intensity λ and jump size variance σ2
J . The number

of regimes estimated by algorithm 1 is denoted by r̂.

Table 2 varies the path length n for the case of medium jump activity and evaluates

the effects on the mean square error (MSE). Specifically, the MSEs for the estimations of

µ, θ and σ for each regime are depicted for small (n = 100), medium (n = 1000) and large

(n = 10000) samples. Only those scenarios where algorithm 1 detects the same number of

regimes for n = 100, 1000, 10000 are included to make the results comparable. We observe

that the MSE decreases for increasing n — a desirable property for any statistician.

Concluding, the regime classification algorithm including the smart procedure that avoids
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a full grid-search shows strong performance for Lévy-driven OU models in light of robustness

and feasibility.

n r λ σJ MSER1
µ MSER1

θ MSER1
σ MSER2

µ MSER2
θ MSER2

σ MSER3
µ MSER3

θ MSER3
σ

100 1 0.004 2.5 σi 0.0191 0.1071 0.1009 - - - - - -

1000 1 0.004 2.5 σi 0.0052 0.0352 0.0242 - - - - - -

10000 1 0.004 2.5 σi 0.0005 0.0181 0.0064 - - - - - -

100 2 0.004 2.5 σi 0.0279 11.5920 0.9940 0.1549 10.9816 3.7600 - - -

1000 2 0.004 2.5 σi 0.0021 0.9286 0.8174 0.0145 0.7631 1.2274 - - -

10000 2 0.004 2.5 σi 0.0001 0.3835 0.7080 0.0016 0.7131 1.1651 - - -

100 3 0.004 2.5 σi 0.9279 31.7789 1.6923 0.7755 22.6386 1.4892 0.9613 17.5025 1.3634

1000 3 0.004 2.5 σi 0.8173 8.1719 1.6207 0.3003 3.6506 0.3470 0.9561 3.9425 1.0300

10000 3 0.004 2.5 σi 0.7761 0.4534 1.5280 0.2623 2.0942 0.1084 0.8301 3.7474 0.5251

Table 2: Mean-square error for r ∈ {1, 2, 3}, n ∈ {100, 1000, 10000} and a Lévy-driven OU process in each

regime with intensity λ and jump size variance σ2
J .

4. Study design

In accordance with the high-frequency research studies of Liu et al. (2017) and Stübinger

and Endres (2018), our pairs trading strategy consists of a 30-day formation and a 5-day

trading period. To reduce the influence of choosing starting points in the formation period

and the influence of pairs with excessively high or low returns in the trading period, over-

lapping intervals are considered (Yang et al. 2016). A moving window of 35 days length is

always shifted by one day until the entire data set is covered (see figure 1).

2

30 d 5 d

30 d 5 d

30 d 5 d

30 d 5 d

…

Figure 1: The period of 35 days length, consisting of 30 days formation and 5 days trading, is always shifted

by one day. There are 4494 overlapping intervals of 35 days length from 1998/01/02 until 2015/12/31.
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4.1. Data

For our back-testing framework, we choose the constituents of the S&P 500 index, which

is widely regarded as the best single gauge of large-cap U.S. equities. It includes the top 500

companies of the U.S. economy and captures approximately 80 percent coverage of available

market capitalization (S&P Dow Jones Indices 2015). Thus, the S&P 500 index serves as a

crucial test for any potential stock market inefficiency.

We download S&P 500 minute–by–minute prices for a period of 18 years from January

1998 until December 2015 from QuantQuote (QuantQuote 2016). Our data base covers 4529

trading days and for each trading day, quotes from 9.30 am until 4.00 pm are available, i.e.,

we have 391 data points per stock per day. The data is adjusted for stock splits, corporate

events, and dividend payments.

For eliminating survivor bias from our data, we follow Krauss and Stübinger (2017) and

proceed as follows. First, we obtain daily constituent lists for all S&P 500 stocks from

January 1998 to December 2015. These lists are aggregated into a binary matrix, indicating

for each day and each stock whether it is an index constituent in the respective day or not.

Second, we gather the minute–by–minute prices for all these index constituents during the

corresponding time frames. In this way, we are able to replicate the S&P 500 index at any

point in time between January 1998 and December 2015.

All relevant analyses are executed in the statistical programming language R (R Core

Team, 2017). Computationally intensive tasks are implemented in C++ and connected to R.

4.2. Formation period

In the formation period, which is set to 30 days4, we conduct an in-sample training of all

stock pairs and a selection procedure to identify the most suitable pairs for the out-of-sample

trading period. For each pair, algorithm 1 is applied to the corresponding spread time series

with a Lévy-driven OU model (LDM) in each regime. The estimator of Mai (2014) is used

for each regime and the corresponding data subset (see section 2). Outputs of the algorithm

are the optimal number of regimes and the corresponding parameter estimations.

4This setting is well in line with the length of our simulated time series in section 3.2.
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In our application, to determine the threshold νn = ∆β
n we choose β as the upper limit of

β ∈ (0, 1/2) in line with Mancini (2009), Cont and Mancini (2011) and Endres and Stübinger

(2017). The time interval is ∆n = 1
250·391

(Cont and Mancini 2011, Liu et al. 2017) for our

minute–by–minute data. According to Liu et al. (2017), we assume that the spread process

reverts back to a level µ(t) calculated by the mean of last two daily opening and closing

values. In accordance with Cartea and Figueroa (2005), the volatility σ is estimated by the

sample standard deviation.

Following Liu et al. (2017), we form a portfolio of most suitable pairs for trading by

creating a ranking on estimated model parameters. At this we require that two stocks

always belong to the same industry and we weight parameters by corresponding regime size.

Pairs are sorted in descending order by their mean-reversion speed, volatility, and number

and size of detected jumps. The top p pairs (p ∈ N) with smallest ranking are transferred to

the trading period. The selection procedure identifies pairs with desirable properties — fast

mean-reversion combined with high trading activity (Zeng and Lee 2014, Liu et al. 2017,

Yeo and Papanicolaou 2017).

4.3. Trading period

In the trading period, which is set to 5 days, we conduct an out-of-sample trading of

the top p pairs. To capture the mean-reversion of spreads in our 5-day trading period, the

trading strategy takes advantage of their behavior — stock pairs are opened when they reach

an extreme value and closed when they revert back.

More specific, the trading signals are determined by Bollinger bands (Bollinger 1992,

Bollinger 2001). Upper and lower band µ(t) ± kσ(t) (k ∈ R+) are constructed by adding

(subtracting) k-times the running standard deviation σ(t) to (from) the mean-reversion level

µ(t). We develop the trade rules as follows: If the spread Xt exceeds the upper Bollinger

band, i.e.,

Xt > µ(t) + kσ(t)

we go short in stock A and long in stock B. If the spread Xt falls below the lower Bollinger
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band, i.e.,

Xt < µ(t)− kσ(t)

we go long in stock A and short in stock B. We apply symmetric trading bands around

the equilibrium level (see Bertram 2010 and Zeng and Lee 2014), closing positions at the

opposite side of their opening value. If positions do not clear until the end of the trading

period, we reverse them at 4.00 pm on the last trading day.

For our empirical application, we follow the existing literature and opt for a portfolio

consisting of the top p = 10 pairs (Miao 2014, Stübinger and Endres 2018). For constructing

Bollinger bands, we choose k = 0.5. This is in accordance with the ”1−σ rule” of asymmetric

trading strategies — a common practice taking positions at one standard deviation and

clearing them at the mean (see Avellaneda and Lee (2010), Zeng and Lee (2014), Göncü and

Akyildirim 2016b, and Stübinger et al. 2018). The last 1955 minutes, i.e., 5 trading days,

are used to calculate the running standard deviation (see Stübinger and Endres 2018).

The daily performance returns during the trading period are computed according to

Gatev et al. (2006) as follows:

rP,t =

∑p
i=1wi,tri,t∑p
i=1 wi,t

, t ∈ T

wi,t = (1 + ri,1) · (1 + ri,2) · ... · (1 + ri,t−1), t ∈ T

where ri,t defines the return of stock i at day t, wi,t the corresponding weight, and p the

number of pairs in portfolio P . We consider the return on committed capital and the fully-

invested return. The former is the return on the number of pairs that are selected for trading,

the latter is the return on actual employed capital.

To assess the added value of our LDM-based strategy, we compare it with the following

established pairs trading variants: (i) classic correlation model (CCM), (ii) Bollinger Bands

model (BBM), (iii) Ornstein–Uhlenbeck model (OUM) and an (iv) S&P 500 buy–and–hold

strategy (MKT). To ensure a fair performance analysis, we set data and framework conditions

identical to the LDM. The following lines explain the most important facts of the four

benchmarks mentioned.
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Classic correlation model (CCM)

For the simplest pairs trading strategy, we follow Chen et al. (2017)’s approach and select

the top pairs based on the highest Pearson’s correlation coefficients. In the following out-of-

sample trading period, we open pairs when the spread deviates by more than two standard

deviations. The trade is closed on return to the historical equilibrium level. For further

details on this approach, we refer to Gatev et al. (2006) and Chen et al. (2017).

Bollinger Bands model (BBM)

The second benchmark uses the time-variable trading thresholds of Bollinger (2001) to

improve CCM. Similar to before, we select the top pairs using correlation. However, the rigid

trading thresholds are replaced by time-variable input and output signals, i.e., we determine

the upper (lower) Bollinger band by adding (subtracting) twice the running standard devi-

ation to (from) the running average. To be consistent with LDM, the last 1955 minutes are

used to calculate the data points. The application of Bollinger bands allows us to capture

drifts and volatility clusters which are typical characteristics of financial market data (see

Cont 2007).

Ornstein–Uhlenbeck model (OUM)

We follow the research studies of Elliott et al. (2005), Avellaneda and Lee (2010) and

Göncü and Akyildirim (2016a) and describe the spread dynamics in each regime using an OU

model, which is one of the most popular mean-reverting models in continuous-time finance.

Again, we apply the regime classification algorithm and select the pairs based on the highest

mean-reversion speed and the highest variance. The trading thresholds are identical to those

of LDM. In summary, OUM is a reduced version of LDM with the strong limitation of not

being able to model jumps.

S&P 500 buy–and–hold strategy (MKT)

Finally, we compare our LDM with a naive S&P 500 buy–and–hold strategy. For this

benchmark, we buy the S&P 500 index in 1998 and hold it throughout the trading period.

This passive investment strategy runs independently of any market conditions.
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5. Results

We follow Stübinger et al. (2018) and run a fully-fledged performance analysis for the

top 10 pairs of LDM from February 1998 to December 2015, compared to the benchmarks

CCM, BBM, OUM, and MKT. For this purpose, we evaluate risk–return characteristics and

trading statistics (subsection 5.1), analyze the performance over time (subsection 5.2), and

conduct a regime analysis (subsection 5.3). Then, we perform further analyses including

common risk factors and robustness checks (subsection 5.4).

Following the high-frequency research studies of Liu et al. (2017) and Stübinger and

Endres (2018), we depict transaction costs of 5 bps per share per half-turn, i.e., in total

transaction costs of c = 20 bps. This widely accepted assumption is feasible given our high

turnover strategy in a highly liquid stock universe based on minute–by–minute data. We

show returns that are calculated based on committed capital, which is in line with the vast

majority of the literature.

5.1. Strategy performance

Table 3 reports daily return characteristics and risk measures before and after transac-

tion costs for the top 10 pairs from February 1998 to December 2015. We observe that all

strategies achieve positive daily returns after transaction costs, ranging between 0.01 per-

cent for CCM and 0.27 percent for LDM. This statement is confirmed by the Newey–West

t-Statistic — a value of 11.41 for LDM indicates statistically significant returns after trans-

action costs, compared to 1.40 for a naive buy–and–hold strategy of the S&P 500 index. The

median, a robust averaging method for large time series, of CCM, BBM, LDM, and MKT

is at a similar level as the mean return. In stark contrast, the median of OUM (0.06 per-

cent) shows a strong discrepancy pointing out that the returns of this strategy seem to be

driven by outliers. The range as well as the standard deviation of the asymmetric trading

strategies are less pronounced than of the symmetric trading strategies, e.g., the standard

deviation amounts 0.30 percent for CCM, 0.39 percent for BBM, 1.45 percent for LDM, and

1.58 percent for OUM — this fact is not surprising since the symmetric trading strategies

identify more situations of market inefficiency. Contrary to the general market, the return

distributions of all strategies possess right skewness representing a favorable property for
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investors. Measuring the amount, duration, and frequency of losses corroborates the results

— the maximum drawdown for OUM (79.00 percent) is strongly elevated, compared to BBM

(25.09 percent), LDM (29.70 percent), and CCM (41.33 percent). Finally, the hit rate of

LDM, i.e., the share of returns greater than zero, clearly outperforms the other strategies

with approximately 62 percent after transaction costs. Concluding, LDM generates promis-

ing risk–return characteristics, even after transaction costs. Our responsibility is to check

the robustness and to investigate loadings on any common sources of systematic risk.

Before transaction costs After transaction costs

CCM BBM OUM LDM CCM BBM OUM LDM MKT

Mean return 0.0004 0.0006 0.0039 0.0055 0.0001 0.0002 0.0017 0.0027 0.0002

Standard error (NW) 0.0001 0.0001 0.0003 0.0003 0.0001 0.0001 0.0003 0.0002 0.0002

t-Statistic (NW) 5.7398 7.0307 11.1893 21.1395 1.3915 2.5207 5.1920 11.4135 1.3973

Minimum -0.0187 -0.0332 -0.1384 -0.1105 -0.0192 -0.0334 -0.1390 -0.1112 -0.0903

Quartile 1 -0.0008 -0.0012 -0.0021 -0.0015 -0.0011 -0.0016 -0.0039 -0.0036 -0.0056

Median 0.0001 0.0004 0.0026 0.0056 -0.0001 0.0000 0.0006 0.0029 0.0006

Quartile 3 0.0012 0.0020 0.0074 0.0128 0.0010 0.0016 0.0050 0.0096 0.0062

Maximum 0.0805 0.0718 0.3488 0.2405 0.0785 0.0679 0.3014 0.2345 0.1158

Standard deviation 0.0031 0.0040 0.0167 0.0151 0.0030 0.0039 0.0158 0.0145 0.0126

Skewness 5.9282 2.7547 5.2885 1.1223 5.5453 2.6073 4.6573 1.2201 -0.0181

Kurtosis 132.9813 45.4779 85.1442 22.6084 123.6459 43.1416 74.5525 25.6670 7.6714

Historical VaR 1% -0.0066 -0.0087 -0.0299 -0.0364 -0.0069 -0.0090 -0.0316 -0.0378 -0.0344

Historical CVaR 1% -0.0098 -0.0130 -0.0502 -0.0507 -0.0101 -0.0133 -0.0517 -0.0519 -0.0492

Historical VaR 5% -0.0032 -0.0044 -0.0125 -0.0172 -0.0036 -0.0047 -0.0144 -0.0192 -0.0194

Historical CVaR 5% -0.0054 -0.0073 -0.0244 -0.0295 -0.0057 -0.0076 -0.0261 -0.0310 -0.0297

Maximum drawdown 0.1532 0.1848 0.2734 0.2679 0.4133 0.2509 0.7900 0.2970 0.5678

Share with return > 0 0.5415 0.5662 0.6504 0.7023 0.4723 0.5001 0.5336 0.6231 0.5307

Table 3: Daily return characteristics and risk measures before and after transaction costs for the top 10

pairs of CCM, BBM, OUM, LDM, compared to an S&P 500 long-only benchmark (MKT) from February

1998 until December 2015. NW denotes Newey–West standard errors with five-lag correction and CVaR the

Conditional Value at Risk.

Table 4 summarizes trading statistics per 5-day trading period. We find that the number

of actually traded pairs is quite different for CCM (5.79), compared to BBM (9.70), OUM

(10.00), and LDM (10.00) — the difference between static and time-varying trading thresh-

olds is clearly pointed out by this characteristic factor. As expected, the average number of
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round-trip trades per pair is strongly reduced for the strategies CCM and BBM. A value of

around 1.40 is explained by the well-known research result that high correlation does not nec-

essarily implicate a cointegration relationship (Alexander, 2001). LDM achieves the highest

trade number (6.60) — this fact is not surprising since we select pairs based on high volatility

as well as agile jump behavior. The reduced trade duration for OUM and LDM (around

1.10) confirms the selection procedure presented in section 4. High mean-reversion speed

results in a fast convergence to the long-term mean level minimizing the risk of financial

losses.

CCM BBM OUM LDM

Average number of pairs traded per 5-day period 5.7924 9.6984 9.9993 10.0000

Average number of round-trip trades per pair 1.3507 1.4140 5.2913 6.5988

Standard deviation of number of round-trip trades per pair 5.1518 1.6800 3.4571 4.0925

Average time pairs are open in days 2.7006 2.7112 1.2412 1.0358

Standard deviation of time open, per pair, in days 1.9967 1.8875 0.8504 0.7344

Table 4: Trading statistics for the top 10 pairs of CCM, BBM, OUM, and LDM per 5-day trading period.

In table 5, we depict annualized risk–return measures. Annualized mean returns after

transaction costs vary between 2.15 percent for CCM and 93.73 percent for LDM, compared

to 3.93 percent for the general market MKT. The standard deviation of both the symmetric

trading strategies and the general market amounts approximately 20 percent. Across all

strategies, downside deviation is at a very low level indicating that volatility is caused by

upside deviations. Notably, the Sharpe ratio, i.e., the excess return per unit of standard

deviation, of LDM clearly outperforms the benchmarks with a value of 3.92 after transaction

costs. As anticipated from table 4, returns based on committed capital and employed capital

lead to (almost) the same results for BBM, OUM, and LDM, since the top pairs open in

almost all cases.
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Before transaction costs After transaction costs

CCM BBM OUM LDM CCM BBM OUM LDM MKT

Mean return 0.0952 0.1677 1.5874 2.8309 0.0215 0.0552 0.4724 0.9373 0.0393

Mean excess return 0.0659 0.1443 1.5360 2.7549 -0.0061 0.0332 0.4431 0.8987 0.0185

Standard deviation 0.0486 0.0640 0.2658 0.2402 0.0483 0.0627 0.2503 0.2295 0.2003

Downside deviation 0.0249 0.0347 0.1162 0.1295 0.0274 0.0372 0.1263 0.1398 0.1416

Sharpe ratio 1.4125 2.1787 5.7799 11.4690 -0.0676 0.4717 1.7706 3.9161 0.0924

Sortino ratio 3.8170 4.8313 13.6611 21.8672 0.7873 1.4850 3.7400 6.7044 0.2772

Mean return on employed capital 0.1846 0.1707 1.5876 2.8309 0.0493 0.0547 0.4725 0.9373 0.0393

Sharpe ratio on employed capital 2.1707 2.2440 5.7804 11.4690 0.3810 0.5226 1.7707 3.9161 0.0924

Table 5: Annualized risk–return measures before and after transaction costs for the top 10 pairs of CCM,

BBM, OUM, and LDM, compared to an S&P 500 long-only benchmark (MKT) from February 1998 until

December 2015.

5.2. Performance over time

Motivated by the time-varying performance results of Krauss and Stübinger (2017) and

Stübinger and Bredthauer (2017), we ascertain the stability and potential drawdowns of the

strategies over time. Therefor, figure 2 presents the development of an investment of 1 USD

after transaction costs for CCM, BBM, OUM, LDM (first row) and the general market MKT

(second row) over three sub-periods.

The first sub-period ranges from 1998 to 2006 and is characterized by the internet bubble

bursting and the subsequent bull market. We clearly see the difference between symmetric

and asymmetric trading strategies: annualized returns of LDM (154.04 percent) and OUM

(137.85 percent) are well above those of BBM (8.97 percent) and CCM (1.82 percent). This

strong outperformance is caused by the still unknown methods and algorithms during that

time.

The second sub-period ranges from 2007 to 2009 and specifies the global financial crisis

and its aftereffects. The general market shows strong swings and large drawdowns in the

wake of the subprime mortgage crisis. As a typical feature of pairs trading, the strategies are

robust against bear markets, e.g., LDM generates an annualized return of 105.14 percent,

compared to 20.09 percent for OUM, 8.33 percent for BBM, and 9.11 percent for CCM.

The third sub-period ranges from 2010 to 2015 and describes the time span of comebacks

and recommencements. LDM clearly outperforms the benchmarks and the general market
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with annualized returns of 26.20 percent after transaction costs suggesting that our quantita-

tive strategy exploits persistent capital market anomalies even in recent times. The trading

algorithm OUM is adversely affected by the high amount of round-trip trades leading to a

negative performance — there is at least full cost recovery by the symmetric strategies CCM

and BBM.
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Figure 2: Development of an investment of 1 USD after transaction cots for the top 10 pairs of CCM, BBM,

OUM, and LDM in the first row, compared to the S&P 500 index (MKT) in the second row. The time span

from 1998 until 2015 is split into three sub-periods (1998–2006, 2007–2009, 2010–2015).

5.3. Regime analysis

The regime classification algorithm of section 3 generalizes approaches with a fixed num-

ber of regimes by choosing the states based on the underlying time series. This section

vindicates the value-add of this flexibility (Hamilton 2010) and analyzes whether the well-

documented regime shifts in the volatility process of financial return series (see Andersen

et al. 2001, Hardy 2001, Nath and Dalvi 2004, Chen 2009, Liu et al. 2011, Li and Nolte

2016) are detected successfully in our models.

In figure 3, the percentage of identified regimes from 1998 until 2015 is depicted for LDM
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and OUM. We observe that the share of pairs where 1 regime is found in the data amounts 53

percent for LDM and 66 percent for OUM, the share of 2 regimes 39 percent and 31 percent

respectively. Thus, we confirm the assertion of Ang and Bekaert (2002), Li and Nolte (2016),

and Elliott and Bradrania (2018), that the number of regimes in practice is rather small. But

still, each of pairs with 1, 2, and 3 regimes all contribute a substantial share. Consequently,

the flexible number of regimes is fully exploited by the algorithm. Forcing all pairs to have

the same number of regimes would lead to misspecification of the model. Furthermore, for

LDM the percentage of pairs exhibiting more than 1 regime is clearly higher than for OUM.

It seems that disregarding of jumps leads to blurring of regime switches in the volatility that

can not be detected any more.

53%
39%

7% 1%
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31%
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4 regimes

Figure 3: Number of detected regimes of all pairs of LDM (left) and OUM (right) in the period from 1998

to 2015 across all sectors.

In figure 4, we investigate the development of the number of detected regimes for both

LDM (left) and OUM (right) over time. In accordance with figure 3, LDM tends to detect

more regimes than OUM. The disregarded jumps of OUM seem to distort the detection

of regime shifts in the volatility process. Especially in the financial crisis (2007–2009) we

observe this effect — for LDM we find that the number of identified regimes increases clearly

compared to OUM. Consequently, the possibility of time-varying regime patterns is fully

exploited by LDM.
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Figure 4: Percentage of number of detected regimes over time for all sectors for LDM (left) and OUM (right).

5.4. Further analyses

5.4.1. Common risk factors

Next, we analyze whether the LDM strategy is exposed to common systematic risk

sources. In this context, three types of regressions are performed. The well-known Fama–

French 3-factor model (FF3) of Fama and French (1996) covers exposure to the overall

market, small minus large capitalization stocks (SMB) and high minus low book–to–market

stocks (HML). The Fama–French 3+2-factor model (FF3+2) outlined in Gatev et al. (2006)

adds a momentum factor and a short-term reversal factor to FF3. The Fama–French 5-factor

model (FF5) (Fama and French, 2015) appends two further factors to FF3, namely equity

portfolios with robust minus weak profitability (RMW) and conservative minus aggressive

(CMA) investment behavior. All data needed for the analysis come from the website of

Kenneth R. French.5

Table 6 analyzes the returns after transaction costs for the top 10 pairs of LDM. Regard-

less of the applied Fama–French model, we notice statistically and economically significant

alphas of 0.26 and 0.27 percent per day. In addition, returns have no loading on the market

— this is not surprising, as our strategy is dollar-neutral. We observe a statistically signifi-

cant positive impact on the reversal factor, suggesting that LDM buys short-term losers and

sells short-term winners. As expected, all other variables SMB, HML, MOM, SMB5, HML5,

5We thank Kenneth R. French for providing all the data needed for analysis.
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RMW5, and CMA5 are small and not significant. In summary, LDM generates statistically

and economically significant returns and does not depict any systematic sources of risk.

FF3 FF3+2 FF5

(Intercept) 0.0027∗∗∗ 0.0026∗∗∗ 0.0027∗∗∗

(0.0002) (0.0002) (0.0002)

Market −0.0270 −0.0350 −0.0259

(0.0170) (0.0189) (0.0198)

SMB −0.0170 −0.0211

(0.0343) (0.0345)

HML 0.0320 0.0576

(0.0323) (0.0346)

Momentum 0.0350

(0.0241)

Reversal 0.0587∗

(0.0243)

SMB5 −0.0005

(0.0370)

HML5 0.0514

(0.0367)

RMW5 0.0520

(0.0478)

CMA5 −0.0686

(0.0588)

R2 0.0009 0.0026 0.0014

Adj. R2 0.0002 0.0014 0.0003

Num. obs. 4494 4494 4494

RMSE 0.0144 0.0144 0.0144

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Exposure to systematic sources of risk for the daily returns of the top 10 pairs of LDM after

transaction costs from February 1998 until December 2015. Standard errors are depicted in parentheses.

5.4.2. Robustness checks

As mentioned in section 4, we follow the existing literature and set the number of top

pairs (p = 10), the trading threshold (k = 0.5), and the transaction costs (c = 20). Since

data snooping is a frequently discussed topic in this context, we investigate the robustness

of our results with regard to deviations from these parameters. In table 7, we vary p, k, and

c in two directions and present the corresponding annualized return and Sharpe ratio for the

top 10 pairs of LDM. Most importantly, we see that our results withstand parameter changes.
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A lower number of top pairs (p) leads to higher annualized returns, suggesting that our pair

selection process outlined in section 4 is meaningful — the corresponding Sharpe ratios are

rising due to a reduced portfolio standard deviation. Higher results can generally be found

at lower k-values, i.e., the higher transactions costs are exceeded by the higher profits as a

result of increasing trading frequencies. Following Liu et al. (2017) and Stübinger and Endres

(2018), we vary the transaction costs since investors are exposed to short selling constraints

and bid–ask bounces. As expected, rising transaction costs lead to lower profitability — the

break-even point for our standard parameter setting accounts for approximately c = 40.

p
Return Sharpe ratio

c \ k 0.3 0.5 0.7 0.3 0.5 0.7

Top 5

0 7.0447 2.9009 1.6228 22.7765 10.1143 6.0602

10 3.6054 1.7725 1.0520 12.0994 6.2985 3.9702

20 1.6388 0.9706 0.6053 5.6776 3.4954 2.2900

30 0.5132 0.4007 0.2557 1.7942 1.4307 0.9369

40 -0.0440 -0.0044 -0.0179 -0.3074 -0.0952 -0.1548

Top 10

0 6.7593 2.8309 1.5233 24.6251 11.4690 6.4923

10 3.4674 1.7239 0.9783 13.0721 7.1138 4.2073

20 1.5749 0.9373 0.5509 6.1099 3.9161 2.3686

30 0.4856 0.3782 0.2158 1.8922 1.5619 0.8866

40 -0.1420 -0.0194 -0.0469 -0.6817 -0.1772 -0.3099

Top 20

0 6.5001 2.6540 1.4606 25.8072 11.5886 6.8689

10 3.3455 1.6125 0.9328 13.7059 7.1567 4.4206

20 1.5208 0.8683 0.5182 6.3930 3.8916 2.4494

30 0.4640 0.3363 0.1925 1.9511 1.4799 0.8599

40 -0.1488 -0.0440 -0.0633 -0.7665 -0.3074 -0.4241

Table 7: Yearly returns and Sharpe ratios for a varying number of top pairs (p), the k-times of the standard

deviation, and the transaction costs (c) of LDM from February 1998 until December 2015.

To obtain another check on robustness, we conduct a bootstrap in the spirit of Gatev

et al. (2006). The aim is to compare the returns of the true pairs of LDM with those of

bootstrapped pairs and to contrast their performance. The following procedure is conducted

200 times. We combine the original entry and exit signals of the top pairs of LDM over the

period from 1998 until 2015 with two randomly chosen securities at that time. The random

stocks are drawn from all stocks of the S&P 500 except the two original ones. Then, we

compare the average daily returns before transaction costs of the random trading with those

we achieved with LDM. For the random trading, returns are close to zero at -0.008 percent

per day — this is well in line with Gatev et al. (2006), who find slightly negative returns.
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Opposite to this, even after transaction costs the LDM model produces daily returns of 0.27

percent. This provides a strong indication that our model exploits temporal effects that

cannot be achieved by simple random trading.

6. Conclusion

In this paper, we develop the regime classification algorithm and apply it to high-

frequency data of the S&P 500 constituents from January 1998 to December 2015. In that

respect, our manuscript complements existing research in four aspects.

Our first contribution bears on the developed regime classification algorithm that esti-

mates a full regime switching framework. The number of regimes is determined automatically

for arbitrary processes in each regime based on statistical methods. Results from simulations

demonstrate the algorithm’s performance for Lévy-driven OU processes that switch between

different regimes.

Our second contribution relies on the statistical arbitrage strategy in a high-frequency

context — regime shifts in high-frequency volatility are detected and data is separated ac-

cordingly. Hereby, the introduced algorithm identifies the optimal number of regimes regard-

ing the Bayesian information criterion. In each regime, a flexible Lévy-driven OU process

is used to model spread time series, taking into account jumps and fat tails. The optimal

pairs for the trading period are selected based on mean-reversion speed, volatility, and jump

behavior.

The third contribution is based on our large-scale empirical study on high-frequency S&P

500 constituents from January 1998 to December 2015. Results from back-testing generate

promising risk–return characteristics. With an annualized return of 93.73 percent and a

Sharpe ratio of 3.92 after transaction costs we clearly outperform benchmark strategies from

literature — among them a regime switching approach with a classic OU process in each

state and an S&P 500 long-only strategy. In stark contrast to the benchmarks, our strategy

achieves positive returns after transaction costs in recent years. Bootstrapping results show

the profitability of the proposed model and we see that our results are robust to parameter

changes.

25



Our fourth contribution consists of findings regarding the number of detected regimes

across models and time. Our algorithm fully exploits the flexibility regarding the number of

regimes compared to classic approaches where the regime number is determined in advance

and identifies various regime patterns over time.

There are several possible directions for future research. First, optimal thresholds should

be introduced in the trading strategy of our model. Then, entry and exit signals of the

strategy are determined by thresholds that maximize an objective function, e.g., return or

Sharpe ratio per unit time. Second, transition probabilities between the different regimes

should be used in the selection of pairs for trading. Third, a multivariate model that accounts

for common interactions between several stocks has to be estimated.
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