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Abstract

The advent of reinforcement learning (RL) in financial markets is driven by several advantages

inherent to this field of artificial intelligence. In particular, RL allows to combine the “prediction”

and the “portfolio construction” task in one integrated step, thereby closely aligning the machine

learning problem with the objectives of the investor. At the same time, important constraints, such

as transaction costs, market liquidity, and the investor’s degree of risk-aversion, can be conveniently

taken into account. Over the past two decades, and albeit most attention still being devoted to

supervised learning methods, the RL research community has made considerable advances in the

finance domain. The present paper draws insights from almost 50 publications, and categorizes

them into three main approaches, i.e., critic-only approach, actor-only approach, and actor-critic

approach. Within each of these categories, the respective contributions are summarized and re-

viewed along the representation of the state, the applied reward function, and the action space

of the agent. This cross-sectional perspective allows us to identify recurring design decisions as

well as potential levers to improve the agent’s performance. Finally, the individual strengths and

weaknesses of each approach are discussed, and directions for future research are pointed out.
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1. Introduction

As of today, most academic research on applying machine learning to finance, or more specifi-

cally, to trading financial assets, is devoted to supervised learning techniques. Already a decade ago,

Atsalakis and Valavanis (2009) have surveyed more than 100 articles employing neural networks to

predict future returns of financial assets. In addition, a whole set of other supervised methods have

been applied to this task - among them, support vector machines (Kim, 2003; Huang et al., 2005),

tree-based algorithms (Kumar and Thenmozhi, 2006; Booth et al., 2014; Moritz and Zimmermann,

2014; Krauss et al., 2017) and nearest neighbor classification (Teixeira and De Oliveira, 2010). The

general idea of the majority of these works is as follows: First, a predictive model, e.g., a neural

network or a random forest, is trained on historical data to forecast the asset’s price change using

a set of explanatory variables (features). Second, these forecasts are fed into a trading module to

derive the actual trading action, e.g., to buy the financial asset in case the forecast surpasses a

certain threshold. Despite its unbroken popularity, this two-step approach has several limitations

that “may lead to suboptimal performance” (Moody et al., 1998b, p. 5): First, the optimization

objective in the predictive model, i.e., the minimization of the forecast error, is not necessarily in

line with the ultimate goal of the investor, e.g., the maximization of the return per unit of risk.

Second, in most cases, only the forecast itself serves as input to the trading module - additional

valuable information that could be obtained from the feature space are discarded (Moody et al.,

1998b). Third, exogenous constraints imposed by the environment, e.g., lack of liquidity and trans-

action costs, are only incorporated into the optimization of the trading component, or - as in the

majority of cases - not considered at all.

Reinforcement learning (RL), i.e., “learning what to do, how to map situations to actions, so as to

maximize a numerical reward signal” (Sutton and Barto, 1998, p. 3), promises to overcome these

limitations. Specifically, the forecasting and the subsequent portfolio construction are integrated in

one single step and jointly optimized in line with the objective of the investor. Hereby, the “trading

agent” learns by interacting with the environment (or a model thereof), allowing it to incorporate

the aforementioned constraints, such as liquidity and transaction costs, into its decision making

process. This paper surveys the current state of this research while shedding light on important de-

sign decisions. Figure 1 provides an overview of the three identified RL approaches (color coding),

as well as their most relevant works:

• Critic-only approach: The critic-only approach is the most frequent2 application of RL in

2in terms of publications
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Figure 1: Overview of research papers applying RL in financial markets. The color-coding represents the different
RL approaches, i.e., critic-only, actor-only, and actor-critic. The bubble sizes denote the total number of citations
obtained from Google Scholar as of 2018-09-16. The position on the x-axis represents the year of publication, the
position on the y-axis the average number of citations per year. Works with less than 1.5 citations per year are
omitted.

financial markets. The idea of this approach is to learn a value function based on which the

agent can compare (“criticize”) the expected outcomes of different actions, e.g., “to go long”

or “to go short”3. During the decision making process, the agent senses the current state of

the environment and selects the action with the best outcome according to the value function.

• Actor-only approach: The actor-only approach is the second most common approach. Hereby,

the agent senses the state of the environment and acts directly, i.e., without computing and

comparing the expected outcomes of different actions. The agent hence learns a direct map-

ping (a policy) from states to actions. The key advantage of this approach is the continuous

action space of the agent (e.g., to obtain fine-grained portfolio weights) and the typically

faster convergence of the learning process.

• Actor-critic approach: The actor-critic approach forms the third category and aims at com-

bining the advantages of the actor-only and the critic-only approach. The key idea is to

simultaneously use an actor, which determines the agent’s action given the current state of

the environment, and a critic, which judges the selected action. Simply speaking, the ac-

3Going short means to borrow and sell a security at time t with the objective to buy it back at a lower price (and
to return it) at some point in the future. In other words, the investor aims to make a profit from decreasing prices.

3



tor learns to choose the action which is considered best by the critic and the critic learns

to improve its judgment. Despite its potential advantages, actor-critic RL is the least well

researched approach in financial markets and has only a limited number of supporting works.

In total, the present paper draws insights from almost 50 publications, hereby contributing to

the current state of research in three respects: First, the literature is comprehensively categorized

along the three approaches, i.e., critic-only, actor-only, and actor-critic. Second, the most important

contributions in each category are discussed in detail, including their most relevant extensions. We

hereby aim to use a uniform terminology and notation to allow new researchers to quickly familiarize

with this field. Third, for each category, the cross-section of works is further analyzed with regard

to the variables used to model the state of the environment, the action space of the agent, as well

as the employed reward function. This cross-sectional perspective allows us to identify recurring

design decisions as well as promising directions for future research. The remainder of this paper

is organized as follows: Section 2 describes the critic-only reinforcement learning approach as well

as its various extensions and applications in financial markets. Section 3 is devoted to actor-only

agents, i.e., recurrent reinforcement learning, as well as their recent enhancement with deep learning

techniques. Section 4 covers actor-critic RL and section 5 focuses on comparison studies. Finally,

section 6 contrasts the strengths and weaknesses of the individual approaches and concludes.

2. Critic-only approach

This section discusses the application of critic-only reinforcement learning in financial markets.

Table 1 summarizes the main works, their year of publication, as well as the data sample and

resolution. Furthermore, the key findings and contents of the respective papers are outlined.

2.1. Baseline approach and relevant extensions

2.1.1. Baseline approach

The application of critic-only reinforcement learning to portfolio management has first been

introduced by Neuneier (1996). The key idea, as in all three surveyed approaches, is to treat the

management of the portfolio as a Markovian decision problem. The main components are:

• A finite set of states St summarizing the information the agent senses from the environment

at every time step t ∈ {1, ..., T}.

• A set of actions At which the agent can perform at each time step t ∈ {1, ..., T} to interact

with the environment.

4



Study Data sample Resolution Key findings/contents

Neuneier (1996,
1998)

Artificial FX data,
DAX index (1986-
1996)

Daily Baseline approach: RL can be successfully applied to portfolio
allocation problems; performance exceeds heuristics and super-
vised learning approach; volatility can be reduced by considering
a penalty term.

Bertoluzzo and
Corazza (2012)

One single Italian
stock (1973-2006)

Daily The algorithm used to approximate the value function impacts the
trading performance; Q-learning works better than kernel-based
methods.

Corazza and
Bertoluzzo
(2014)

Six selected Italian
stocks (1985-2014)

Daily Varying the reward function and hyperparameters (e.g., number
of lagged returns used to describe the state) can improve the per-
formance of RL trading systems.

Jin and El-
Saawy (2016)

Two selected US
stocks (2001-2016)

Daily Deep Q-learning (DQL) techniques can be applied to approximate
the action-value function in RL trading systems.

Dempster et al.
(2001), Demp-
ster and Rom-
ahi (2002)

GBP-USD currency
pair (1994-1998)

Minute-
binned

Evolutionary reinforcement learning: Genetic algorithms
(GA) can improve the performance of RL trading systems, i.e.,
by finding a suitable state representation.

Chen et al.
(2007), Gu
et al. (2011)

Selected Japanese
stocks (2001-2004)

Daily Trading systems based on genetic network programming (GNP)
can be improved by leveraging RL techniques within judgment
and processing nodes.

Lee and Jang-
min (2002), Lee
et al. (2002,
2003, 2007)

Stocks from the
Korean KOSPI 200
index (1999-2005;
backtest period dif-
fers depending on
version of the paper)

Daily Divide and conquer - from one to multiple agents: The
trading task (identification of trading opportunities, determina-
tion of limit prices) can be divided among multiple collaborating
agents that are trained in one integrated learning process.

Tan et al. (2011) Five selected US
stocks (1986-2006)

Daily Enhancing existing trading strategies: RL can be applied to
improve trading strategies aiming at the identification of cycles in
stock prices.

Eilers et al.
(2014)

S&P 500 index, DAX
index (2000-2012)

Daily RL can be applied to improve trading strategies exploiting sea-
sonal effects (e.g., turn-of-the-month and exchange holidays)

Sherstov and
Stone (2004)

Penn Exchange Sim-
ulator (2003/2004)

High-
frequency

High-frequency applications: RL can be applied to high-
frequency settings. (However, the authors find their RL agent
to be outperformed by two benchmark models.)

Cumming et al.
(2015)

Eleven currency
pairs (2014)

Minute-
binned

RL can be applied to build trading systems on intraday FX data.

Nevmyvaka
et al. (2006)

1.5 years of limit or-
der data of selected
NASDAQ stocks

Milliseconds Optimizing execution: RL can be applied to improve order
execution.

Jangmin et al.
(2006)

Constituents of the
Korean KOSPI and
KOSDAQ index
(1998-2003)

Daily Expanding on the number of assets: RL can be applied to
dynamically allocate investments among several trading opportu-
nities (signals).

Kaur (2017) Selected US stocks (5
years of data)

Daily RL can be applied to simultaneously trade a portfolio of two risky
assets (buy/sell actions for each of the two stocks are modeled in
the action space); sentiment data can be integrated to improve
performance of RL trading systems.

Watts (2015) Artificial data (one
risky and one risk-
free asset)

- Other: RL can be applied to hedge basis risk.

Table 1: Overview of surveyed works applying the critic-only approach. Note: FX data refers to foreign exchange
data.
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• A set of transition probabilities between subsequent states which render the environment

stochastic. Note: the probabilities are usually not explicitly modeled but the result of the

stochastic nature of the financial asset’s price process.

• A reward (or return) function Rt which provides a numerical feedback value rt to the agent

in response to its action At−1 = at−1 in state St−1 = st−1.

• A policy π which maps states to concrete actions to be carried out by the agent. The policy

can hence be understood as the agent’s rules for how to choose actions.

• A value function V which maps states to the total (discounted) reward the agent can expect

from a given state until the end of the episode (trading period) under policy π.

Given the above framework, the decision problem is formalized as finding the optimal policy π = π∗,

i.e., the mapping from states to actions, corresponding to the optimal value function V ∗ - see also

Dempster et al. (2001); Dempster and Romahi (2002):

V ∗(st) = max
at

E[Rt+1 + γV ∗(St+1)|St = st]. (1)

Hereby, E denotes the expectation operator, γ the discount factor, and Rt+1 the expected immediate

reward for carrying out action At = at in state St = st. Further, St+1 denotes the next state of the

agent. The value function can hence be understood as a mapping from states to discounted future

rewards which the agent seeks to maximize with its actions. To solve this optimization problem,

the Q-Learning algorithm (Watkins, 1989) can be applied, extending the above equation to the

level of state-action tuples:

Q∗(st, at) = E[Rt+1 + γmax
at+1

Q∗(St+1, at+1)|St = st, At = at]. (2)

Hereby, the Q-value Q∗(st, at) equals to the immediate reward for carrying out action At = at in

state St = st plus the discounted future reward from carrying on in the best way possible. The

optimal policy π∗ (the mapping from states to actions) then simply becomes:

π∗(st) = max
at

Q∗(st, at), (3)

i.e., in every state St = st, choose the action At = at that yields the highest Q-value. To ap-

proximate the Q-function during (online) learning, an iterative optimization is carried out with α

6



denoting the learning rate - see also Sutton and Barto (1998) for further details:

Q∗(st, at)← (1− α)Q∗(st, at) + α

(
rt+1 + γmax

at+1

Q∗(st+1, at+1)

)
. (4)

Neuneier’s trading strategies for the DM-USD4 currency pair and for the DAX index naturally

fit into this framework. For the sake of simplicity, we focus on the currency example: At every

time step t, the agent senses the environment by observing the state St = st in form of the current

exchange rate, the wealth of its portfolio, and its current position (DM or USD). Based on its

knowledge (learned value function and policy), the agent then decides to either invest in DM or

in USD for the duration of the next time step (by comparing the respective Q-values), and finally

performs the corresponding action At = at. Once this time step is over, the agent receives the

reward Rt+1 = rt+1, observes the new state St+1 = st+1, and the process is repeated. One key

advantage, especially compared to the static setup in supervised learning, is the high flexibility of

the reward function which can be conditioned on states and actions. In Neuneier’s case, the reward

is the immediate return net of transaction costs and both state- and action-dependent:

Rt+1 =



zt+1

zt
(ct − δt)− ct if current position is DM and At is USD

zt+1

zt
ct − ct if current position is USD and At is USD

0 otherwise.

(5)

Hereby, zt and zt+1 denote the asset’s price at time step t and t+1 respectively. Further, ct denotes

the agent’s capital at time step t and δt = 0.1 + ct/100 are the transaction costs occurring when

a switch from DM to USD is performed. We can easily see that the transaction costs lower the

reward and penalize the (frequent) change of positions. In fact, Neuneier observes a reduction of

position changes by a factor of three compared to a supervised learning benchmark - a strong driver

for the 25 percentage points higher profit of the RL agent.

Building upon this initial approach, several refinements have been developed. Neuneier (1998),

for example, incorporates the risk aversion of the investor into the reward function. Specifically, he

proposes the use of Rt = log
(

PF valuet
PF valuet−1

)
, i.e., the logarithmic change of the value of the portfolio,

as it “penalizes losses much stronger than gains” (Neuneier, 1998, p. 942).

Bertoluzzo and Corazza (2012) compare the performance of different algorithms to approxi-

mate the value function on an artificial and a real world financial time series. In particular, they

4DM refers to Deutsche Mark, the former German currency.
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compare temporal difference methods, i.e., Q-learning (Watkins, 1989), with Kernel-based reinforce-

ment learning (Ormoneit and Sen, 2002) using the Sharpe ratio as reward function. In conclusion,

the authors find the Q-learning algorithm to generally perform better than Kernel-based reinforce-

ment learning on the artificial data with the caveat that the results vary strongly across the 1000

performed replications. Unfortunately, with regard to the real world data, only one single time

series is employed - it hence remains to be seen how these results translate to other assets.

In subsequent work, Corazza and Bertoluzzo (2014) explore the effect of different reward func-

tions and varying hyperparameters. Specifically, the authors compare three different reward func-

tions, i.e., Sharpe ratio, average log return, and OV ERt ratio5, calculated over L ∈ {5, 21} days,

varying numbers of lagged asset returns incorporated in the state (N ∈ {1, 5}), and four different ε

parameter values for the ε-greedy exploration. The latter parameter forces the agent to randomly

select an action At with probability ε (instead of selecting the action with the highest Q-value),

allowing it to explore additional options in the action space:

At =

maxat Q
∗(St, at), with probability 1− ε

random action at, with probability ε.

(6)

Performance-wise, the authors find Sharpe and OV ERt ratio on par, whereas the average log return

is lagging behind. With regard to the number of days used to calculate the reward, L = 5 performs

slightly better than L = 21 on the real world data. Finally, the authors report ε ∈ {10%, 20%}

and one lagged return for the state (N = 1) to be the preferable configurations. Overall, we find

clear value in this kind of research, in particular, as it provides other researchers with a basis for

their own experiments. Going forward, a large set of relevant research questions could be answered

in similar studies, for example, is it better to train one single agent with the time series of several

stocks (i.e., to learn more general patterns and to leverage a larger number of training samples) or

is it better to train one agent per asset (in order to capture its idiosyncratic behavior).

Only recently, Jin and El-Saawy (2016) extend Neuneier’s approach by applying deep Q-learning

(DQL) techniques. Specifically, the authors make use of ε-greedy exploration in combination with

experience replay (Lin, 1992). The latter technique is used to update the weights of the artificial

neural network (which approximates the Q-value function) using mini batches of randomly selected

past experiences, i.e., state-action-reward-state-quadruples (st, at, rt+1, st+1). Hereby, the agent’s

5“The sum of the net logarithmic returns and the sum of the absolute value of the same net logarithmic returns
at time t both calculated over the last L stock market days” (Corazza and Bertoluzzo, 2014, p. 12).
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past experiences are efficiently reused allowing to train the agent on less data, while the random-

ization can lead to better convergence behavior (Silver, 2015). Result-wise, the authors find their

DQL agent to outperform a buy and hold and a rebalance benchmark. Unfortunately, due to the

lack of a plain Q-learning agent, the specific value-add of DQL is not reported. Going forward,

more research will be required to truly understand how these new techniques can be effectively

applied in the context of noisy financial data.

2.1.2. Evolutionary reinforcement learning

The works in this section aim at enhancing and combining the critic-only approach with evo-

lutionary algorithms. Point of departure forms the research of Dempster et al. (2001) who bench-

mark Q-learning against genetic programming (GP) in a GDB-USD currency trading setup. In

their study, both methods receive the trading signals of eight technical indicators as well as the

current position as input (state), and decide to keep/switch currencies for the duration of the next

time step. Looking at the in- and out-of-sample performance, the authors find strong signs for

their Q-learning agent to suffer from overfitting - the impetus for the “evolutionary reinforcement

learning approach” in Dempster and Romahi (2002). In this work, the authors begin with the eight

technical indicators (from the previous paper) as state variables and use a genetic algorithm to

identify the subset (“individual”) that yields the best trading performance. Hereby, the authors

split the training period into two parts. On the first part of the training data, a separate RL

trading agent is trained for each combination of technical indicators generated by the GA. In the

second step, the trading performance of each of these agents is evaluated on the remaining part

of the training data. The achieved results are then fed back to the GA to judge the fitness of the

individuals and to produce a superior generation. After an evolution for 100 generations, the train-

ing is stopped and the best performing individual is selected. In their backtests, the authors find

the hybrid system to outperform a RL-only system by a clear margin, suggesting that GAs can be

successfully employed to optimize the state representation (and potentially other hyperparameters)

of RL trading systems. In this respect, only the title of the concisely written paper, i.e., “Intraday

FX trading: an evolutionary reinforcement learning approach”, might cause misunderstandings, as

in fact, the GA mutates sets of state variables and not agents.

Chen et al. (2007) propose another approach at the intersection of evolutionary algorithms

and reinforcement learning. Their “GNP-Sarsa” algorithm combines genetic network programming

(Hirasawa et al., 2001) with Sarsa learning (Rummery and Niranjan, 1994) and is inspired by earlier

works of Potvin et al. (2004). In genetic network programming (GNP), individuals are encoded

9



as graphs as opposed to binary strings in GA. Each individual consists of a starting node, a set

of judgment and processing nodes, as well as transitions between the nodes6. In the context of

the authors’ paper, the judgment nodes receive a candle stick pattern or a technical indicator

(e.g., moving average convergence divergence) as input, calculate a buy/sell signal as output, and

decide which node to visit next, e.g., a second judgment node to look at a different indicator. The

judgment nodes are complemented by so called processing nodes which represent concrete actions,

i.e., buy/sell the asset. The authors’ key idea is to optimize each of the individuals by equiping it

with a dedicated RL agent (one per individual). Specifically, each node of the individual represents

a different state for the agent. In case the state is a judgment node, the agent’s action determines

which candle stick pattern/technical indicator should be used for the judgment. In case the state

is a processing node, the actions resemble different threshold values the buy/sell signal needs to

exceed to trigger an actual trade. In addition to this RL-based optimization, the evolutionary part

of “GNP-Sarsa” produces new individuals by changing their graph structure through crossover and

mutation, e.g., by removing or adding transitions between two nodes. Once the last generation is

reached, the best performing individual is tested in an out-of-sample trading period. Hereby, the

authors find their “GNP-Sarsa” algorithm to outperform a buy and hold strategy on 13 out of 16

selected Japanese stocks and GNP alone in 12 out of 16 cases. Unfortunately, neither Chen et al.

(2007), nor its extension to plural subroutines (Gu et al., 2011), include a RL-only benchmark. We

therefore cannot judge whether the reported results justify the complexity and presumably high

computational costs of the “GPN-Sarsa” architecture.

2.1.3. Divide and conquer - from one to multiple agents

Lee and Jangmin (2002) and the subsequent refinements and enhancements of Lee et al. (2002,

2003, 2007) focus on improving the performance of RL trading systems by splitting the problem into

smaller tasks that are solved by collaborating agents. Hereby, four different agents are distinguished:

• Buy signal agent : Observes the long-term price development of a stock and identifies oppor-

tunities to open a long position.

• Buy order agent : Is triggered by the buy signal agent and determines the limit price for the

buy order by observing intraday price patterns.

• Sell signal agent : Observes the development of the long position (including the accrued

profit/loss) and determines when to close the position.

6Furthermore, the graph can be enriched by time delays to model additional system dynamics.

10



• Sell order agent : Is triggered by the sell signal agent and determines the limit price for the

sell order by observing intraday price patterns.

The above descriptions reveal three key ideas. First, each agent specializes on a certain sub-

problem, i.e., identification of the trading opportunity (signaling) and setting the limit price of the

order (execution). Second, the agents have different state representations tailored to their specific

task, e.g., historical price changes over a long period of time (signaling agents) versus intraday

price movements (order agents). Third, the agents need to collaborate to solve the overall trading

problem. The latter fact is important and is achieved by the design of the training process, where

“each agent has its own goal while interacting with others” (Lee et al., 2007, p. 865). Each training

episode begins with the buy signal agent analyzing a stock’s price development until the current

day t. In case no buying opportunity is identified, the episode ends and a new training day begins.

In case an opportunity arises, the buy order agent is triggered and sets a limit price to purchase the

stock on the subsequent day t+1. Once a successful purchase is made, the buy order agent receives

a reward. The closer the limit price is to the low of t+ 1, the higher is this reward. From there on,

the sell signal agent monitors the stock’s price development as well as the accrued profit/loss of the

position. During the lifetime of the position, a reward in form of the change of the position’s market

value is given to the sell signal agent. Once the sell signal agent decides to close the position, the

sell order agent is triggered and rewarded similar to the buy order agent, i.e., the closer the limit

price is to the high of the respective day, the higher is the reward. Finally, based on the realized

profit of the round trip trade, the buy signal agent is rewarded and a new episode begins. The

outlined training approach clearly underlines the high flexibility of RL trading systems and the

authors illustrate in a compelling manner how both agent-specific and global goals can be jointly

optimized. Also with regard to the results, the authors find their system to achieve better trading

performance compared to several benchmarks including a supervised learning model.

2.1.4. Enhancing existing trading strategies

The literature summarized in this section applies reinforcement learning to enhance and fine-

tune existing trading strategies. Inspired by earlier research by Kitchin (1923), Sarlan (2001) and

Plummer (2009), Tan et al. (2011) develop a RL-based trading system that automatically identifies

and trades stock price cycles. Specifically, the system opens long/short positions as closely as

possible to the inflection points of the price time series. The system comprises three components:

• Cycle identifier and tuner : The first component aims at extracting cyclic movements in stock

prices by identifying a series of peaks and troughs. The identified cycles are then fine-tuned
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by shifting them to improve their match with the actual price time series. In both cases,

a simple RL agent is employed to determine optimal parameters for the cycle identification

(e.g., moving average period) and the required cycle shift.

• ANFIS : The second component, an adaptive network fuzzy inference system (ANFIS), aims at

predicting inflection points in the cycles, i.e., optimal points to open/close a position. Again,

a simple RL agent is employed to fine-tune the hyperparameters of the ANFIS component.

• Trading agent : The third component is responsible for the actual trading and aims at open-

ing/closing the position as closely to the inflection points as possible. The component itself

is implemented as RL agent and rewarded with the profit resulting from the trade.

In a backtest over a period of 13 years, the authors find their trading system to outperform the

market by a clear margin of 50 percentage points and provide valuable ideas on how RL can be

leveraged to fine-tune individual trading system components. Given the sample size of five stocks,

it would be highly interesting to see a similar approach being applied to the S&P 500 constituents.

Eilers et al. (2014) pursue another attempt at enhancing existing trading strategies. Specifically,

the authors focus on improving the trading of three different seasonal effects, i.e., upward biases

during exchange holidays (French, 1980), upward biases at the turn-of-the-month (Ariel, 1987), and

pre-FOMC (Federal Open Market Committee) announcement drifts (Lucca and Moench, 2015). In

their baseline strategy, the authors open a long position on the day before an event and close

that position two days later. The goal of the agent is to improve upon this basic strategy. On

each day prior to an event, the agent can choose the direction of its position (long, short, do

nothing), the holding period (one day or two days), and the leverage (one or two). In total, the

action space hence comprises nine different actions resulting from the possible combinations of the

aforementioned parameters. To provide the agent with a sense of the environment, the current

market condition is described with eleven variables including the type of the event, the open, high,

low and close value of the present day, as well as a set of technical indicators. Based on that,

the agent is trained with the objective to maximize the return per trade using Q-learning. In a

backtesting study on the S&P 500 and the DAX index, the authors find their RL trading system to

outperform the baseline strategy by a clear margin. As such, the well structured paper is another

valuable inspiration for how RL can be leveraged in finance. One slight improvement vis-a-vis the

paper might be to binary encode the “number of the current month” (as categorical state variable)

instead of representing it as a single number between 1 and 12 (unless there is predictive value

related to the order of months).
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2.1.5. High-frequency applications

Sherstov and Stone (2004) develop a RL-based trading system as part of a comparison study

within the Penn Exchange Simulator (PXS)7. In their paper, the current state of the environment

is modeled with just one single variable indicating the stock’s recent price trend, i.e., the difference

between the stock’s current price pt and its exponential moving average pt = βpt−1 + (1 − β)pt.

At every time step t, the agent decides upon the number of shares to buy/sell (actions) and is

rewarded by the change in wealth. Result-wise, the authors find their RL trading agent to be

outperformed by two benchmark models, especially on days with high fluctuation in prices. The

latter indicates that the state representation is too simplified to capture the complex dynamics of

stock prices (Sherstov and Stone, 2004). Nonetheless, the good performance on days with a clear

trend is an encouraging sign for further work on the application of RL in high-frequency settings.

2.1.6. Optimizing trade execution

Inspired by the works of Bertsimas and Lo (1998), Almgren and Chriss (2001), El-Yaniv et al.

(2001), Tesauro and Bredin (2002), Coggins et al. (2003), and Kakade et al. (2004), Nevmyvaka

et al. (2006) apply RL to optimize the execution of trades in a large-scale empirical study. In their

paper, the authors aim at minimizing the amount of capital spent for buying a specific number

of shares V in a predefined amount of time H (analogously, the authors aim at maximizing the

received revenue for selling a specific number of shares). To provide the agent with a comprehensive

view of the environment, the state comprises both private variables (number of shares that still

need to be executed, elapsed time), as well as several market variables describing the current state

of the order book (e.g., the current bid-ask spread). At every time step t, the agent sets a new

limit price, observes the executed shares, and senses the new state of the order book. Once all

shares are executed or the time H has elapsed, the agent is rewarded with the total proceeds of the

order8. Based on a large-scale simulation study with three selected stocks on 1.5 years of limit order

data on millisecond resolution (which is outstanding for an academic study in terms of the amount

of data alone), the authors find their RL execution strategy to clearly outperform a traditional

submit and leave strategy. Moreover, the paper is interesting for two reasons. First, it outlines a

promising application for RL in finance. Second, this application seems rather “market-ready” - in

fact, JPMorgan Chase & Co is actively testing a RL agent for automated trade execution (Noonan,

2017; Terekhova, 2017), hereby underlining its relevance to practice and its disruptive potential.

7The PXS is a stock-trading simulator merging agent with real-world orders (Kearns and Nevmyvaka, 2013).
8In case H has elapsed, all remaining shares are executed at the current market price.
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2.1.7. Expanding on the number of assets

All works described so far either focus on the trading of one single risky asset or on the allocation

of the investment among a risky and a risk-free asset. Jangmin et al. (2006) finally propose a

RL-based asset allocation strategy which dynamically distributes the investment among multiple

trading opportunities. In their framework, two main components are distinguished:

• Local traders: The local traders identify and invest in trading opportunities. Specifically, they

spot promising stocks, open a long/short position and reverse that position after a certain

amount of time. Each local trader is created in two steps. First, a neural network is trained to

forecast the stock price change over a fixed amount of time (signal). Second, optimal trading

thresholds are derived, i.e., values the signal needs to exceed to trigger an actual trade9. A

local trader hence consists of the neural network and the fixed threshold values (local policy),

and can identify an arbitrary number of trading opportunities each day.

• Meta policy: The meta policy completes the system and aims at optimally distributing the

investments among the four employed local traders. The meta policy is implemented as critic-

only agent with the state consisting of the number of identified trading opportunities (per

trader) as well as the available cash. The actions encode the amount of money (discretized to

four different values) each local traders may invest per trade - in other words, the meta-policy

can choose from 44 = 256 different actions. As reward function, the authors employ the profit

ratio over the whole trading period, i.e., there are no intermediate rewards.

In a backtesting study, the authors find their meta policy approach to clearly outperform two

handcrafted benchmark policies and report the initial investment to have more than doubled after

17 months. Even though it may be difficult to fully reproduce the paper (e.g., due to the not

reported forecast horizon and configuration of the neural networks embedded in the local traders),

it is very valuable for another reason. Specifically, it proposes a creative approach to combining

supervised learning (local traders) with RL to dynamically allocate investments among multiple

signals. Based on these ideas, several extensions could be explored in future research. For example,

it would be highly interesting to analyze whether the results can be improved by enriching the state

with additional information. Specifically, by adding the magnitude of the individual price change

predictions as state variables, the meta policy could judge how certain the local traders are.

Kaur (2017) takes a different and more direct approach to trading several risky assets. In his

9The threshold values are derived in a grid-search on part of the training data.

14



paper, the agent can choose for two stocks independently whether a buy, sell or hold action should

be performed for the next time step. The agent can hence choose from 32 = 9 different actions (buy

stock 1 and hold stock 2, buy stock 1 and buy stock 2, ...). We can easily see that modeling the

actions in this way leads to an exponential growth of the action space, i.e., in case of three stocks,

already 33 = 27 actions are possible. Nonsurprisingly, the author himself admits that “this increases

the run-time of our system considerably, and limits the performance of the system” (Kaur, 2017,

p. 5). In general, we find the simultaneous trading of several assets using the critic-only approach

challenging - an area where the actor-only approach (see section 3) and potentially the actor-critic

approach (see section 4) seem more suitable. On the other hand, these problems might also be

related to not yet having found the right “representation” for the multi-securities trading problem.

2.2. Survey of works along state, actions, and rewards

In the following subsections, we survey the cross-section of works of the critic-only approach

along three dimensions, i.e., (i) the information used to model the state of the environment, (ii)

the action space of the agent, and (iii) the employed reward function.

2.2.1. State

The state provides the agent with a view of the environment. As with feature engineering in

supervised learning, the representation of the state is key to the performance in RL. Table 2 outlines

the different types of information incorporated into the state. We make the following observations:

• Discrete states: A considerable share of works applies discretization to reduce the size of the

state space. When looking at the publication dates however, we find that this mainly applies

to the early works where computational resources to train large artificial neural networks as

function approximators were limited. Nonsurprisingly, with the advent of GPU hardware in

recent years, the majority of works nowadays operate with continuous state variables.

• Price history and candle sticks: Almost all works incorporate the asset’s recent price history

into the state with the number of lagged values varying by study. Corazza and Bertoluzzo

(2014) report one lag to be optimal, however this finding appears to be highly problem-

dependent. In fact, Sherstov and Stone (2004) report one price trend indicator to be in-

sufficient to capture the complex price dynamics. We further observe that only few studies

incorporate information derived from the open, highest, and lowest price. One of these ex-

ceptions is Lee et al. (2007), who compute four candle stick indicators representing the body,

the upper and lower shadow, as well as the one-day percentage change of the closing price.
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Details/remarks

Neuneier (1996,
1998)

x x x x x Price history of DAX index and eleven influencing
market variables (e.g., interest rates, stock indices; ex-
act variables used are not specified in the paper).

Bertoluzzo and
Corazza (2012)

x One-day percentage returns over the past five days.

Corazza and
Bertoluzzo
(2014)

x Past one and past five-day (multi-period) log return.

Jin and El-
Saawy (2016)

x x x x Past stock prices, current position size, current value
of the portfolio, available cash.

Dempster et al.
(2001), Demp-
ster and Romahi
(2002)

x x x Buy/sell signals of eight technical indicators encoded
as binary string (e.g., price channel breakout, adap-
tive moving average, relative strength index); binary
indicator for current position (USD vs. GBP).

Chen et al.
(2007), Gu et al.
(2011)

x States are the judgment and processing nodes of the
genetic network programming graph structure.

Lee and Jang-
min (2002), Lee
et al. (2002,
2003, 2007)

x x x x x x Agent-specific state representation; Signaling agents:
turning point matrix (support/resistance levels), cur-
rent profit of position; Order agents: two indicators
for short-term price changes, four indicators to repre-
sent the most recent candle stick.

Tan et al. (2011) x x Module-specific: Cycle-finder: standard deviation of
the stock’s time series, correlation with Dow Jones
index; Trading agent: trend indicators over 30, 70,
and 90 days.

Eilers et al.
(2014)

x x x OHLC (open, high, low, close) of the present day,
close values of past three days, two technical indi-
cators (simple moving average, relative strength in-
dex), number of the current month, presence of spe-
cific event (e.g. turn-of-the-month).

Sherstov and
Stone (2004)

x Difference between current price and an exponential
average of previous prices (single variable).

Cumming et al.
(2015)

x x x Transformed candle sticks, current position.

Nevmyvaka et al.
(2006)

x x x x Elapsed time and remaining shares to order, four order
book-level features, i.e., bid-ask spread, bid-ask vol-
ume imbalance, immediate market order costs, signed
transaction volume over the past 15 seconds.

Jangmin et al.
(2006)

x x Number of trading opportunities identified by the lo-
cal traders, available cash.

Kaur (2017) x x x x x Current position, most recent stock price, available
cash, trend in price of asset (extracted from six techni-
cal indicators (e.g., moving average)), news sentiment
score for each of the two stocks in the portfolio.

Watts (2015) x x Underlying asset price, current wealth, time to payoff.

Table 2: Critic-only approach: Details on information used to describe the current state of the environment. An
“x” denotes whether a certain type of data is part of the information set. The “discrete state” column indicates the
discretization of the raw features, PF value denotes the value of the to portfolio.
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• Current position, portfolio value, and profit: Only about half of the studies incorporate the

agent’s current position (e.g., whether the agent is currently invested in the risky asset) into

the state. This observation is surprising as the position information allows the agent to

consider the effect of transaction costs. However, when looking at the studies in more detail,

we find that some of them do not incorporate transaction costs at all, e.g., Bertoluzzo and

Corazza (2012), or apply RL in a setup where switching positions plays no role. Eilers et al.

(2014), for example, close all positions after a maximum of two days. With regard to other

related variables, i.e., current portfolio value, accumulated profit/loss, and available cash, we

find only few studies making use of them.

• Macro data, order book data and other: Only a small number of studies make use of non

price-based data. Neuneier (1996) is one of the few exceptions and includes macroeconomic

data such as interest rates. Another example is Kaur (2017) who enriches the state with

sentiment scores. In his study, he reports a Sharpe ratio increase from 1.4 to 2.4 - a compelling

illustration of the potential of additional data sources.

In general, we find the modeling of the state an highly important aspect of RL trading system design.

In fact, Dempster and Romahi (2002) show that selecting a suitable set of variables that generalizes

well can strongly benefit the trading performance and suggest the use of genetic algorithms as a

way to obtain such a set. When looking at the different types of information, we find price-based

features to be clearly a prerequisite for modeling the state. Hereby, the most recent price history

(e.g., using the five most recent returns) should be included, but also price changes over longer

timeframes, e.g., a twelve months return to capture the stock’s momentum, are worth exploring

(see Takeuchi and Lee (2013) for valuable inspiration from the supervised learning research). The

same applies to the agent’s current position, which is required whenever transaction costs need to

be considered. Finally, non-price based features deserve more attention. Motivated by the findings

of Kaur (2017), future research could explore the potential of other non price-based information

including fundamental data, earning estimates, and Google trends. Also, the results for sentiment

data of Kaur (2017) are worth being replicated on a larger sample.

2.2.2. Action space and reward function

In this subsection, we finally survey the cross-section of works of the critic-only approach along

the action space of the agent and the employed reward function. From panel A (“Actions”) of table

3, we make the following observations:
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Neuneier (1996,
1998)

2 x Invest/do not invest in risky asset. x x Immediate (log) return net of trans-
action costs, penalty term for vari-
ance.

Bertoluzzo and
Corazza (2012)

3 x Buy/sell/neutral. x Sharpe ratio over the past 5/20 days.

Corazza and
Bertoluzzo (2014)

3 x Buy/sell/neutral. x x x Sharpe ratio, ratio of log returns over
absolute log returns, avg. log return.

Jin and El-Saawy
(2016)

7 x Share by which the allocation be-
tween the two assets is changed
(seven discrete percentage values).

x x Difference in portfolio value between
two time steps, Sharpe ratio.

Dempster et al.
(2001), Dempster
and Romahi (2002)

2, 3 x Long/short, long/short/neutral. x Immediate return (change in portfo-
lio value) net of transaction costs.

Chen et al. (2007),
Gu et al. (2011)

- x Actions of the RL agent are pa-
rameters for a genetic networking
graph algorithm which takes the
actual trading decision.

x (Absolute) capital gain per trade.

Lee and Jangmin
(2002), Lee et al.
(2002, 2003, 2007)

2, 2,
7, 7

x Signaling agents: Buy/do not
buy, hold/sell; Order agents:
seven actions determining the
limit price of the order.

x x Buy signal agent: profit rate of trade
net of transaction costs; Sell signal
agent: profit rate; Order agents: dif-
ference between limit and optimum
price.

Tan et al. (2011) - x Cycle finder: combinations of mo-
mentum and moving average pe-
riod; Cycle shifter: days to shift;
ANIFIS module: tuning parame-
ters; Trading module: buy/sell

x x Cycle finder: quality of cycle; Cycle
shifter: Pearson’s linear correlation
coefficient; ANIFIS module: Combi-
nation of true error and mean corre-
lation; Trading module: profit.

Eilers et al. (2014) 9 x Triple of three decisions, i.e., po-
sition type (long/short/neutral),
holding period (1 day vs. 2 days),
and leverage (1 vs. 2).

x Profit of the trade.

Sherstov and Stone
(2004)

1801 x Number of shares to buy/sell
(value between -900 and 900 incl.
“0”).

x Difference in portfolio value (includ-
ing cash) between two time steps.

Cumming et al.
(2015)

3, 2 x State-dependent, i.e., long/short/
idle (in case no asset is in the port-
folio) and keep/close position (in
case an asset is in the portfolio).

x Cumulative profit over the trading
period.

Nevmyvaka et al.
(2006)

11 x Discrete amount by which the
limit of the order should differ
from the current bid/ask.

x Trading/execution costs; immediate
reward is linked to executed shares
in each step.

Jangmin et al.
(2006)

256 x Amount of cash (four possible val-
ues) to allocate to each of the four
local traders.

x Profit ratio over the trading period.

Kaur (2017) 9 x Buy/sell/hold decision for each of
the two stocks (32 = 9 actions).

x Cumulative profit over the trading
period.

Watts (2015) 3 x Increase/keep/decrease invest-
ment in asset by a fixed amount.

x Utility of the terminal payoff.

Table 3: Critic-only approach: Details on the modeling of the action space (panel A), as well as the employed reward
function(s) (panel B). An “x” denotes whether a certain property (e.g., actions have discrete values) or type of reward
function (e.g., profit), is present in the respective study. 18



• Number of actions: In most cases, the number of actions the agent can perform is rather

small, i.e., two actions (buy/sell) or three actions (buy/sell/neutral). The main exception

is Sherstov and Stone (2004), where each of the 1801 actions (including the “0” action)

represents a different number of shares the agent aims to buy/sell at the next time step.

• Discrete actions: All actions in the critic-only approach are discrete, i.e., one action refers to

one specific amount that should be invested in the risky asset (in most studies, everything is

either invested in the risky or in the risk-free asset). In case more fine-grained decisions are

required, e.g., one decision to buy one share, one decision to buy two shares, etc., already

three different actions are necessary - the reason for the high number of actions in Sherstov

and Stone (2004). (Note: using relative changes for the position size as actions may be a

better representation - see Jin and El-Saawy 2016.) We further observe an even stronger

growth of the action space when several stocks are traded. Kaur (2017), for example, already

has 32 = 9 actions resulting from the buy/sell/hold decisions for a portfolio of two stocks.

The above observations clearly illustrate two main limitations of the critic-only approach. First,

the modeling of fine-grained decisions leads to significant growth of the action space. Second, an

even stronger growth occurs when several stocks are managed simultaneously. In both cases, the

large action space leads to an increase of computation time as more and more options need to be

explored. Nonetheless, these limitations do not imply that the critic-only approach is not suited for

larger-scale applications. In fact, in many cases these limitations can be circumvented by finding

another way to formulate the problem - Jangmin et al. (2006), for example, introduce local traders

that can identify an arbitrary number of trading opportunities.

Looking at the reward functions in panel B of table 3, we find that most studies employ purely

profit-based rewards, e.g., absolute profit or average return. The second most common reward

function is the Sharpe ratio. Corazza and Bertoluzzo (2014) find this metric, as well as their

OV ERt ratio, to yield more consistent results than a purely profit-based reward. In fact, as this

observation has also been made in the actor-only approach (see, for example, Moody and Saffell

2001), the Sharpe ratio should be at least included as a benchmark when considering different

reward functions. Further, we find “other” reward functions being applied in special cases. Tan

et al. (2011), for example, use a variety of custom rewards to optimize specific parts of their

trading system. Finally, with regard to immediate vs. terminal rewards (one reward is given at

the end of the episode), we cannot draw a definitive conclusion. The majority of works employ

immediate rewards (see, for example, Dempster and Romahi 2002), however, we also find works at
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the other end of the spectrum. Jangmin et al. (2006), for example, reward their agent only once

with the cumulative profit at the end of trading period. For the time being, we hence recommend to

start with immediate rewards (to provide the agent with frequent feedback to accelerate learning),

however, more research is required to derive a definitive answer.

3. Actor-only approach (recurrent reinforcement learning)

Study Sample Resolution Key findings/contents

Moody and Wu
(1997), Moody
et al. (1998a,b),
Moody and Saffell
(2001)

Artificial price time
series, S&P 500 index,
and three-month trea-
sury bill (1950-1994);
GDB-USD currency
pair (1996)

S&P 500:
monthly;
FX: 30-
minutes-
binned

Baseline approach: Recurrent reinforcement learning
(RRL) can be successfully applied to manage a portfolio of a
risky and a risk-free asset (generalization to several assets in
long-only setting is outlined).

Gold (2003) 25 currency pairs
(1996)

30-
minutes-
binned

Complexity of decision function can be increased by consider-
ing it as a neural network and adding a hidden layer; result-
wise, no improvement of the trading-performance is observed.

Bertoluzzo and
Corazza (2007)

Nine financial market
indices (1992-2007)

Daily Investors gain index (as reward function) can improve per-
formance of RL trading systems; proposal of a mechanism to
avoid large drawdowns.

Dempster and
Leemans (2006)

EUR-USD currency
pair (2000-2002)

Minute-
binned

Putting an emphasis on risk: RRL trading systems can
be embedded in a multi-layered risk management system; ad-
ditional performance tweeks, such as an improved position
updating scheme, are outlined.

Deng et al. (2015) Shanghai index future
(2013-2014)

Tick-level Performance of RRL trading systems can be improved by in-
troducing sparse-coded, task-specific feature representations.

Deng et al. (2017) Shanghai index future,
silver and sugar con-
tract (2014-2015); S&P
500 index (1990-2015)

Futures:
minute
binned;
S&P 500:
daily

Extraction of higher level features - deep recurrent
reinforcement learning: Deep learning techniques can be
levered to extract higher level features from the state; Pro-
posal of an extension to back propagation through time to
efficiently train the agent.

Jiang and Liang
(2017); Jiang et al.
(2017)

12 crypto currencies
(2014-2017)

30-
minutes-
binned

Deep RRL can be applied to simultaneously manage a multi-
asset portfolio (consisting of 12 crypto currencies).

Table 4: Overview of surveyed works applying the actor-only approach.

This section is devoted to the actor-only or “recurrent reinforcement learning” approach. Table

4 summarizes the main works, their year of publication, as well as the data sample and resolution.

3.1. Summary of baseline approach and relevant extensions

3.1.1. Baseline approach

Instead of approximating a value function to compute the outcomes of different actions in

every state St, Moody and Wu (1997) take a different approach. In particular, they learn a policy

which directly maps states to actions. Point of departure of the “recurrent reinforcement learning

algorithm” (Moody and Wu, 1997, p. 300 f.) forms the decision function of a single asset trading
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agent:

At = A(θt;At−1, It) with It = {zt, zt−1, zt−2, ...; yt, yt−1, yt−2, ...}. (7)

Hereby, At ∈ {−1, 0, 1} denotes the position (short, neutral, long) of the trading agent for the next

time step, At−1 its current position, and θt refers to the learned parameters of the agent. (Note: the

subscript “t” indicates that the parameters change at every time step in case the agent is trained

using online learning.) Further, It denotes the information set used to represent the state, i.e.,

lagged values of the asset’s price time series zt as well as other external variables yt. An example

for a concrete decision function is given in Moody and Saffell (2001),

At = sign (uAt−1 + v0rt + v1rt−1 + ...+ vmrt−m + w), (8)

where rt = zt − zt−1 and θt = θ = {u, vi, w} with i ∈ {0, 1, ...,m}. The goal of the agent is to

optimize some utility function Ut which is linked to its decision function. For the sake of simplicity,

we follow the authors and make use of the additive profit utility function:

Ut(θ) = PT =

T∑
t=1

Rt = µ

T∑
t=1

{rft +At−1(rt − rft )− δt |At −At−1|}. (9)

In the above equation, PT denotes the cumulative profit at the end of the trading period and Rt

the absolute profit/loss at each of its T time steps. Further, µ denotes the position size (a fixed

number of shares of stock z), rt and rft the absolute price change between period t and t − 1 of

the risky and risk-free asset respectively. Finally, δt denotes the transaction costs occurring when

the agent switches positions. (Note: P0, AT and A0 are usually set to zero.) From the above

equations, we can easily see that the agent’s decision/action At at time step t is impacted by its

previous decision At−1, i.e., the agent’s current position. This recurrent relationship has led to the

term “recurrent reinforcement learning” and renders the optimization problem path-dependent. We

therefore seek a set of parameters θ that maximize the utility function Ut over all T time steps. To

solve this problem, the authors apply an online approach based on gradient ascent which optimizes

the parameters θ by repeatedly computing the value of Ut (forward pass) and adjusting θ using

gradient ascent. The gradient is given in the following equation - for further details see Moody

et al. (1998b):
dUt(θ)

dθ
=
dUt
dRt

{
dRt
dAt

dAt
dθ

+
dRt
dAt−1

dAt−1

dθ

}
. (10)
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The second novelty of the RRL approach is a “differential Sharpe ratio” utility function which

is based on Sharpe’s measure of risk-adjusted returns (Sharpe, 1966) but can be optimized in

an online manner. In their simulation study, the authors find this utility function to yield more

consistent results than a purely profit-maximizing objective - a similarity to the findings of Corazza

and Bertoluzzo (2014) for the critic-only approach.

Building upon this research, Gold (2003) performs a comprehensive empirical study analyzing

the effect of more complex decision functions. Point of departure is the interpretation of the decision

function from equation 8 as a single layer neural network (perceptron),

At = sign

(
L∑
i=0

virt−i + vL+1At−1 + w

)
, (11)

whereby v is the weight vector, w the activation threshold and ri with i ∈ {0, 1, ..., L} the input of

the neural network. Based on this notion, Gold introduces a hidden layer, allowing the agent to

learn “a more complex and in theory more powerful trading rule” (Gold, 2003, p. 363):

xj = tanh

(
L∑
i=0

Vi,jrt−i + VL+1,jAt−1 + wj

)
, (12)

At = sign

 N∑
j=0

v′jxj + w′

. (13)

Hereby, the assets’ lagged returns ri are first transformed in the hidden layer of the neural network

(equation 12) and then further transformed at the output layer (equation 13) resulting in the final

trading decision of the agent. Note: V is a weight matrix connecting each of the L + 1 inputs

with each of the N + 1 hidden neurons and w is a vector containing all activation thresholds of

the hidden layer. In his study, Gold varies the number of neurons of the network, the learning

rate, the weight decay parameter of the learning algorithm, the number of epochs used for training,

as well as the length of the training and test windows. The backtest is performed on half-hourly

binned bid-ask prices of 25 different currency pairs - 10 pairs were used for tuning, 15 pairs for

out-of-sample testing. (Note: it may be better to split the sets by time rather than currency pairs

to reduce the risk of a look-ahead bias.) Gold makes the following observations:

• The performance of the single layer neural network is better than the performance of the

neural network with two layers. Gold assumes that the latter mermorizes noise (overfitting).
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• The number of lagged returns used as input has a stronger impact on the performance than the

number of hidden neurons. Gold finds four lagged returns and 16 hidden neurons to achieve

the best results, however, the results vary strongly across the analyzed currency pairs.

• The optimal length of the training and trading window differs strongly by currency pair.

• Learning rate and optimal number of training epochs are strongly dependent on each other

with lower learning rates generally requiring more training epochs. Gold recommends the use

of an intermediate learning rate and intermediate number of training epochs.

• Slight weight decay can improve the results of the two layer neural network, however, does

not improve the performance of the single layer neural network.

In general, we observe that the optimal parameters vary heavily by currency pair. In fact, Gold

notes that “we have found the optimal fixed parameters for currency trading in general as the

possible combinations of parameters is very large and many of the parameters have a complex

interdependence” (Gold, 2003, p. 369). From a practical point of view, it may hence be beneficial

to determine currency pair-specific parameters. Beyond these results, the concisely written paper

is important for another reason. By considering the decision function as a neural network and

introducing a hidden layer, Gold (2003) can be understood as an early precursor of the deep

recurrent reinforcement learning approach presented in section 3.1.3.

3.1.2. Putting an emphasis on risk

Inspired by Venturi (2003), Dempster and Leemans (2006) expand upon the baseline approach

by embedding it into a three-layered FX trading system. The system aims at optimizing its trading

behavior based on the investor’s risk preference and to dynamically adapt to changing market

conditions. In total, the proposed trading system consists of the following three layers:

• Basic trading system: Core of the trading system is a RRL agent resembling the one of the

baseline approach. (Note: the authors propose some performance tweaks, for example, an

improved position updating scheme, which are worth considering.) At every time step t, the

agent proposes the position (EUR or USD) for the next time step.

• Risk and performance management layer: The second layer takes the actual trading decision

and performs four tasks. First, it introduces a threshold value y, which the trading signal

needs to exceed in order to trigger an actual trade. Second, it maintains a trailing stop-loss

(x basis points above and below the maximum value of the position since its inception) to
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secure profits and to limit losses. Third, it enforces a “cool-down period” to temporarily

suspend trading activities whenever the position was closed out. Fourth, it fully suspends

trading when the maximum drawdown exceeds z to prevent potentially even larger losses.

• Parameter optimization layer: The third layer aims at optimizing the overall system with

respect to the investor’s utility function U , i.e.:

max
δ,η,ρ,x,y

U(R,Σ). (14)

Hereby, R denotes to the average returns and Σ a custom risk measure employed by the

authors. In total, five different parameters are tuned, i.e., the stop-loss level x, the trad-

ing threshold y, the transaction cost parameter δ (which steers the trading agent’s position

switching behavior), the adaption parameter η (used to compute the differential Sharpe ra-

tio), as well as the learning rate ρ (used during the update of the trading agent’s weights). To

find a solution for this optimization problem, the authors perform a “one-at-a-time random

search optimization” (Dempster and Leemans, 2006, p. 9) which tunes one parameter at a

time while keeping the other parameters constant.

Performance-wise, the authors find their trading system to achieve an annual profit of 26% in

a two-year backtest on the USD-EUR currency pair. Beyond these results, the well-structured

and comprehensively written paper is particularly interesting for two reasons. First, it lays out

levers to tweak the performance (e.g., the improved position updating scheme). Second and more

importantly, it illustrates how the RL trader can be embedded into a larger trading system - thereby

even closer aligning it to the objective of the investor (i.e., by limiting drawdowns).

3.1.3. Extraction of higher level features - deep recurrent reinforcement learning

For most of the past decade, new research on applying actor-only reinforcement learning to the

financial markets domain has been very limited. However, RRL seems to regain momentum with

several new publications in 2017 alone. These new works aim at combining RRL with deep learning

techniques to improve the agent’s sense of the environment, i.e., by extracting higher-level features

from the state variables. We hence In the following, we discuss two of these recent “deep recurrent

reinforcement learning” (DRRL) approaches.

Deng et al. (2017) make one of the first attempts to combine deep learning with recurrent

reinforcement learning in financial markets. In their paper, the authors consider the trading problem

as an “online decision making problem involving two critical steps” (Deng et al., 2017, p. 653).
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In the first step, the agent senses the environment and summarizes the current market condition

in form of 20 higher level features. In the second step, the agent executes an action given this

summary of the market environment. Following this idea, the authors propose a trading system

consisting of two interlinked components:

• Deep neural network (DNN) for feature learning: The DNN component extracts higher level

features from the 50 raw variables used to model the state of the environment10. The DNN

itself comprises three hidden layers with 128 neurons each, and one output layer with 20

neurons - one for each higher level feature.

• Recurrent neural network (RNN) for decision making: The RNN forms the second part of the

system and takes the actual trading decision. The network resembles the decision function

from the baseline approach, whereby the input (state) consists of the 20 features extracted by

the DNN as well as the current position of the agent, i.e., the previous output of the RNN11.

To train both components in an integrated manner, the authors proceed in two steps. First, they

perform a pre-initialization of the parameters (weights) of the two components. For the DNN,

for example, they make use of auto encoders to obtain initial weights. Second, they fine-tune the

overall system with “task-aware backpropagation through time” (task-aware BPTT) - a custom

training algorithm aimed at avoiding vanishing gradients in the DNN structure12. To evaluate the

performance of their trading system, the authors perform a backtest on minute by minute data of

three futures markets (Chinese stock index future, silver and sugar future) as well as the S&P 500

index (daily resolution). The reported Sharpe ratios amount up to 21.1 - a value that seems very

high compared to typical Sharpe ratios reported in practice. By contrast, the paper illustrates in

a compelling manner, how feature extraction capabilities of deep learning can be leveraged in the

context of RRL trading systems. Further research could create a better understanding of how the

network configuration (e.g., number of hidden layers and number of neurons per layer) affects the

results. For example, it might be worth experimenting with fewer neurons to mitigate the risk of

overfittingIn this respect, future research could also analyze whether the agent can be effectively

trained using observations of several stocks, i.e., to increase the total number of samples and to

learn more general patterns holding true for several stocks.

Jiang et al. (2017) make another attempt at combining deep learning techniques with recurrent

1045 past price changes, momentum changes over the 3 hours, 5 hours, 1 day, 3 days and 10 days.
11Note: this is a difference to Gold (2003) where the previous output is also transformed in the hidden layer.
12A detailed description of the training algorithm can be found in Deng et al. (2017).
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reinforcement learning to build a trading agent for crypto currencies. In contrast to the previous

section where a single asset is traded, the authors trade a portfolio of eleven crypto currencies and

a cash position13. The objective of the agent is hence to create a sequence of portfolio weights

w1, w2, ..., wT that maximizes the average cumulative return R of the portfolio. As in the earlier

paper, deep learning is applied to extract higher level features from the state. Hereby, the authors

experiment with three different neural networks, i.e., a convolutional neural network (CNN), a

recurrent neural network (RNN), and a long short-term memory network (LSTM). In order to

train the overall system efficiently, the authors propose an online stochastic batch learning scheme

and store the portfolio compositions in a central memory. Performance-wise, the authors find their

deep learning trading agents to clearly outperform their benchmarks and report 4-fold returns in a

50 days backtest. Irrespective of the financial performance, the paper is interesting for two reasons.

First, it outlines another approach to combine deep learning techniques with RL trading agents.

Second and more importantly, the paper is the first empirical study applying actor-only RL to

manage a portfolio of several (crypto) assets. Going forward, it would be nice to see the outlined

approach being applied to more liquid asset classes (e.g., the S&P 500 constituents) and longer

holding periods (e.g., several days), where microstructural effects play a minor role. Furthermore,

different reward functions could be compared, for example, to check whether using the Sharpe ratio

also leads to better results in case several assets are traded simultaneously.

3.2. Survey of works along state, action space, and rewards

In the following subsections, we survey the cross-section of works of the actor-only approach

along three dimensions, i.e., (i) the information used to model the state of the environment, (ii)

the action space of the agent, and (iii) the employed reward function.

3.2.1. State

Table 5 outlines the types of information used for the state. We make the following observations:

• Discrete states: All surveyed RRL trading agents are operating on continuous state variables,

i.e., the different variables are not discretized. This is an advantage over earlier works of the

critic-only approach, where the discretization was necessary to limit computational costs.

• Price history and candle sticks: The majority of works incorporates the asset’s recent price

history into the state with the number of lagged values varying by study. As in the critic-

only approach, we find only few studies making use of additional information derived from

13More precisely, bitcoin is referred to as “cash” in the authors’ study.
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Moody and Wu
(1997), Moody et al.
(1998a,b), Moody
and Saffell (2001)

x x Up to 84 variables, i.e., lagged first differences of
the asset price, current position, macroeconomic
data, e.g., yield curve slope, 6 months difference
in AAA bond yield, 6 months difference in TBill
yield (not all variables used are outlined).

Gold (2003) x x Lagged first differences of the price time series,
current position. (Note: lagged first differences
are z-scored prior to being fed as inputs.)

Bertoluzzo and
Corazza (2007)

x x Lagged log returns of the portfolio, current posi-
tion.

Dempster and Lee-
mans (2006)

x x Lagged first differences of the price time series,
current position, risk preference of the investor (as
additional, external variable); experiments of the
authors to feed 14 additional technical indicators
did not improve the performance except when the
number of lagged returns was reduced.

Deng et al. (2015) x x x x x More than 80 raw features comprising trend in-
dicator, oscillator indicator (relative strength in-
dex), price changes, volume patterns (adopted on
balance volume and volume weighted moving aver-
age), order book features (bid-ask spread, bid-ask
volume imbalance, signed transaction volume),
moving averages and standard deviation to mea-
sure momentum of the price movement. (Note:
dimensionality reduction and sparse encoding are
performed prior to feeding the features into the
RL system.)

Deng et al. (2017) x x x Current position and 45 raw features comprising
the price changes of the past 45 minutes, as well as
the momentum change over the previous 3 hours,
5 hours, 1, 3, and 10 days. (Note: raw-features are
pre-processed to obtain a fuzzy representation.)

Jiang and Liang
(2017), Jiang et al.
(2017)

x x x Current positions (portfolio weights), normalized
high, low and closing prices over a period of 50
time steps (each state is hence a sequence of the
feature values at 50 consecutive time steps).

Table 5: Actor-only approach: Details on information used to describe the internal state of the agents by study. An
“x” denotes whether a certain type of data is part of the information set. The “discrete state” column indicates the
discretization of the raw features, PF value denotes the value of the portfolio.

27



the open, highest and lowest price. An exception is the paper of Jiang et al. (2017) which

includes the high, low and close of the asset price at 50 consecutive time steps.

• Current position, portfolio value, and profit: All studies of the actor-only approach incorpo-

rate the agent’s current position into the state. In case a portfolio is managed, see Jiang et al.

(2017), the current portfolio weight of each position is included in the state.

• Macro data, order book data and other: As opposed to the critic-only approach, other features,

such as order book and macroeconomic data, are barely used. Deng et al. (2015) have the

richest state representation with more than 80 variables including technical indicators (e.g.,

relative strength index), volume patterns (adopted on balance volume), as well as order-book

level features (e.g., bid-ask spread, bid-ask volume imbalance, and signed transaction volume).

From the surveyed works, we find the agent’s state being primarily modeled with price-based

features, whereby more recent research focuses on the extraction of higher level features using deep

learning techniques (see, for example, Deng et al. 2017 and Jiang et al. 2017). As in the critic-only

approach, these price-based features, as well as the agent’s current position, can be considered as

the minimum information set for modeling the state. Future research could explore the value of

additional data sources such as earning estimates, fundamental data, and investor sentiment.

3.2.2. Action space and reward function

In this subsection, we survey the cross-section of works along the agent’s action space and the

employed reward function. From panel A (“Actions”) of table 6, we make the following observations:

• Output layer : Following Gold (2003), the agent’s decision function can be considered as a

neural network receiving the state as input and returning an action as output, i.e., the position

to take in the next time step. From this perspective, the action space is determined by the

number of output neurons as well as their activation function. When looking at the surveyed

literature, we find two different designs. The majority of works use one single output neuron

with tanh activation function. This design is used when one single asset is traded - with the

continuous output of tanh (a value between −1 and 1) denoting the share of capital for the

long, respectively the short position14. The second design is applied to manage a portfolio of

several assets. Hereby, the number of neurons is equal to the number of assets in the portfolio

and the softmax activation function ensures that all portfolio weights add up to 1.

14For the long-only case, tanh can be replaced by sigmoid.
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Moody and Wu
(1997), Moody
et al. (1998a,b),
Moody and Saffell
(2001)

1 neuron
(tanh),
multiple
neurons
(soft-
max)

(x) Tanh: share of capital to invest in
a long/short position of the risky
asset; Softmax: continuous port-
folio weight for each asset in the
portfolio. Note: “(x)” denotes,
that both discretized and non-
discretized actions are employed.

x x x Profit, differential Sharpe ra-
tio, differential downside devi-
ation ratio.

Gold (2003) 1 neuron
(tanh)

x Tanh: long/short(/neutral) posi-
tion in single asset (outputs are
discretized with sign).

x Differential Sharpe ratio.

Bertoluzzo and
Corazza (2007)

1 neuron
(tanh)

x Tanh: long/short(/neutral) posi-
tion in single asset (outputs are
discretized with sign).

x Investor’s gain index (ratio be-
tween cumulative positive and
negative rewards).

Dempster and Lee-
mans (2006)

1 neuron
(tanh)

x Tanh: Long/short position of
fixed amount in single asset; po-
sitions are only opened in case
a certain threshold is exceeded
(the threshold is determined dur-
ing optimization of the trading
system).

x Custom risk measure incorpo-
rating the cumulative profit,
the average profit per time in-
terval, and the trader’s per-
sonal risk aversion (external
parameter).

Deng et al. (2015) 1 neuron
(sigmoid)

x Sigmoid: Long/short/neutral po-
sition of fixed amount; Sigmoid
output is discretized with sign.
(Note: as sigmoid only takes val-
ues between 0 and 1, it might be
the case that the authors used
tanh.)

x Profit net of transaction costs.
(Note: to reduce the number of
position changes, transaction
costs are incorporated with a
quadratic penalty term.)

Deng et al. (2017) 1 neuron
(tanh)

x Tanh: long/short(/neutral) posi-
tion in single asset (outputs are
discretized with sign).

x x Total profit, moving Sharpe ra-
tio.

Jiang and Liang
(2017); Jiang et al.
(2017)

12 neu-
rons
(soft-
max)

Softmax: continuous portfolio
weights for each of the 12 assets
(long only).

x Average log return.

Table 6: Actor-only approach: Details on the modeling of the action space (panel A), as well as the employed reward
function(s) (panel B). An “x” denotes whether a certain property (e.g., actions are discretized) or type of reward
function (e.g., profit), is present in the respective study.
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• Discrete actions: The majority of studies discretize the action values, i.e., the agent can either

take a long position, a short position, or fully stay out of the market (neutral). In most cases,

this discretization is realized by simply taking the sign of the decision function output (see,

for example, Bertoluzzo and Corazza 2007 and Deng et al. 2017). Hereby, it is important to

note that only the final output is discretized - in the decision function, tanh is still used to

compute the derivatives required for gradient ascent (Gold, 2003).

With regard to the reward function (panel B of table 6), we find half of the studies employing

purely profit-based rewards, e.g., absolute profit or average return. The second most common

reward function is the differential Sharpe ratio (Moody and Wu, 1997). As in the critic-only case,

some authors find this metric to yield preferable results vis-a-vis purely profit-related rewards - see,

for example, Moody and Saffell (2001). Overall, the actor-only approach is particularly appealing

for its continuous actions. Consequently, the approach is well suited to build trading agents that

gradually adjust their positions, or that dynamically re-allocate investments among different assets.

With respect to the latter setting, future research could explore how additional constraints, such

as maximum allocation per individual asset or economic sector, can be efficiently incorporated.

4. Actor-critic approaches

The actor-critic approach combines the actor-only with the critic-only approach. Table 7 sum-

marizes the main works, their year of publication, as well as the data sample and resolution.

Study Sample Resolution Objective

Li et al. (2007) NASDAQ index,
S&P 500 index,
IBM (1989-2004)

Daily Baseline approach: Actor-critic reinforcement learning can be
applied to the trading domain; reported forecasting performance is
better than actor-only model and supervised learning benchmark.

Bekiros (2010) NASDAQ index,
FTSE100 index,
NIKKEI255 index
(1984-2009)

Daily Fuzzy actor-critic reinforcement learning: Actor-critic RL
techniques can be leveraged to optimize trading systems based on
fuzzy inference rules.

Chan and Shelton
(2001)

Simulated data - Market making: Actor-critic RL can be applied to market mak-
ing.

Table 7: Overview of surveyed works applying the actor-critic approach.

4.1. Baseline approach and relevant extensions

4.1.1. Baseline approach

As shown in table 7, and despite its promise to combine the advantages of actor-only and critic-

only RL (Konda and Tsitsiklis, 2000; Grondman et al., 2012), there are very few studies applying
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actor-critic-based RL in financial markets. To outline the general approach, we follow Si and Wang

(2001), who propose an actor-critic RL implementation using action-dependent heuristic dynamic

programming (ADHDP), as well as Li et al. (2007), who employ it in the trading domain15. As

suggested by its name, actor-critic RL systems consist of two components, the actor and the critic:

• Actor: The actor determines the agent’s actions At and forms the policy of the system. At

every time step t, the actor receives the current state St of the environment as input, and

computes the agent’s action At as output. From this perspective, the actor is similar to the

agents in the actor-only approach presented in section 3.

• Critic: The critic has the task of evaluating the actor’s actions. Hereby, the critic receives

the current state St as well as the actor’s action At as input. Based on this information,

the critic calculates the discounted future reward for performing action At in state St, i.e., it

calculates a “quality score” for the action using a learned value function. In this respect, the

critic resembles the actor-only system outlined in section 2.

The key idea of the actor-critic approach is to gradually adjust the policy parameters (weights) of

the actor in a way that its actions maximize the total discounted future reward predicted by the

critic. Looking more closely, the optimization problem consists of two interdependent parts. First,

given the actions of the actor, the prediction error made by the critic, i.e., the difference between

predicted and actual discounted future reward, needs to be minimized by adjusting the critic’s

parameters Wc. Second, given the approximation of the value function of the critic (which is used

to estimate the future rewards), the actor’s policy parameters Wa need to be adjusted to maximize

these total future rewards. During training, the parameters of both components are incrementally

updated using gradient ascent. Hereby, the updates are performed in an alternating manner, i.e.,

Wc is kept constant while Wa is updated and vice versa. For a more detailed description of the

training algorithm please refer to the original paper of Si and Wang (2001).

The actor-critic RL agent of Li et al. (2007) closely follows the above design. In the author’s

study, both actor and critic are implemented as neural networks, whereby the output of the actor-

network forms part of the input vector of the critic-network. The objective of the agent is to

improve the predicted price change Ẑ(t+ l) of a financial asset over the next l time steps. Hereby,

the final prediction Ẑ(t + l) is the sum of the prediction made with an Elman recurrent network

15Note: Similar to Q-learning, ADHDP can be applied to a wide set of problems. Also, there exist several other
techniques to build actor-critic RL agents, see, for example, Grondman et al. (2012).
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(Elman, 1990) ẐSL(t+ l) and the prediction of the RL agent ẐRL(t+ l):

Ẑ(t+ l) = ẐSL(t+ l) + ẐRL(t+ l). (15)

By splitting the overall forecast into the supervised learning (SL) and the reinforcement learning

(RL) part, the authors aim at capturing the “general market inertia” using the Elman network

and capturing the “synthesized investor’s abnormal decision” using the RL agent (Li et al., 2007,

p. 234). Result-wise, the reported directional accuracy values show a clear improvement vis-a-vis

a forecast solely based on the supervised Elman network, as well as the joint forecast of the Elman

network and an actor-only RL agent. The latter is an indication for the potential performance

benefits of actor-critic RL agents and should be a motivation for future research.

4.1.2. Fuzzy actor-critic reinforcement learning

Bekiros (2010) pursues another attempt at building an actor-critic RL trading system using

fuzzy programming techniques. Specifically, the trading decision (long/short) is the output of

a first-order Sugeno fuzzy system (Sugeno, 1985), which is optimized using actor-critic RL. The

overall system comprises two parts, i.e., the fuzzy system and its RL optimization:

• Fuzzy system: The fuzzy system receives the current state of the environment as input St,

and returns the trading decision as output. The input is a triple consisting of the past two

logarithmic one-day returns of the asset (rt, rt−1), and the asset’s change in 20 days volatility

compared to the previous day (σt − σt−1). From input to output, three steps are performed.

First, each element of the input is fuzzyfied, i.e., the degree to which it can be classified as

“high” or as “low” is calculated using a membership function of the following form:

µM i
j
(St,j) =

1−
(

2|St,j − aij |/bij
)
, if 2|St,j − aij | ≤ bij

0, otherwise.

(16)

Hereby, i denotes the rule the membership function belongs to (see below), St,j refers to the

j-th element of the input vector at time step t, and aij and bij are the (tuning) parameters

of the membership function. By defining two potential classes (“high” vs. “low”) for each of

the three elements of the input vector, 23 possible combinations emerge, i.e., (“low”, “low”,

“low”), (“low”, “low”, “high”), and so forth. In the next step, a corresponding rule Ri is
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defined for each of these eight combinations:

Ri : IF St,1 is M i
1 AND St,2 is M i

2 AND St,3 is M i
3 THEN = zit. (17)

In the above equation, the left hand side is referred to as the premise, whereby M i
j ∈

{“high”, “low”} with j ∈ {1, 2, 3} and i ∈ {1, 2, ..., 8}. The right hand side of the equation is

the rule’s output and calculated as follows,

zit = hi + cist,1 + dist,2 + kist,3, (18)

whereby hi, ci, di, and ki are the coefficients of the output of rule i. Finally, in the last step,

the weighted output (i.e., the predicted rate of return for tomorrow) across all eight rules is

computed:

V̂t(St) =

∑
Ri∈A(St)

wRi(St)z
i
t∑

Ri∈A(St)
wRi(St)

. (19)

Hereby, the weight factors wRi for the individual rules are the multiplicative conjunction of

the membership values of the input vector elements, i.e., wRi =
∏3
j=1 µM i

j
(St,j). In case the

final output V̂t(St) is positive, i.e., the asset’s price is expected to rise, the resulting action is

“long” - otherwise the action is “short”.

• Actor-critic RL optimization: The actor-critic RL optimization aims at finding optimal values

for the parameters aij and bij of the membership functions (equation 16), as well as optimal

coefficients hi, ci, di and ki for the polynomial output rules (equation 18). Hereby, optimal

refers to parameter values that minimize the reinforcement signal, i.e., the mean squared error

Et between the forecasted V̂t(St) and the actual one-day ahead return yt. The optimization

itself is carried out in an alternating manner. First, the membership function parameters (ac-

tor part) remain fixed and the coefficients for the first-order polynomial outputs (critic part)

are computed using the singular value decomposition method (Golub and Reinsch, 1971).

In the second step, the reinforcement signal is computed and the membership parameters

(actor part) are updated using gradient ascent. After each iteration, the reinforcement signal

is computed on a validation set and the training is stopped once it rises compared to the

previous iteration (a potential indication for overfitting).

In a backtest study, the author finds his “adaptive fuzzy actor-critic reinforcement learning” ap-

proach to clearly outperform a recurrent neural network, a Markov-switching model, and a buy
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and hold strategy. The reported cumulative returns and Sharpe ratios are positive and reasonably

high - with the caveat that the results vary strongly depending on the underlying and time frame

for testing.

4.2. Survey of works along state, action space, and rewards

In the following subsections, we survey the cross-section of works along three dimensions, i.e.,

(i) the information used to model the state of the environment, (ii) the action space of the agent,

and (iii) the employed reward function.

4.2.1. State
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Remarks

Li et al. (2007) x x Normalized first order differences of the recent
price history, most recent reinforcement signal.

Bekiros (2010) x x Last two logarithmic one-day returns, change in
20 days volatility compared to the previous day.

Chan and Shelton
(2001)

x x x x Inventory level, order imbalance, market quality
measures (i.e., bid-ask spread and price continu-
ity).

Table 8: Actor-critic approach: Details on information used to describe the internal state of the agents by study. An
“x” denotes whether a certain type of data, e.g., historical prices, is part of the information set or not. The “discrete
state” column indicates the discretization of the raw features to reduce the size of the state space. Further, “PF
value” denotes the value of the portfolio.

From table 8, which summarizes the different types of information used to model the state, we

make the following observations:

• Discrete states: Two out of three studies do not discretize the different variables describing

the state. The same applies to the actor’s action - a clear advantage over the discrete actions

in the critic-only approach.

• Price history and candle sticks: As in the other two RL approaches, the majority of works

incorporates the asset’s recent price history as state variables. Worth mentioning is Bekiros

(2010), who adds the change of the stock’s conditional volatility as additional variable.

• Current position, portfolio value, and profit: None of the surveyed studies incorporates the

current position, portfolio value, or profit. This omission is surprising at first sight, however
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closely related to the problem definition in the respective papers (no transaction costs/static

holding periods). However, in a setup with dynamic holding periods, including the current

position and incorporating transaction costs are likely to improve the trading performance.

• Macro data, order book data and other: Two out of three studies solely rely on state variables

derived from price data. Chan and Shelton (2001) is an exception as the authors use order-

book-level information, such as order book imbalance, for their market making agent.

4.2.2. Action space and reward function

Panel A: Actions Panel B: Reward functions

Study Remarks (C
u

m
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Remarks

Li et al. (2007) The agent’s action is used to revise the
price change forecast of a supervised learn-
ing model.

x The reward at each time step com-
pares the sign of the actual price
change with the predicted sign of the
price change.

Bekiros (2010) The actions of the RL agent are the (opti-
mized) parameters for the fuzzy system.

x Mean squared error between pre-
dicted and actual one-day ahead re-
turn (minimization objective).

Chan and Shelton
(2001)

Change of bid and change of ask price for the
next time step; the values by which the cur-
rent bid and ask are changed are discretized

x x Custom reward function combining
profit and market quality, as well as
profit-only reward function.

Table 9: Actor-critic approach: Details on the modeling of the action space (panel A), as well as the employed reward
function(s) (panel B). An “x” denotes whether a certain type of reward function (e.g., profit), is employed in the
respective study.

In this subsection, we survey the cross-section of works along the action space and the employed

reward function. From panel A (“Actions”) of table 9, we observe that the agent’s action space

varies strongly among the works and is often not directly linked to the final trading decision. In

Li et al. (2007), for example, the agent’s action is used to revise the price change forecast of a

supervised learning model. In Bekiros (2010), the trading decision itself is made by a Sugeno fuzzy

system which is optimized by the actor-critic RL agent.

In terms of reward function, the above picture is repeated. The surveyed papers mostly focus

on improving the price change forecast rather than the resulting profit or Sharpe ratio. However,

this does not imply that actor-critic RL trading systems can’t be optimized using these metrics -

in fact, it would be highly interesting to see future research implementing such an approach.
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5. Comparison studies and further works

This section is devoted to studies comparing the different RL approaches as well as selected

other works. From table 10 we make the following observations:

• No clear winner: As denoted by the underlined “x”, which highlights the best performing

agent in the respective study, the results vary across the surveyed works. Duerson et al. (2005)

find the Q-learning agent (critic-only) to yield the best results, however, Du et al. (2009) report

the opposite with RRL achieving superior performance. Casqueiro and Rodrigues (2006), the

most cited comparison study, draws a similar conclusion: “Experimental results were not very

conclusive” (Casqueiro and Rodrigues, 2006, p. 1409). In their paper, Q-learning and RRL

are on par in two out of three cases, and both outperformed by a naive buy and hold strategy

in an experiment on a third time series.

• Focus on actor-only and critic-only agents: As of today, there is no comprehensive study

benchmarking all three approaches, i.e., actor-only, critic-only, and actor-critic.

Overall, these contradictory findings are likely to be driven by three factors, i.e., the high degree

of noise in financial data, the immense solution space with regard to designing the RL trading

system (e.g., selected variables for the state, employed reward function), and the sample sizes.

Future research could hence provide valuable answers by comparing the different RL approaches in

a large empirical setting, for example, by applying the agents to all S&P 500 constituents. In the

meantime, a pragmatic way to not having to choose a specific approach is proposed by Gao and

Chan (2000). The authors ensemble the actions of an actor-only and a critic-only agent to derive

the final trading decision. Similar to supervised learning, see, for example, Dietterich (2000), the

“ensemble agent” is reported to yield better results than each of the agents individually.

Finally, the works of Kearns and Nevmyvaka (2013) are worth mentioning. In their article, the

authors provide three case studies on the application of RL in high frequency trading. The first

case study focuses on optimizing trade execution with RL and is a summary of earlier works of

the authors (see Nevmyvaka et al. (2006) and section 2.1.6). The second case study addresses the

prediction of short-term price movements from the state of the order book. Finally, the third case

study highlights how RL can be applied to optimize the allocation of trades to different dark pools.

Overall, all three studies provide valuable insights with a focus on relevant variables for the state

as well as ways to interpret the policies learned by the agents.
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Study Sample Resolution Approach Study setting and result
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Duerson
et al. (2005)

Five se-
lected US
technology
stocks (ex-
act time
frame of
data sam-
ple is not
reported)

Daily x x x Setting: Comparison of four trading systems, i.e.,
Q-learning agent (critic-only), short-term discounted
history reinforcement learner (critic-only), recurrent
reinforcement learning agent (actor-only), turning
point predictor (other), and one naive trading
strategy (buy and hold) in single-asset setting;
objective of the agent is to maximize the total return
by re-allocating the investment among a risky and a
risk-free asset at every time step.

Result: Critic-only approaches yield the best results.
Note: the paper indicates “a possible problem” re-
lated to the formula for the return Rt and its differ-
ential for the actor-only model (Duerson et al., 2005,
p. 5) - a potential explanation for the poor perfor-
mance of the actor-only model.

Casqueiro
and Ro-
drigues
(2006)

One sim-
ulated
time series,
Lisbon
Stock Ex-
change PSI
20 index,
EDP stock
(exact time
frame of
data sam-
ple is not
reported)

Weekly x x x x Setting: Comparison of Q-Learning, recurrent
reinforcement learning, Sharpe ratio maximization
(Choey and Weigend, 1997), supervised learning,
and two naive trading strategies (buy and hold
strategy, “only invest in risk-free asset” strategy) in
single-asset setting; objective of the agent is to maxi-
mize the total return by re-allocating the investment
among a risky and a risk-free asset at every time step.

Result: Q-learning (critic-only) and recurrent rein-
forcement learning (actor-only) show similar perfor-
mance with better results (in terms of profit and
Sharpe ratio) than the other methods in two out of
three cases; on one of the real-world data sets, the
naive buy and hold strategy yields the best results;
Sharpe ratio maximization performed worst across all
three time series.

Du et al.
(2009)

Simulated
time series;
S&P 500
index (ex-
act time
frame of
data sam-
ple is not
reported)

1200 dis-
crete time
intervals

x x Setting: Comparison of Q-Learning (critic-only)
with recurrent reinforcement learning (actor-only)
in single-asset setting; objective of the agent is
to maximize the total return by re-allocating the
investment among a risky asset (market portfolio)
and a risk-free asset (cash) at every time step.

Result: Recurrent reinforcement learning yields bet-
ter results than Q-learning.

Table 10: Overview of comparison studies. An “x” in the five columns underneath “Approach” denotes that the
respective approach was included in the study. In case the “x” is underlined, the authors find the respective approach
to yield the best performance. In case none of the “x” is underlined in a row, the reported results are inconclusive.
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6. Conclusion

The present paper surveys the literature at the intersection of RL and financial markets. Draw-

ing insights from almost 50 publications, three different RL approaches are distinguished - each

with its individual strengths and weaknesses:

Critic-only approach: The critic-only approach is the most popular RL approach in financial

markets. The core of the method is a learned value function which allows the agent to compare

different actions. During the decision making process, the agent observes the current state of the

environment and chooses the action with the best outcome according to the value function. The

main advantage of the critic-only approach is the high flexibility of the reward function and its

applicability to a wide set of problems. Specifically, the reward function does not need to be

differentiable. This property allows to model even complex reward schemes with several if-else

branches, for example, to send a large negative reinforcement signal, in case a certain drawdown is

exceeded. Moreover, due to the explicit use of a discount factor, the preference between immediate

and future reward can be carefully controlled. Probably the most noticeable limitation is the agent’s

discrete action space closely related to Bellman’s “curse of dimensionality” (Bellman, 1957). This

becomes particularly obvious when N assets are traded or when very fine-grained trading decisions

are required. In fact, “the number of discrete actions that must be considered is exponential in N”

(Moody and Saffell, 2001, p. 888), rendering the approach unfeasible for large numbers of stocks

N . (Note: by formulating the decision problem differently, the exponential increase in actions can

be mitigated to some extend - see section 2.1.7). Finally, some authors find the approach to be

“brittle” in presence of noise (Brown, 2000) or not to converge under certain conditions (Baird and

Moore, 1999). Going forward, more research could be devoted to enriching the state with other

data sources (see, for example, Kaur 2017 who made an attempt using sentiment data), to finding

a better problem representation when trading multiple securities, and to the application of DQL

techniques. Moreover, the question whether immediate or terminal rewards (one reward at the

end) perform better and under what circumstances, should be further explored.

Actor-only approach (RRL): The actor-only approach is the second most popular approach.

Instead of approximating a value function, the policy, i.e., the mapping from states to actions, is

learned directly. In financial markets, the approach has been introduced by Moody and Wu (1997).

The main advantages are the continuous action space, as well as the usually faster convergence

and higher transparency (Moody and Saffell, 2001; Bekiros, 2010). Having continuous actions, the

agent can carefully interact with the environment, for example, to gradually increase an investment.

Moreover, by using multiple output neurons in combination with a softmax activation function, a
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portfolio consisting of several assets can be managed simultaneously. The most noticeable disad-

vantage of the actor-only approach is the need for a differentiable reward function, limiting the

reward schemes that can be modeled. Going forward, more research could be devoted to better

understanding the impact of different network architectures (e.g., type and number of hidden lay-

ers) for deep RRL agents and the effect of different reward functions for multi-security portfolios.

Furthermore, the value of non price-based information, e.g., sentiment data, could be explored.

Actor-critic approach: Actor-critic RL constitutes the third approach and aims at combining the

advantages of actor-only and critic-only RL (Konda and Tsitsiklis, 2000; Grondman et al., 2012).

As suggested by its name, actor-critic RL comprises two agents, the actor and the critic. The actor

determines the actions and forms the policy of the system. At every time step, the actor receives

the current state as input, and computes the agent’s action as output. The critic evaluates these

actions. Hereby, it receives the current state as well as the actor’s action as input, and computes

the discounted future reward as output. The key idea is to gradually adjust the policy parameters

of the actor in a way that it maximizes the reward predicted by the critic. Despite the ambition

to combine the advantages of both agents, there are only few studies employing actor-critic RL in

financial markets. These works include Li et al. (2007), who develop an RL agent to improve the

forecast of stock returns obtained by an Elman network, as well as Bekiros (2010), who combine

actor-critic RL with fuzzy logic. Unfortunately, neither of these agents is comparable to the critic-

only and actor-only agents discussed above. Future research could hence develop an actor-critic

agent whose action resemble the trading decisions. Based on that, it should be analyzed whether

the ambition of combining the advantages of actor-only and critic-only RL can be realized.

Looking at the three approaches and given the absence of a large-scale comparison study, the

actor-only approach currently appears to be the best suited approach for financial markets. The

main reasons (see also Moody and Saffell 2001) are its continuous actions (to carefully control the

investment), its usually small number of parameters (which make it less prone to overfitting), its

good convergence behavior (which results in faster training), and its recent improvements with deep

learning techniques. Going forward and following the call of Britz (2018), it would be nice to see

more attention being devoted to RL in finance - in particular as the findings can be valuable for

RL research in general: Trading agents have to make decision based on imperfect information while

interacting with a large number of market participants - both similarities to complex multiagent

environments. Market conditions face constant change with history sometimes repeating itself -

agents hence should adapt without forgetting what they have already learned. Finally, due to the

good availability of data, agents can be easily tested or even deployed in a live environment.
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