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Abstract

Most statistical arbitrage strategies in the academic literature soley rely on price time series. By

contrast, alternative data sources are of growing importance for professional investors. We con-

tribute to bridging this gap by assessing the price-predictive value of more than nine million tweets

on intraday returns of the S&P 500 constituents. For this purpose, we design a machine learning

pipeline addressing specific challenges inherent to this task. At first, we engineer domain-specific

features along three categories, i.e., directional indicators, relevance indicators and meta features.

Next, we leverage a random forest to extract the relationship between these features and subsequent

stock returns in a low signal-to-noise setting. For performance evaluation, we run a rigorous event-

based backtesting study across all tweets and stocks. We find annualized returns of 6.4 percent

and a Sharpe ratio of 2.2 after transaction costs. Finally, we illuminate the machine learning black

box and unveil sources of profitability: First, results are both driven and limited by the temporal

clustering of tweets, i.e., the majority of profits stem from tweets clustered closely together in time,

corresponding to high-event situations. Second, the importance of included features follows an eco-

nomic rationale, e.g., tweets with positive sentiment tend to yield positive returns and vice versa.

Third, we find that stocks of medium market capitalization and from the consumer and technology

sectors contribute most to our results, which we interpret as a trade-off between tweet coverage

and tweet relevance.
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1. Introduction

Financial market predictions are a challenging task due to the high level of noise and the widely

accepted, semi-strong form of market efficiency (Fama, 1970). Nonsurprisingly, a growing number of

investors seeks to exploit non-price-based data sets to predict future returns. With the ever-growing

availability of real-time supplementary data and increasingly sophisticated predictive models, such

as deep learning, the use of alternative data sources is of growing importance in both research and

industry: In a 2016 interview, Osman Ali, portfolio manager at Goldman Sachs Asset Management,

mentions the use of internet web traffic in the context of a data-driven investment process (Goldman

Sachs, 2016). Other market participants exploit satellite imagery and advanced image processing

techniques to predict retail sales in near real-time using the traffic at a store’s parking lots as proxy

(Turner, 2015), or to predict corn production from the world’s largest supplier through large-scale

analysis of a plant’s color from space (Wilson, 2015). The automated processing of written natural

language, gathered for example from news, patent filings and central bank statements, is of growing

interest for business applications: For instance, J.P. Morgan recently announced that it is pursuing

research in natural language processing “to augment the way portfolio managers and research

analysts digest information” (J.P. Morgan, 2018).

Apart from a growing number of applications in the industry, there is surging academic interest

in leveraging alternative data in a finance context, and especially in financial market predictions

using news, ad-hoc announcements or messages from blogging platforms such as Twitter. Con-

sequently, the surveys of Nassirtoussi et al. (2014) and Oliveira et al. (2017) cover more than 40

works, which can be divided into two groups.

The first group focuses on aggregated measures of sentiment: For example, Antweiler and Frank

(2005) use an aggregated bullishness measure for messages from Yahoo! Finance and Raging Bull

to find an effect of sentiment on intraday Dow Jones market volatility and a small effect on returns.

Tetlock (2007) and Tetlock et al. (2008) analyze aggregated news articles with respect to their

effect on a company’s earnings and daily stock market reaction, and similarly Bollen et al. (2011)

find that daily mood states from Twitter are predictive for the Dow Jones Industrial Average.

Sprenger et al. (2013) aggregate the polarity of single tweets to a daily sentiment score and analyze

its relation to S&P 100 stock returns, message volume and trading volume. Das and Chen (2007)

apply dictionary-based and machine learning methods on posts from stock message boards to assess

the correlation between aggregated sentiment and market return as well as volatility.

The second group of works concentrates on the reaction of a single stock’s price immediately

after the release of a text message. For example, Schumaker and Chen (2009) and Schumaker et al.

(2012) classify financial news articles using support-vector regression with regard to their effect
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on short-term intraday stock returns. Groth and Muntermann (2011) evaluate text mining and

machine learning techniques on corporate disclosures for intraday risk management applications.

Hagenau et al. (2013) examine the added value of context-capturing features for the prediction

of intraday stock returns from ad-hoc announcements. Knoll et al. (2018) apply higher-order

factorization machines, an algorithm oftentimes used for recommender systems, to predict future

stock returns and trade accordingly.

With our work, we aim at expanding on the current state of research with a large-scale empirical

study, building on more than nine million tweets and a survivor-bias free dataset for all S&P 500

constituents on minute-resolution. Specifically, we answer the following open research questions:

(1) How can a machine learning pipeline be designed to extract a functional relationship between

tweets and a stock’s subsequent market reaction? (2) Can the predictions of the machine learning

system be translated to statistically and economically significant excess returns when submitted to

a rigorous, event-based backtesting engine? (3) Do the findings follow a clear economic rationale,

when analyzing sources of profitability? By answering these questions, we make the following

contributions to the literature:

1. Tweet-specific machine learning pipeline: We develop a tweet-specific machine learning pipe-

line, aiming to extract actionable signals from a tweet’s content in a low signal-to-noise

setting. For this purpose, we start by developing handcrafted, domain-specific features along

three categories. The first category contains directional indicators, pertaining to potential

market reactions. Examples include general words such as “good” or “decrease” and context-

specific n-grams such as “beats expectations”, and are motivated by the financial literature

on sentiment extraction, see for example Henry (2008), Loughran and McDonald (2011)

or Hagenau et al. (2013). The second category contains relevance indicators, modeling the

likelihood of a tweet containing noise as opposed to market-relevant information. For example,

the presence of the terms “report” or “Reuters” may indicate that the tweet covers financial

news. The third category contains meta features, pertaining to the twitter network. A

prominent example is whether the tweet is a retweet or not, indicating that information is

further disseminated. We use random forests to extract a functional relationship between

these features and a stock’s subsequent market reaction, as they are known to handle noisy

data very well and are less affected by overfitting (see, for example, Hastie et al. (2009)).

Finally, we develop a filtering logic to derive actionable market signals from more than nine

million noisy tweets.

2. Event-based intraday backtesting with execution constraints: Next, we subject the identified

trading signals to rigorous backtesting, i.e., we simulate the historic execution of a trad-
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ing strategy based on single-tweet trading signals and evaluate its financial performance.

Hereby, we pay attention to the specifics of event-based trading strategies such as execution

constraints, trading costs and capital constraints. We contrast our results to a number of

benchmarks, which are a buy-and-hold strategy, a strategy based on k-nearest neighbors, and

a näıve sentiment-based prediction model. We find that our tweet-based trading strategy is

able to generate statistically significant annualized returns of 6.4 percent with a Sharpe ratio

close to 2.2, after accounting for transaction costs and limiting single-stock risk exposure.

3. Illumination of the black box: Finally, we illuminate the machine learning black box, uncover

sources of profitability, and rigorously ask whether they are in line with economic rationale.

First, we show that returns are driven by the temporal distribution of tweets. The majority

of profits stems from tweets clustered closely together in calendar time, which corresponds to

high-event situations for a stock that can often be profitably exploited. Second, we find our

features to correspond well to subsequent market reactions. Tweets with words or n-grams of

positive (negative) connotation are generally followed by an increase (decrease) of the stock

addressed in the tweet – which is in line with the financial literature on sentiment extraction,

see for example Tetlock (2007). Third, we find that our model preferably selects consumer and

technology stocks – presumably driven by the business-to-consumer nature of the underlying

companies. Also, medium market capitalization stocks rank higher in per-tweet profitability

as high or low market capitalization stocks in the S&P 500 universe. Medium size stocks may

provide a compromise between tweet coverage (sufficient volume) and tweet relevance (large

business-to-consumer stocks tend to show many noisy tweets).

The remainder of this paper is organized as follows (see also figure 1): In section 2, we describe

the data sets and software used for our work. Section 3 details all building blocks of our method-

ology, i.e., the generation of features and targets, the training of predictive models, the generation

of trading signals, and finally the backtesting framework. Our results are presented in section 4,

and we conclude in section 5.

2. Data and software

Our empirical study employs data from two sources concerning S&P 500 stocks: First, a col-

lection of short messages from Twitter, and second, minute-by-minute price time series aggregated

from trades. We focus on S&P 500 stocks as they cover about 80 percent of U.S. equity market

capitalization (S&P Dow Jones Indices, 2018).
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Results Detailed analyses

Pre-study for parameter selection (section 4.1)

Financial performance (section 4.2)

Analyzing the value added by words and fea-

tures (section 4.3.1)

Contribution of industry sector and market

capitalization (section 4.3.2)

Methodology

Data and study design
Target/feature generation

(section 3.2)

Model training

(section 3.3)

Trading signal generation

(section 3.4)

Backtesting framework

(section 3.5)

Twitter data

(section 2.1)

Stock price data

(section 2.2)

Study design

(section 3.1)

Target generation

(section 3.2.1)

Feature generation

(section 3.2.2)

Random Forests

(section 3.3.1)

k-Nearest Neighbors

(section 3.3.2)

Näıve model

(section 3.3.3)

Event-driven execution

(section 3.5.1)

Capital allocation model

(section 3.5.2)

Performance evaluation

(section 3.5.3)

Figure 1: Overview over this paper’s organization.

2.1. Twitter data

As first data source, our study employs an extensive data set from the microblogging platform

Twitter, which has more than 300 million monthly active users world-wide (Statista, 2018b), of

which half are based in the United States (Statista, 2018a). Moreover, Twitter is widely accepted

in the financial community (Sprenger et al., 2014). On Twitter, information is exchanged between

users almost in real-time by sending short text messages. These messages are called tweets and

consist of 140 characters only – at least in the initial form of the Twitter network.2 Twitter offers

a number of unique features to amplify interactions between users: tweets can mention other users

via a reference to their user name, as well as forward other user’s tweets as a retweet. These

functions are accessed by using special markup in the text body of the tweet, and are therefore

accessible to text processing.

Our data set is retrieved directly from Twitter by utilizing the full company name as search term,

which allows us to focus our analysis on tweets with information relevant to specific companies. In

line with our high-frequency stock price data, all S&P 500 constituent company names from January

1st, 2014 to December 31, 2015 are used as search keys. Full company names (i.e., including the

form of business entity such as ’Inc.’) are used to unambiguously identify companies, since some

company names are solely composed of English words. Next to the tweet’s text body, the final

data set contains a unique identifier assigned by Twitter, a language tag and the time of posting in

universal coordinated time. Our sample contains 9.026 million tweets, of which 6.474 million are

tagged as containing English language text. The average tweet length is 108 characters. Figure 2(a)

2The character limit was increased to 280 characters in November 2017 (Twitter, 2017).
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Figure 2: Distribution of tweets by month and hour of the day. Light gray lines mark the mean value.

displays the average daily tweet count by month, which is close to the average of 1.2× 104 tweets

per day. The hourly volume of tweets is lower during night time in Eastern Time, but roughly

constant during day-time (compare figure 2(b)).

2.2. Stock price data

As second data source, we obtain minute-by-minute stock prices for S&P 500 constituents from

QuantQuote (2018) covering the full period of our Twitter sample. For each minute with traded

volume, the data contains the first (open) price, the last (close) price, the maximum (high) price

and the minimum (low) price from the set of trades executed during this minute. The data are

adjusted for dividend payments, splits and other corporate actions.

2.3. Data preparation and consolidation

To prepare our data sets for further processing, we first remove all tweets that are not in English

language. Second, we remove all tweets that have been posted outside the core trading session of

the New York Stock Exchange3 or fall on exchange holidays (New York Stock Exchange, 2018). In

a third step, we match tweets with stocks using the following procedure: For every tweet, we check

whether it contains the full company name of any S&P 500 constituent. We merge the respectice

price time series for all stocks mentioned in the tweet to yield a consolidated data set. If more than

one stock is mentioned in the tweet, we include this tweet multiple times in the final data set. We

ensure that tweets and price data are aligned to the same time zone by converting all timestamps

to US Eastern Time.

3On regular (non-holiday) trading days, the core trading session begins at 9:30 and ends at 16:00 (Eastern Time).
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2.4. Software

Data is stored in a PostgreSQL database (PostgreSQL Global Development Group, 2018) to

facilitate access. Most of the data preprocessing is performed in Python (Python Software Foun-

dation, 2016) with the additional packages numpy (Van Der Walt et al., 2011), pandas (McKinney,

2010) and psycopg2 (Varazzo, 2011). Text processing is done using the Natural Language Toolkit

(Bird et al., 2009) and the package sentimentAnalysis (Pröllochs et al., 2015) for the statistical

programming language R (R Core Team, 2016). All machine learning models are implemented

using scikit-learn (Pedregosa et al., 2011).

3. Methodology

Our methodology consists of five steps. First, we split our consolidated data into training and

out-of-sample trading sets. Second, we generate the prediction targets and features (inputs) for

our prediction models. Third, we train different predictive models. Fourth, we apply these models

and select the most promising predictions for trading signal generation. Fifth, we backtest the

derived trading signals in a simulated trading environment. In the following, we describe each step

in greater detail.

3.1. Study design

Following common practice in the statistical arbitrage literature (see, for example, Gatev et al.

(2006)), we use a time-based split of our data into training and out-of-sample trading sets to validate

model performance on unseen future observations only. Similar to Fung et al. (2003), and to obtain

training samples covering different market states, we use a half-year (26 calendar weeks) training

period followed by 4 weeks of out-of-sample trading. Then, we roll forward by 4 weeks to obtain

non-overlapping trading periods. We hereby align training and trading periods to start on Mondays

to allow for model re-training on weekends. Our first trading period starts on June 30, 2014, which

means that we have 20 independent training/trading sets. The first three trading periods are used

for parameter calibration, and fully out-of-sample backtesting is performed on the remaining 17

trading periods beginning on September 22, 2014 and lasting until December 31, 2015.

3.2. Target and feature generation

3.2.1. Target generation

Our aim is to forecast a stock’s price development following a tweet, i.e., we want to predict

the return from the first price after the tweet to the price ∆T minutes later. We assign a binary

class label to every sample in the training period for use as classification targets. We choose the
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formulation as a classification problem as previous studies indicate its superior performance over

regression problems in the context of financial markets predictions (Enke and Thawornwong, 2005;

Leung et al., 2000) and have frequently been used in news-based stock price prediction applications

(Nassirtoussi et al., 2014).

We denote the price of stock s ∈ {1, . . . , S} at time t as P c
s, t, where c ∈ {O, C} denominates

either the opening or closing price of the respective minute. Our target generation proceeds as

follows: Given a tweet with timestamp ttw. mentioning some stock stw., we calculate the multi-period

return for a time window ∆T following the tweet. To this end, we consider the opening price of the

minute bar following the tweet’s minute of release PO
stw., ttw.+1 and the price PC

stw., ttw.+∆T following

∆T minutes later to align target generation with our tweet-based trading strategy introduced in

section 3.5:

rstw., ttw. =
PC
stw., ttw.+∆T

PO
stw., ttw.+1

− 1 (1)

We remove tweets from our sample for which ttweet + ∆T is outside of trading hours. Following

Sprenger et al. (2013), we calculate abnormal returns as arstw., ttw. = rstw., ttw.−βstw., d(ttw.)r
market
ttw.

.

We estimate the stock’s beta βs,t from the 252 daily returns prior to the tweet’s day of posting

d(ttw.) and use the S&P 500 index as market benchmark. As Dudoit and Fridlyand (2003) suggest

that random forests perform poorly on imbalanced targets, we decide to compare the abnormal

return artw. following a tweet with the median return of all tweets of the same day ãrd(ttw.) to

obtain balanced binary classes relative to the daily cross section of tweets, i.e.,

ystw., ttw. =

0 if arstw., ttw. ≤ ãrd(ttw.)

1 else.
(2)

We choose a forecast horizon of ∆T = 120 min to compute tweet returns, in line with Pera-

munetilleke and Wong (2002) and Deinert et al. (2018). This value is motivated by the following

aspects: First, we aim for minimizing microstructural effects on our intraday application, hence

we avoid short-term forecasts. Second, we need sufficient stock volatility to have the potential to

cover full-turn transaction costs. Third, we target to capitalize on the data with a high turnover

intraday strategy, for which the maximum return time window is limited by the available trading

time of 6.5 hours per day. Hence, a return time window of 120 minutes presents a good compromise

between these aspects.
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3.2.2. Feature generation

In the next step, we construct features for every tweet. We identify three major feature cate-

gories building on the existing literature (Henry, 2008; Loughran and McDonald, 2011; Sprenger

et al., 2013; Schumaker et al., 2012; Hagenau et al., 2013) to obtain a holistic view on possible

feature candidates and to guide further feature engineering:

1. Directional indicators: The first category comprises English-language words and n-grams that

are assumed to contain predictive information on the future direction of a stock’s price. Exam-

ples include general words such as “good” or “increase” and context-specific n-grams such as

“beats expectations”. To reduce the dimensionality of our feature space and to improve gen-

eralization, we arrange words or n-grams with similar semantic meaning into distinct groups

to find a set of domain-specific dictionaries that capture clearly defined, delimited concepts.

Following a number of studies (for example Tetlock et al. (2008); Das and Chen (2007); Henry

(2008); Loughran and McDonald (2011); Peramunetilleke and Wong (2002) or Pröllochs et al.

(2015)), we count the number of occurences for words from these dictionaries to compute fea-

ture values.4 Oliveira et al. (2016) conjecture that general-purpose dictionaries might not be

well-suited for modelling stock market reactions. We therefore include the finance-specific

positive and negative dictionaries of Henry (2008) and Loughran and McDonald (2011) for

feature construction.

2. Relevance indicators: In a second category, we subsume all English-language words that

indicate the importance of a given tweet for future stock market returns. These features

serve to identify less relevant tweets and thus to suppress noise. Examples are words such as

“profit”, “forecast” and “sales”. As for directional indicators, feature values are calculated

as word counts using the respective feature-specific dictionary.

3. Meta features: The last feature category contains features going beyond the textual content

of the tweet. This allows to account for some of the unique functions of the twitter network,

such as retweeting or the presence of a URL. Tweet meta features are computed using regular

expressions to match twitter-specific markup or company names.

We list all features that create our feature vector along with relevant references and examples in

table 1.

4Features are represented in the following way: We first split every lower-case tweet into a list of tokens using
the Twitter-aware tokenizer implementation of the Natural Language Toolkit (Bird et al., 2009). We then count the
number of occurrences of a tweet’s tokens in the feature-specific word list.
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Category Identifier Description

Directional
indicators

posWordsHE
negWordsHE

We include word counts according to the positivity and negativity word lists
from Henry (2008) as directional features.

posWordsLM
negWordsLM

We include words counts according to the positive and negative sentiment
word lists from Loughran and McDonald (2011) as directional features.

upgrade
downgrade

We add two binary features based on the presence of the words “upgrade” and
“downgrade” (and inflected words).

posNGrams
negNGrams

Building on the research by Hagenau et al. (2013), we include word counts
from lists of positive and negative bi- and trigrams which express a relation
to some expectation, for example “above expectation”, “beats estimates” or
“worse than expected”.

Relevance
indicators

forecast

Based on the observation of Hagenau et al. (2013) that the word “forecast”
is of relevance, we include this and synonymous words in a dictionary and
add the respective word count as feature. Further examples are the words
“predicted” and “prognosis”.

report

Tweets may contain keywords indicating information related to a company’s
balance sheet or earnings report. We therefore include a feature indicating the
presence of a financial report, based on results by Schumaker et al. (2012),
Hagenau et al. (2013) and Sprenger et al. (2013). Examples are the words
“profit”, “earnings”, “revenue”, “report”, “quarter” and “statement”.

demand

We add a dictionary-based feature that suggests whether the tweet contains
information on the market demand situation a firm is facing, which is based
on observations of Sprenger et al. (2013). This dictionary includes the words
“demand” and “sales”.

news
Inspiried by Schumaker et al. (2012), a dictionary-based feature with news
agency names (such as “Bloomberg” or “Reuters”) is added.

exchange
Inspiried by Schumaker et al. (2012), we add a feature that encodes the pres-
ence of the name of a stock exchange, for example, “NYSE”, in the tweet.

Meta
features

stockCount
We add a feature that contains the count of full company names mentioned in
the tweet.

mention
retweet

We add binary features indicating whether the tweet contains a mention or
is marked as retweet, which both are features appearing as some of the most
frequently selected features in Sprenger et al. (2013).

url
Similar to Sprenger et al. (2013), we add a feature indicating the presence of
a URL in the tweet.

Table 1: Model features. This table lists all elements of the feature vector used for tweet classification. We consider
features from three categories, i.e., directional indicators, relevance indicators and meta features. The given feature
identifiers are used throughout this work.

3.3. Model training

In the following, we briefly outline the machine learning models used for our empirical appli-

cation. Throughout this section, we concentrate on classification models and retain the following

notation: The K-class classifier is trained on N training samples (xi, yi), where yi represents the

target class, i.e., yi ∈ {0, . . . ,K − 1}, and xi ∈ Rp denotes the input feature vector.

3.3.1. Random Forests

The following description loosely follows Hastie et al. (2009) and is adapted to reflect the imple-

mentation of Pedregosa et al. (2011). Random forests were proposed by Breiman (2001) and work
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by aggregating the predictions of an ensemble of bootstrapped, decorrelated binary decision trees.

Due to their predictive performance and straightforward (parallelized) training, random forests

have become a popular machine learning method. For our particular application, it also seems

favorable that random forests are known to be fairly robust to noise, especially when compared to

tree-based boosting techniques (Khoshgoftaar et al., 2011).

The training of an ensemble of B trees introduces randomization from two sources: First,

each tree Tb is grown on a bootstrap sample Zb of the original training data, which is randomly

drawn from the training data by selecting N samples with replacement. Second, m features are

randomly chosen from the p available features at each newly-grown node of the tree to reduce the

correlation between individual trees. Then, the best combination (j, s) out of the m features and

their respective split points is chosen by maximizing the information gain:

IG = Q(Dleft ∪ Dright)−
[

|Dleft|
|Dleft ∪ Dright|

Q(Dleft) +
|Dright|

|Dleft ∪ Dright|
Q(Dright)

]
(3)

Here, Dleft and Dright denote the data sets of the left and right child node after the split (j, s), | · |

denotes the cardinality of a set and the node impurity Q(D) can be given by different measures. The

node is then split at the chosen split-point into a left and a right daughter node. This procedure

is repeated until the leaf nodes of the tree are pure or some other stopping criterion, e.g. the

maximum tree depth J , is reached.

The ensemble of trees {Tb}Bb=1 can then be used to make predictions for a new observation x:

Every single tree Tb in the ensemble predicts a probability p̂kb (x) ∈ [0, 1] for x to be in class k,

which is given by the fraction of samples of class k in the leaf. It follows that
∑

k p̂
k
b (x) = 1 holds.

The predicted class probabilities of the random forest ensemble are then given by the equal-weight

mean over all B trees, i.e.,

p̂kRF (x) = B−1
B∑
b=1

p̂kb (x). (4)

The final predicted class k̂RF (x) of the random forest classifier is the class with highest probability,

i.e., k̂RF (x) = argmaxk p̂
k
RF (x).

The main tuning parameters of random forests are the number of trees B, the number of

randomly selected features m, the maximum tree depth J and the selected node impurity measure

Q(D). Since choosing a high number of trees does not lead to overfitting and typically improves

predictive accuracy (Hastie et al., 2009; Biau and Scornet, 2016), we choose B = 10000. We set

m = b√pc, which is the default value for classification (Hastie et al., 2009). It has been found that

limiting the maximum tree size, for example, by restricting the maximum tree depth, further reduces
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the risk of overfitting and improves performance (Segal, 2004). We therefore limit the amount of

feature interactions by setting J = 4.5 Regarding the selection of a node impurity measure, we

choose the Gini index, which is the default setting of the implementation in scikit-learn (Pedregosa

et al., 2011).

3.3.2. k-Nearest Neighbors

We include a k-nearest neighbors classifier as a benchmark model, a simple and model-free

classification method, which has been successfully used for text classification (Harish et al., 2010)

and in the domain of financial news processing (Groth and Muntermann, 2011). For a given new

observation x, the algorithm determines the set N d
k (x) of those k samples from the N training

observations (xi, yi) that are closest to x with respect to some metric d. The predicted class is then

given by the majority class in N d
k (x):

k̂KNN (x) = argmax
c
|{xi ∈ N d

k (x) | yi = c}| (5)

We use the default metric in scikit-learn (Pedregosa et al., 2011), which is the Euclidean distance.

To reduce overfitting, the number of neighbors is set to k = 10.6

3.3.3. Näıve sentiment-based model

As a second benchmark, we follow Das and Chen (2007) and compute results from a näıve

classifier based on sentiment word lists. Specifically, we classify a tweet as long (short) with

probability of one if the difference between positive and negative words is equal to or exceeds a

certain threshold TN . We use the positivity and negativity word lists of Henry (2008) to determine

the positive and negative word counts W+ and W−. We set TN = 3, which is determined from the

12-week calibration period.

3.4. Trading signal generation

Given the high number of tweets in our sample (which is of the order of thousands of tweets

per day, compare section 2.1), it seems unlikely that all of them represent a relevant, high-quality

trading signal. This necessitates the introduction of a signal filter that reduces the total number

of potential trading signals while favouring those with higher expected predictive accuracy. Our

model consequently filters tweets along the following two dimensions:

5We find that this parameter setting yields good performance on our 12-week calibration period which we use for
parameter search prior to out-of-sample backtesting.

6This parameter has been tuned to achieve optimal performance on our 12-week calibration period.
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• In-sample training accuracy : Following common practice in statistical arbitrage trading

strategies (see, for example, Gatev et al. (2006)), we identify the Ms most suitable stocks

for each study period during model training. To this end, we rank all stocks in our training

data by their in-sample predictive accuracy, and select the top Ms stocks for the subsequent

trading phase.

• Out-of-sample prediction probability : Along with the predicted class k̂(x), our machine learn-

ing models estimate a probability p̂k̂(x) for correctly predicting the most likely class k̂. As in

Fischer and Krauss (2018), considering only those predictions in the extremes of the ranking

improves trading signals. Among other models, random forests are known to generally predict

uncalibrated probabilities, i.e., the predicted probabilities are not consistently estimated. We

circumvent this problem by ranking the estimated probability for tweet i with respect to the

Nr = 5000 preceding tweets7. The rolling window is chosen such that tweet i is evaluated

relative to the subset of tweets of the last one to two days. If the resulting percentage rank

ri of tweet i exceeds a cut-off pr, i.e., ri ≥ 1− pr, the tweet is selected for trading.

The resulting subset of tweets is then transferred to the trading backtest. Tweets with predicted

class ŷi = 1 are selected for the long portfolio; tweets with ŷi = 0 are selected for the short

portfolio. Note that trading signals soley rely on features from the tweet, and do not incorporate any

information from the time series of stock prices. Therefore, the strategy is by design unsusceptible

to microstructural effects leading to spurious results. To select suitable parameter settings for our

empirical application, we optimize both parameters Ms and pr on a small hold-out sample8 of our

data, and present results in section 4.1.

3.5. Event-based backtesting framework

Once suitable trading signals have been identified, we run a trading simulation (backtest) to

assess the financial performance of the strategy. Hereby, we address a number of challenges arising

from our tweet-based intraday trading strategy: First, the backtesting methodology must be able

to process event-driven trading signals occurring at arbitrary points in time with varying frequency.

Second, it immediately follows that the amount of invested cash varies over time (depending on the

number of trading signals), which necessitates stock position tracking and cash management. Third,

cash utilization and leverage have to be limited to appropriately reflect real-world constraints. To

meet these requirements, we decide to employ an event-driven backtesting framework as described

7To initialize the rolling window for the first tweets of a trading period, we hold back the last 5000 tweets from
the respective training period and perform out-of-sample predictions.

8Hold-out sample in this sense refers to an part of the data saved for calibration purposes and which is not included
in the final backtest.
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for example in Halls-Moore (2014). The following description of our backtesting framework proceeds

along its main components: Once every minute we create an order for each trading signal. A

simulated broker tries to fill these orders, thereby respecting execution constraints and transaction

costs. A position tracking component continuously monitors current stock positions and available

cash.

3.5.1. Event-driven order execution model

The trading simulation keeps track of a (wall-clock) simulation time and processes events in

time-ordered fashion. The trading strategy is evaluated every minute t of the exchange opening

hours during the backtest period and may generate a set of orders {oi}t to be subsequently executed

by the simulated broker. An order oi = (so, xo, to)i with submission time to constitutes the request

to buy (for xo > 0) or sell (for xo < 0) a number of |xo| units of share so. Simulated order

execution starts in the minute following order submission, i.e., in to + 1. This corresponds to the

one-period-waiting rule employed by Gatev et al. (2006) and ensures that there is sufficient time

for the trading signal to be processed.

Once the order can be filled, the transaction is priced at the open price PO
so, tex.o

of minute bar

tex.o . We calculate the costs incurred with this order as PO
so, tex.o

· |xo| · cs from relative transaction

costs cs, which may depend on the stock traded. We assume cs = 2 bp for all S&P 500 stocks and

for trading years 2014 and 2015 (Jha, 2016; Prager et al., 2012) and cs = 0.5 bp for the highly

liquid SPY index ETF9 which we use as market benchmark.

During the backtest simulation, we keep track of the current stock portfolio Ps
t , i.e., the position

invested in a stock s at time t, and the currently available cash Ct ∈ R, and change these quantities

upon execution of an order.10 Based on the current state of the portfolio, we impose the following

constraints for order execution to simulate typical constraints for risk management: First, orders

are executed only when execution does not violate a leverage limit Llev.. To check the leverage limit,

we calculate the cumulated projected absolute position after execution of an order o = (so, xo, to)

(as well as its market hedge order) and check that it is smaller than the maximum leveraged initial

capital C0: ∑
s

|Ps
t |+ PO

so, to · |xo| ≤ Llev. · C0 (6)

If the leverage limit is violated, the order is filled up to the volume not violating the condition in

9We estimate trading costs for the SPY ETF as follows: The bid-ask spread typically is one price increment, i.e.
0.01 USD, for prices around 200 USD for the examined time period. The half-spread transaction costs would therefore
amount to 0.25 bp, which we double to obtain a conservative estimate of total transaction costs.

10Negative values of Ct would indicate the borrowing of cash. The strategy starts with positive cash, i.e., C0 > 0.
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equation 6. The constraint on maximum leverage simulates typical margin requirements imposed

by brokers, which is why we set Llev. = 2.0 for the remainder of our study. The second execution

constraint imposed by our backtesting framework limits the overall position in a single stock s

to mitigate short-term intraday default risk and to reduce single-stock risk exposure on portfolio

level: The position in a single stock s must not exceed the single-stock position limit Lstock, which

is checked before an order is finally executed:

|Ps
t + PO

so, to · xo| ≤ Lstock · C0 ∀ s ∈ S \ {SPY } (7)

If an order partially violates the single-stock position limit, it is only filled up to the amount not

violating the limit. Given that we close positions after a relatively small time horizon of two hours,

we diversify our portfolio to a minimum of three stocks at any point in time, and set Lstock = 1/3.

3.5.2. Capital allocation model

When designing event-based statistical arbitrage strategies, the problem of capital allocation

arises: Since events and derived trading signals may occur at arbitrary points in time, the strategy

needs to decide which amount to invest following an event without knowledge of possible subsequent

events. This situation differs strongly from periodic trading strategies often found in literature,

where the portfolio is rebalanced at regular points in time, e.g., on a daily basis. We choose to

follow a näıve approach: We invest a fixed amount of 10 percent in every tweet up to the leverage

and single-stock position limits. Following common practice for statistical arbitrage strategies in

the literature (Avellaneda and Lee, 2010), we hedge any stock order with an opposing order of

the S&P 500 index (SPY) to obtain a dollar-neutral portfolio. Once orders have been successfully

executed, we schedule orders for position reversal after a holding time of ∆T = 120 min.

3.5.3. Performance evaluation

We perform a comprehensive analysis of our backtest results from two different perspectives:

First, we evaluate trading results on a per-tweet basis, i.e., the series of returns following every

tweet selected by trading signal filtering. Second, we calculate a daily return series from the daily

ending cash Ct after market close. Following Fischer and Krauss (2018), we compute the mean

return per day, standard deviation and distributional properties, daily risk metrics, such as the

value at risk, as well as annualized return and risk metrics.
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4. Results

The presentation of our results proceeds in three parts: First, we present the results of the

pre-study for parameter selection for the signal filter on the three month hold-out set (section 4.1).

Second, using the obtained parameters, we discuss the trading results of our strategy in section 4.2

and compare them to results of the k-nearest neighbors model, the näıve model, and a buy-and-hold

benchmark. Third, we analyze our results in-depth in section 4.3 and examine the value added by

the different components of our approach.

4.1. Pre-study for parameter selection on a three month hold-out set

As discussed in section 3.4, the trading strategy is configured using two tweet filtering param-

eters, i.e., the top-Ms stocks according to in-sample accuracy, and the minimum predicted tweet

probability pr. To find adequate values for these parameters, we perform a grid search over a large

range of different parameter combinations using the three months following the first training data

set (precisely, 12 trading weeks from June 30, 2014 to September 19, 2014). We evaluate the annu-

alized return and Sharpe ratio after transaction costs to find a suitable parameter configuration.

Results are shown in figure 3. We intepret the observed behavior in the following way: Increasing

the selective strictness of our signal filter by lowering Ms or pr generally improves the quality of the

identified trading signals. However, this also decreases the number of tweets selected for trading

and consequently the number of times a positive return after transaction costs can be achieved.

Consequently, optimal performance should be achieved at intermediate values of Ms and pr.

We observe that good performance is achieved for less than roughly one fifth of the available

stocks. This is in line with a plethora of statistical arbitrage strategies, which typically restrict the

number of traded stocks to only a fraction of the stock universe accessible to the strategy (see, for

example, Fischer and Krauss (2018) or Asness (1997)). In the light of the high number of tweets

posted every day, it is not surprising that better performance is achieved only when heavily reducing

the number of traded tweets, i.e., by selecting small values of pr. We finally select Ms = 75 and

pr = 2% for the model based on a random forest and calibrate our benchmark models in a similar

fashion.

4.2. Financial performance

After selecting suitable parameters for the signal filter, we perform a detailed analysis of the

financial performance of our tweet-based trading strategy on the remaining data, thereby leaving

out the calibration period previously used for parameter selection. Also, we present the results of

the performed robustness checks.
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25 50 75 100 125 150 175 200
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0.03
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0.05
0.06
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0.08
0.09
0.10

pr

0.6 0.8 2.9 1.7 0.6 1.3 -5.6 -8.3
1.1 1.6 3.1 1.6 1.6 1.5 -11.5 -9.0
0.5 0.0 2.1 -1.4 -2.6 -5.0 -16.5 -14.2
1.9 1.8 2.4 -2.5 -5.3 -7.1 -18.4 -14.7
1.9 1.7 0.4 -4.2 -8.1 -9.9 -22.1 -24.0
1.4 0.9 0.2 -4.7 -7.1 -6.3 -19.5 -19.8
1.0 0.9 -0.0 -4.7 -7.2 -8.0 -20.0 -19.6
0.9 1.4 0.0 -5.9 -8.5 -9.8 -25.3 -26.7
0.8 0.9 -0.7 -5.5 -11.5 -13.2 -27.1 -31.3
2.1 2.1 0.4 -5.1 -11.9 -11.8 -28.0 -33.7

(a) Annualized return
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1.5 2.0 2.7 1.2 0.9 0.6 -3.7 -2.7
0.7 0.0 1.6 -0.9 -1.2 -1.8 -5.3 -3.9
1.6 1.2 1.2 -1.1 -1.8 -2.1 -5.1 -3.3
1.6 1.1 0.2 -1.7 -2.7 -2.7 -5.8 -6.0
1.1 0.6 0.1 -1.9 -2.4 -1.8 -5.2 -5.0
0.9 0.6 0.0 -1.9 -2.4 -2.3 -5.0 -4.6
0.8 0.9 0.0 -2.1 -2.6 -2.6 -5.6 -5.8
0.7 0.6 -0.3 -1.9 -3.5 -3.5 -6.7 -7.1
1.8 1.2 0.2 -1.8 -3.6 -3.1 -7.0 -8.0

(b) Annualized Sharpe ratio

Figure 3: Backtest results for parameter selection. The heat map shows backtest results after transaction costs
for the 12-week hold-out calibration period from June 30, 2014 to September 19, 2014.

4.2.1. Per-tweet return characteristics

First, we evaluate the performance of our predictive models on a per-tweet basis. Table 2 depicts

return statistics for the tweets selected by the trading signal filter in the 15 months out-of-sample

backtest period from September 22, 2014 to December 31, 2015. We report simple and excess

returns after transaction costs for the random forest (RF), the k-nearest neighbors (KNN) and the

näıve sentiment-based model (N), thereby taking into account the predicted direction of return.

Excess returns are calculated as the difference between simple return and corresponding market

return to align with our market-hedged dollar-neutral backtest portfolios.

In terms of mean return, we find that the random forest outperforms our benchmark models by

far: With average excess returns of 48 bp after transaction costs, the RF-based strategy achieves

excess returns that are a factor of ten higher than excess returns from our benchmark models.

With the exception of the k-nearest neighbors model, the models achieve higher mean returns from

tweets with a sell signal. This is in line with the findings of Tetlock (2007) that negative words

have a larger effect on stock returns. All mean returns are found to be significantly different from

zero at the 5 percent level, and the machine learning models RF and KNN yield mean returns

significant at the 1 percent level. Compared to other statistical arbitrage strategies, the tweet-

based random forest strategy achieves a rather high share of positive returns. Overall, the random

forest seems to be able to capture interactions of directional indicators with relevance and meta

features during training, which improves predictions when compared to the näıve model based on

sentiment features alone. Compared to the model-free KNN, the RF model seems to generalize

better.

We find that all models select a similar number of tweets from the entirety of tweets in the back-
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simple return excess return

RF KNN N RF KNN N

Count 1245 1409 1013 1245 1409 1013
Mean return (short) 0.0055 -0.0002 0.0024 0.0053 0.0001 0.0020
Mean return (long) 0.0010 0.0010 0.0004 0.0026 0.0006 0.0001
Mean return 0.0048 0.0005 0.0009 0.0048 0.0004 0.0006
Standard error 0.0003 0.0002 0.0003 0.0003 0.0001 0.0003
t-statistic 17.3115 3.1035 2.8277 18.1364 2.6816 2.1500
Minimum -0.0624 -0.0236 -0.0330 -0.0608 -0.0250 -0.0235
First quartile -0.0007 -0.0019 -0.0054 -0.0007 -0.0018 -0.0044
Median 0.0033 -0.0002 -0.0004 0.0030 0.0001 -0.0004
Third quartile 0.0101 0.0035 0.0038 0.0094 0.0019 0.0024
Maximum 0.0522 0.0374 0.0695 0.0532 0.0350 0.0410
Standard deviation 0.0097 0.0057 0.0100 0.0094 0.0052 0.0086
Share ≥0 0.7157 0.4918 0.4699 0.7012 0.5174 0.4492

Table 2: Per-tweet return statistics. The table depicts per-tweet returns for the random forest (RF) and contrasts
them to the performance of the k-nearest neighbors (KNN) and näıve sentiment-based model (N). We evaluate simple
returns as well as excess returns relative to the S&P 500 performance, both after transaction costs.

test period. The näıve model selects the fewest tweets (1013), followed by the random forest with

1245 selected tweets and the k-nearest neighbors with 1409 tweets. We might carefully hypothesize

that all models are similarly affected by signal degeneration.

4.2.2. Daily and annualized risk-return metrics

We proceed with the evaluation of results from our backtest trading simulation. Table 3 sum-

marizes daily and annualized risk-return metrics for the random forest and compares them to the

performance of the k-nearest neighbors and näıve models as well as a simple buy-and-hold bench-

mark of the overall market.

Return characteristics: Panel A of table 3 shows that the random forest achieves the highest

average daily return, with 3.6 bp before and 2.5 bp after transaction costs. We find that both

daily mean return figures are statistically significant, with Newey-West t-statistics of 3.12 and 2.47,

respectively, compared to a critical value of 1.96 at a 5 percent significance level. The distributional

properties of the series of daily returns can be explained by the fact that the strategy does not trade

every single trading day, which we would expect given the non-uniform timing of our tweet-based

trading signals. In consequence, the median daily return is zero and returns exhibit a high share of

zero or positive returns. When compared to our benchmark models, we observe that both the KNN

model and the näıve model exhibit weakly positive daily mean returns. However, the t-statistic

reveals that these returns are statistically not significantly different from zero after transaction

costs. Despite its weaker per-tweet mean excess return, the KNN model outperforms the näıve

benchmark in terms of daily return characteristics both before (1.0 bp) and after transaction costs

(0.5 bp), which might be due to the fact that the KNN model selects more tweets for trading.
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before transaction costs after transaction costs

RF KNN N RF KNN N MKT

A Mean return 0.00036 0.00010 0.00007 0.00025 0.00005 0.00001 0.00017
Standard error 0.00012 0.00005 0.00008 0.00010 0.00005 0.00008 0.00053
t-statistic 3.12274 2.06040 0.88199 2.47098 0.99520 0.07080 0.32902
Minimum -0.00634 -0.00281 -0.00580 -0.00649 -0.00297 -0.00801 -0.04088
First quartile 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00450
Median 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00014
Third quartile 0.00015 0.00000 0.00000 0.00008 0.00000 0.00000 0.00526
Maximum 0.01952 0.00942 0.01049 0.01620 0.00886 0.01028 0.03839
Share ≥0 0.78638 0.85759 0.79567 0.75542 0.83591 0.78019 0.49845
Standard deviation 0.00210 0.00088 0.00135 0.00181 0.00086 0.00138 0.00952
Skewness 5.96995 5.12692 2.80364 5.57576 4.48488 1.88569 -0.16933
Kurtosis 48.54164 49.33279 26.57825 46.77958 45.15215 25.37833 4.81163

B 1 percent VaR -0.00212 -0.00154 -0.00426 -0.00231 -0.00195 -0.00463 -0.02419
1 percent CVaR -0.00374 -0.00216 -0.00478 -0.00389 -0.00255 -0.00557 -0.03173
5 percent VaR -0.00094 -0.00079 -0.00135 -0.00107 -0.00102 -0.00150 -0.01597
5 percent CVaR -0.00193 -0.00137 -0.00283 -0.00210 -0.00162 -0.00319 -0.02106
Max. drawdown 0.00804 0.00555 0.01412 0.01080 0.00608 0.02542 0.11910

C Return p.a. 0.09561 0.02562 0.01662 0.06408 0.01192 0.00113 0.03299
Volatility p.a. 0.03336 0.01397 0.02148 0.02869 0.01361 0.02196 0.15115
Sharpe ratio p.a. 2.75399 1.81709 0.77784 2.17919 0.87768 0.06244 0.29017
Sortino ratio p.a. 10.38778 4.48616 1.40040 6.59148 1.78890 0.09980 0.41098

Table 3: Daily and annualized risk-return metrics. We depict result for the models random forest (RF), k-
nearest neighbors (KNN) and a näıve sentiment-based approach (N), both before and after transaction costs. Results
are compared to the general market (MKT) as given by the S&P 500 index.

The general market achieves roughly half the mean daily returns of the random forest strategy

after transaction costs. These returns are however not significantly different from zero and have a

five times larger standard deviation. Return from the RF model are skewed to the right, whereas

returns from the general market are skewed to the left.

Risk characteristics: Panel B of table 3 reveals that the random forest has favourable risk

characteristics: It has a 1 percent daily value at risk (VaR) of -0.23 percent, which is close to the

KNN model with a 1 percent VaR of -0.20 percent and about half the figure of the näıve model

(-0.46 percent). The risk characteristics of the general market show than an investment in the

general market is about one order of magnitude riskier than an investment using the tweet-based

RF strategy. Comparing our results to those discussed by Gatev et al. (2006) as an example of a

quantitative statistical arbitrage strategy, we find that our 1 percent daily VaR is relatively low.

Annualized risk-return characteristics: In panel C of table 3, we present the annualized risk-

return metrics of our tweet-based trading strategies and the buy-and-hold market benchmark. With

an annualized return of 9.56 percent before and 6.41 percent after transaction costs, the random
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forest outperforms all benchmark models and the market benchmark.11 The buy-and-hold strategy

achieves annualized returns of 3.30 percent, and the k-nearest neighbors model yields 1.19 percent

per annum. The random forest model has critical full-turn transaction costs of 23 bp, which leaves a

clear margin to the transaction costs utilized by our study (5 bp). The panel also reports the Sharpe

ratio, which relates annualized returns to the risk taken, as expressed by the annualized volatility.

The random forest achieves a Sharpe ratio of 2.18 after transaction costs, which is considerably

higher than the Sharpe ratio of the market benchmark (0.29).

Figure 4 depicts the development of cumulative profits over the out-of-sample trading period

before and after transaction costs. We observe that the positive returns of the tweet-based strategy

are accumulated quite uniformly over the whole period, with a number of outstandingly positive

trading days. Compared to the buy-and-hold benchmark, the volatility of the tweet-based strategies

is much smaller, as expected from the risk metrics.

0.95
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MKT
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KNN
N
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Figure 4: Development of cumulative profits. The figure plots cumulative profits for the trading strategies based
on random forests (RF), k-nearest neighbors (KNN) and the näıve sentiment-based model (N) as well as for a simple
buy-and-hold strategy of the overall market (MKT), after transaction costs.

11Compared to per-tweet returns, annualized returns of the trading strategy seem small. We investigate this
seemingly severe discrepancy in section 4.2.3.
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fraction of
clustered tweets

mean excess return t-statistic

clustered unclustered clustered unclustered

no clustering 0% – 0.0048 – 18.1364
same second (n = 1 sec) 22.2% 0.0086 0.0037 19.8118 12.0438
within n = 10 sec 54.1% 0.0079 0.0012 22.0089 3.6092
within n = 60 sec 60.6% 0.0074 0.0009 21.9409 2.4045
within n = 600 sec 71.4% 0.0067 0.0002 21.3598 0.5234

Table 4: Analysis of temporal tweet clustering. Tweets are divided into clustered and unclustered tweets,
whereby a tweet is said to be clustered if another tweet mentioning the same stock occurs withing the given clustering
window n. We calculate the fraction of clustered tweets as well as the mean excess per-tweet return after transaction
costs and respective t-statistics for clustered and unclustered tweets seperately.

4.2.3. Exploring the difference between per-tweet and per-day returns

When comparing mean per-tweet excess returns and daily return figures, we observe a stark

contrast: While the average selected tweet yields an excess return of 48 bp after transaction costs,

we find much lower daily returns of 2.5 bp. To further explore this difference, we perform two

analyses: First, we examine the temporal distribution of tweets and reveal the occurrence of tweet

clusters. Second, we investigate how the single-stock risk constraint subsequently limits annualized

performance.

Temporal tweet clustering: In the first analysis, we investigate whether related tweets occur in

clusters and whether these clusters are followed by higher trading returns. We therefore split all

tweets selected for trading into two non-overlapping groups: The first group contains only tweets

whose stock has been mentioned by at least one other tweet in the past n seconds (clustered group).

The second group contains all other tweets (unclustered group). In the next step, we compare mean

per-tweet returns for the two groups, using different values for n. The results are shown in table 4.

We make the following observations: First, tweets selected for trading oftentimes occur in clusters,

i.e., the respective stock is mentioned by several tweets in a short amount of time. Second, the

mean return of the clustered group significantly exceeds the mean return of the unclustered group.

Both are an indication that news supported by several tweets carry more weight and result in higher

returns. Third, this effect diminishes with increasing window size n.

Single-stock position limit: Our second analysis shows how the single-stock risk constraint affects

the trading performance on portfolio level. We proceed as follows: Keeping all other parameters

unchanged, we run our strategy backtest for different values of the single-stock position limit Lstock.

Figure 5 plots annualized returns and volatilities as well as Sharpe ratios for different values of Lstock.

We make the following observations: First, annualized returns scale approximately linearly with

single-stock risk. We find that an increase of single-stock exposure by 10 percentage points yields

additional annualized returns of 1.2 percentage points. Allowing arbitrarily large positions for a
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Figure 5: Influence of single-stock risk on strategy
performance. The plots display annualized returns and
volatilities as well as Sharpe ratios for different values of
the single-stock position limit Lstock.

single stock (up to a maximum leverage of Llev. = 2.0) and hence higher cash utilization, yields

annualized returns of 13.7 percent, which is considerably higher than the value of 6.4 percent under

a reasonable limit on single-stock risk constraint. This result is well in line with results from related

studies in the literature (Hagenau et al., 2013; Knoll et al., 2018). Second, volatility in portfolio

value is lower for low values of Lstock. Permitting larger single-stock risk increases volatility of the

portfolio value with roughly linear scaling. Third, the Sharpe ratio of the tweet-based strategy,

i.e., the ratio of returns to volatility, remains constant at values just above 2 for Lstock ≥ 0.4, and

declines thereafter down to a minimum of 1.5 for Lstock = 0.1.

From the above analyses, we can draw the following conclusions: First, a large share of tweets

occurs in temporal proximity. Second, these tweet clusters exhibit higher mean returns. Third,

we capitalize on this effect by increasing the portfolio weight of positions that are suggested by

several tweets by opening larger positions in the respective stock (see section 3.5.2). Finally, we

cap this effect to limit the single-stock exposure on portfolio level with a value of Lstock = 1/3,

hereby finding a good balance between risk and return.

4.2.4. Robustness checks

To ensure the robustness of our results, we perform a series of checks.

Monkey trading: First, we perform a simulation study to check whether we could have found

the tweet-based trading signals by chance alone. With our RF based trading strategy, we select a

total of N = 1245 tweets with a mean excess return of 48 bp after transaction costs. To estimate

the probability of having found these tweets and the corresponding predicted trading signals by
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Figure 6: Distribution of mean returns from randomly sampled trading signals. We display the empirical
distribution of mean excess returns of 100,000 replications of random samples of N = 1245 tweet-based trading
signals, excluding transaction costs.

selected
tweets

mean per-tweet
excess return

annualized
return

Sharpe
ratio

Minimum 1202 0.0048 0.0609 2.07
Maximum 1245 0.0049 0.0683 2.32
Mean 1224 0.0048 0.0644 2.20
Standard deviation 11 0.0000 0.0023 0.07

Table 5: Random forest seed robustness. The table presents distributional characteristics of main performance
metrics from the application of the random forest model with 10 different seed values. All return metrics include
transaction costs.

chance alone, we randomly sample N = 1245 tweets with randomly generated trading signals

and calculate their mean excess return. We perform this sampling for 100,000 replications. The

resulting empirical distribution is shown in figure 6. We find that the mean excess return of 0.2 bp

is very close to zero and the best random sample with a mean excess return of 5 bp per tweet is still

one order of magnitude smaller than the mean excess return of the tweets selected by the random

forest model.

Variation of seed: Second, we investigate whether our results are driven by selecting one out-

standing result from a number of runs of the random forest model with different seed values. To

this end, we apply the random forest model ten times over the full trading period with different

consecutive seed values and calculate main performance metrics. Table 5 depicts the distributional

characteristics of these seed runs. There are slight variations in the results in the order of one-tenth

standard deviation, but the findings remain robust. The results presented in other parts of this

paper are median results with respect to the random forest seed to facilitate reproducibility.

Different model configurations: Third, we explore whether results are robust with respect to

variations of model configuration. Table 6 presents results from running the model with a different

number of trees B in the random forest (compare section 3.3.1) and different values for the size

of the rolling window of tweets Nr used for ranking (compare section 3.4). We observe only small

changes in results in the order of random fluctuations induced by different seed values.
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Alternative configuration
selected

tweets
mean per-tweet

excess return
annualized

return
Sharpe

ratio

Number of trees B = 5000 1326 0.0043 0.0593 1.94
Number of trees B = 20000 1243 0.0048 0.0652 2.22

Ranking set Nr = 2500 1295 0.0039 0.0612 1.90
Ranking set Nr = 10000 1233 0.0050 0.0659 2.18

Table 6: Results from alternative random forest configurations. The table presents backtest results from
alternative configurations of the random forest model. Each alternative configuration changes the stated parameter
and keeps all remaining parameters unchanged. All return metrics include transaction costs.

negWordsLM

posWordsHE

negWordsHE

posWordsLM

negNGrams

posNGrams
upgrade

downgrade
demand

news
report

forecast

exchange
retweet

stockCount url
mention

17%

10% 9% 8%
5% 3% 1% 1%

10%
8%

6% 5%
2%

7%
4% 3% 1%

directional (54%)

relevance (31%)
meta (14%)

Figure 7: In-sample fea-
ture importance. Av-
erage feature importances
are calculated using the
mean decrease in the impu-
rity function while growing
the random forest.

4.3. Detailed analyses – illuminating the black box

To better understand the results of our tweet-based trading strategy, we perform a number of

detailed analyses in the following. We first analyze the textual content of selected tweets (section

4.3.1). Then, we analyze whether results are driven by tweets from a specific industry or stocks of

specific size (section 4.3.2).

4.3.1. Analyzing the value added by words and features

Our trading strategy is solely based on Twitter data for signal generation. In the following three

analyses, we shed light onto the decision-making process of our machine learning model. First, we

examine in-sample feature importance. Second, we analyze whether tweets with certain feature

values are preferably selected. Third, we investigate if there are single words driving our results.

In-sample feature importance: In the first analysis, we follow Krauss et al. (2017) and calculate

in-sample feature importances, i.e., we consider the mean decrease in the impurity (MDI) function

for each feature during training. Figure 7 depicts feature importances averaged over all of our

study periods and arranges them into the feature groups introduced in section 3.2.2. We find

that the directional feature group is most important in terms of feature importance, followed by

the relevance indicators and the meta features. Within the group of directional features, those

based on financial dictionaries have a higher importance score, which we attribute to their larger

corpus of words. With the exception of the features upgrade and downgrade, we find that features
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mean feature value mean relative feature value

all tweets
selected

tweets
long only short only

selected
tweets

long only short only

posWordsHE 0.1358 0.2635 0.7951 0.1587 1.9402 5.8556 1.1684
negWordsHE 0.0518 0.1847 0.1707 0.1875 3.5681 3.2976 3.6214

posWordsLM 0.1435 0.2779 0.6195 0.2106 1.9362 4.3162 1.4671
negWordsLM 0.2723 0.6305 0.8195 0.5933 2.3160 3.0101 2.1791

upgrade 0.0107 0.0016 0.0049 0.0010 0.1503 0.4565 0.0900
downgrade 0.0077 0.0032 0.0000 0.0038 0.4178 0.0000 0.5002

posNGrams 0.0045 0.0249 0.0683 0.0163 5.5562 15.2392 3.6476
negNGrams 0.0012 0.0980 0.0000 0.1173 84.5196 0.0000 101.1797

forecast 0.0119 0.1205 0.1073 0.1231 10.1087 9.0041 10.3264
report 0.0884 0.4305 0.2829 0.4596 4.8712 3.2012 5.2004
demand 0.0197 0.5149 0.0244 0.6115 26.1920 1.2408 31.1103
news 0.0831 0.4819 0.5073 0.4769 5.8006 6.1062 5.7404
exchange 0.0778 0.0402 0.0488 0.0385 0.5163 0.6271 0.4944

stockCount 1.0671 1.1936 1.3561 1.1615 1.1186 1.2709 1.0885
mention 0.0114 0.0193 0.0000 0.0231 1.6898 0.0000 2.0229
retweet 0.1357 0.1301 0.1463 0.1269 0.9590 1.0785 0.9354
url 0.7334 0.5759 0.7805 0.5356 0.7853 1.0642 0.7303

Table 7: Mean feature values. The four left columns display averaged feature values for all tweets in the backtest
period and for those tweets selected for (long/short) trading. The last three columns relate mean feature values for
selected (long/short) tweets to the entirety of all tweets.

with negative sentiment yield a higher decrease in impurity than positive ones. In the group of

relevance features, indications that the tweet contains information on the sales of the company

(feature demand) are most important, whereas the presence of an exchange name (for example,

“NYSE” or “Nasdaq”) is least important. The tweet meta features url and mention have the lowest

importance for node splitting during training.

Distribution of feature values: Second, we analyze how feature values are distributed in the

tweets selected for trading and relate these to the entirety of tweets. To this end, we calculate

mean feature values for all tweets and for those selected for trading, and repeat the calculation

separately for tweets resulting in a long and a short trading signal. Note that mean feature values

correspond to the frequency of the flag value ’1’ for binary features. We then divide mean feature

values of selected tweets by mean feature values of all tweets to identify more frequent features in

selected tweets. Results are shown in table 7. If we compare relative mean feature values with MDI

feature importances, we find that results are largely consistent: First, we observe that directional

features are more frequent in the tweets selected for trading, with the exception of the features

downgrade and upgrade. Second, the analysis once more confirms that negative directional features

play a more prominent role than positive ones. Third, we find that relative mean values for the

group of directional features exhibit a weak diagonal form, i.e., features with positive sentiment are
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(a) word cloud from tweets yielding a long trading signal

(b) word cloud from tweets yielding a short trading signal

Figure 8: Visualization of word frequencies. For the visualization, we calculate word frequencies for words found
in feature-specific dictionaries and yielding long or short trading signal, and scale words according to their frequency.

more frequent in tweets yielding a long trading signal and vice versa. This is to be expected if we

assume that our strategy is trained on a sustained market reaction following a new message. One

notable difference to previous results concerns the influcence of retweeting: While retweeting is the

most important meta feature in the MDI in-sample analysis, it is slightly underrepresented in the

quorum of tweets selected for trading.

Analysis of word frequency: In the third analysis, we investigate which single words contribute

most to our results. We calculate the frequencies of words that are both in tweets yielding long

or short trading signals and are additionally part of our feature-specific dictionaries. We illustrate

results with two word clouds, which are depicted in figure 8, and make the following observations:

First, words from directional and relevance features contribute jointly to the results. Second, for

both long and short tweets, similar relevance words are found, with the name of a news agency

(“Reuters”) being most frequent. Third, and as established before, short tweets exhibit a high

number of words with negative polarity, while long tweets feature words with positive polarity.

We summarize the findings from the above analyses as follows: All three analyses yield con-

sistent results in line with expectation, i.e., tweets with positive (negative) connotation are more

likely to produce long (short) trading signals. This is in line with the financial literature on sen-
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traded stocks traded vs. full full sample
full vs.

S&P 500
S&P 500

mean
return

tweet
share

stock
share

tweet
share

stock
share

tweet
share

stock
share

stock
share

stock
share

Technology 0.0063 10.4% 16.0% 0.52 1.52 20.1% 10.6% 1.06 10.0%
Consumer Services 0.0062 51.1% 19.8% 3.14 1.30 16.3% 15.2% 1.00 15.2%
Financials -0.0010 9.0% 18.3% 0.39 1.06 23.2% 17.3% 1.00 17.3%
Basic Materials 0.0053 1.3% 4.6% 0.63 1.02 2.1% 4.5% 0.91 4.9%
Consumer Goods 0.0057 10.4% 12.2% 1.20 1.00 8.7% 12.2% 1.00 12.2%
Health Care 0.0070 7.5% 9.2% 0.71 1.00 10.6% 9.1% 0.92 10.0%
Oil & Gas -0.0037 2.6% 8.4% 0.25 0.96 10.2% 8.7% 1.03 8.5%
Industrials -0.0000 7.4% 8.4% 1.16 0.56 6.4% 15.0% 1.01 14.8%
Utilities 0.0008 0.3% 3.1% 0.19 0.56 1.7% 5.5% 0.94 5.8%
Telecommunications – 0.0% 0.0% 0.00 0.00 0.5% 1.0% 0.90 1.1%

Table 8: Contribution analysis by industry sector. We compare the share of the given industries among the
tweets selected for trading and the stocks selected for trading. We also include the corresponding shares for the full
sample of tweets as well as the share of stocks by sector in the S&P 500 as reference. Mean per-tweet excess returns
are shown after transaction costs. Gray columns list the quotient of respective industry shares.

timent extraction, see for example Tetlock (2007). Furthermore, relevance indicators contribute

information alongside directional and meta features.

4.3.2. Contribution of industry sector and market capitalization

Next, we analyze whether stocks from certain industries or of certain sizes are preferably selected

for trading. First, we focus on the contribution of specific industry sectors to average returns and

selection frequency. Second, we investigate whether tweets with specific market capitalization are

selected more frequently.

Selection preference with regard to industry sector: In the first analysis, we analyze whether

specific industries are more frequently selected and if there are differences in average per-tweet

returns among industries. We proceed in four steps and present the results in table 8: First, we

calculate the relative frequency of stocks as found in the S&P 500 during our backtest period, and

compare it with the frequency of industries mentioned in the full sample of tweets (column “full vs.

S&P 500”). Second, we compute the industry share within the set of tweets selected for trading

and compare it with the industry share in the entirety of tweets (column “traded vs. full / tweet

share”). Third, we again compare selected tweets with the entirety of tweets, but this time consider

the industry share of stocks as mentioned in the tweets (column “traded vs. full / stock share”).

Fourth, we analyze the contribution of industry sectors to the mean per-tweet excess return.

We make the following observations: First, the coverage of industries in tweets is very similar

to the share of industries in the S&P 500. Second, tweets mentioning stocks from the consumer

services, consumer goods, and industrial sectors are preferably selected for trading. Half of the

selected tweets cover the consumer services sector. Third, tweets covering technology, consumer
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excess return

market cap.
quartile

mean t-statistic
stock
count

selected
vs. full

tweet
share

full sample
tweet share

tweets selected for
trading

Q1 0.0047 0.5537 5 0.16 0.72% 4.39%
Q2 0.0031 1.6296 30 0.98 6.27% 6.40%
Q3 0.0079 17.0061 36 2.57 36.22% 14.10%
Q4 0.0031 12.3652 65 0.76 56.63% 74.40%

selection only by
in-sample training
accuracy

Q1 0.0021 3.0127 17 0.45 1.99% 4.39%
Q2 -0.0005 -3.0602 101 1.79 11.45% 6.40%
Q3 0.0000 0.4463 170 1.54 21.78% 14.10%
Q4 -0.0007 -15.5969 160 0.86 63.79% 74.40%

Table 9: Tweet share along market capitalization quantile. We calculate mean per-tweet excess returns (after
transaction costs) and the share of tweets in selected and all tweets grouped by the mentioned stock’s quartile of
market capitalization. The gray column divides the fraction of selected tweets by the respective frequency in the full
sample. Column “stock count” lists the number of distinct stocks in the respective group of selected tweets. Q1 refers
to the quartile of lowest market capitalization, Q4 to the highest.

services, health care, consumer goods and basic materials stocks achieve higher-than-average mean

per-tweet excess returns. These are also the sectors that contribute a high number of tweets to the

set of selected tweets. By contrast, tweets from the financial sector do not contribute to the overall

positive mean return, albeit providing 9 percent of the selected tweets. The exemplary tweet in

figure 9 may provide an interpretation of this finding: The mentioned bank appears as initiator

Figure 9: Example of a tweet with two mentioned stocks.

of a rating change for another company, and common sense would suggest that this message has

virtually no effect on the bank’s stock price. Many of the tweets mentioning financial sector stocks

might therefore in fact be reports covering another company. Hence, our model would not be able

to explain returns for stocks of the financial sector, which is consistent with our empirical analysis

and subject to future research.

Selection preference with regard to market capitalization: In a second analysis, we explore

whether our strategy preferably selects stocks with a specific market capitalization. To this end, we

calculate mean per-tweet excess returns and the share of tweets mentioning stocks from a specific

market capitalization quartile. Results are depicted in table 9. When comparing the distribution
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of market capitalization for traded tweets versus our full sample, we observe that stocks from the

third market capitalization quartile are preferably selected and contribute most to the mean excess

return. This conclusion also holds when selecting tweets by their in-sample training accuracy

only: Here, stocks from the second and third quartile are preferably selected, i.e., they exhibit

higher accuracy values. One possible interpretation of these results could be the following: Tweets

concerning stocks of small market capitalization are overall less frequent and therefore less likely

to be selected by in-sample training accuracy. On the other hand, stocks from the largest market

capitalization quartile are less frequently selected as the high number of tweets on these stocks

constitutes a high degree of noise, for example from product reviews or consumer comments less

related to stock price. Medium market cap stocks may therefore be a reasonable trade-off.

We summarize the findings of this section as follows: Trading signals are preferably generated

for tweets mentioning consumer-related and technology stocks, and for stocks with medium market

capitalization. These preferences in stock selection may partly be based on the filtering of traded

stocks by in-sample training accuracy (section 3.4), i.e., the model has a better in-sample perfor-

mance for stocks from these sectors and market capitalization quartiles and preferably selects these

for trading.

5. Conclusion

In this paper, we use a systematic machine learning approach to extract and assess the predic-

tive value of tweets for subsequent stock price reactions. In total, we work with more than nine

million tweets and all S&P 500 constituents in a large-scale empirical study. We contribute to the

existing literature in the following ways: First, we provide a self-contained description of a finan-

cial machine learning pipeline for automated news-based stock trading, from a stream of tweets as

input to the generation of actionable market signals. Using domain knowledge and concepts from

the existing literature, we handcraft features along three dimensions, i.e., directional indicators,

relevance indicators and meta features. We then formulate the prediction task as a classification

problem and apply a state-of-the-art machine learning method in the form of a random forest and a

number of benchmark models. In the final step, we derive trading signals using a two-dimensional

event filter to reduce the number of events and to increase the signal-to-noise ratio.

Second, we subject the tweet-based trading signals to a backtest in order to assess out-of-sample

historical financial performance. We pay special attention to exposing trading signals to a rigorous,

event-based trading simulation, thereby taking into account transaction costs and limiting single-

stock risk exposure. We perform the backtest on minutely stock price data for all S&P 500 stocks.

We find that the strategy based on a random forest clearly outperforms all benchmark models
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and yields statistically and economically significant annual returns of 6.4 percent and a Sharpe

ratio close to 2.2 after taking into account transaction costs, leverage constraints and single-stock

position limits.

Third, we unveil sources of probability and challenge the underlying economic rationale: The

first set of analyses shows that the majority of profits is generated by temporally clustered tweets,

corresponding to high-event situations. A second set of analyses reveals the importance of features

and words for our predictions: We find that directional, relevance and meta features contribute

with descending importance to our results. Features with positive textual content typically lead to

a prediction of rising stock prices, and negative ones to a prediction of falling stock prices. This

behavior is in line with the financial literature on sentiment extraction, see for example Tetlock

(2007). Relevance indicators are important for both long and short tweets. In a third set of

analyses, we show that tweets mentioning consumer-related or technology stocks are preferably

selected. Furthermore, tweets mentioning stocks of medium market capitalization are preferred,

which we interpret as a trade-off between a sufficient probability of coverage on Twitter on the

one hand and a relatively low level of noisy tweets unrelated to a stock’s performance on the other

hand.

Overall, we have provided a self-contained description of a tweet-based statistical arbitrage

trading strategy leveraging state-of-the-art machine learning methods. Addressing the specifics

of event-based trading strategies, we have successfully demonstrated that our design is able to

extract predictive information from tweets that can be translated to statistically and economically

significant excess returns.
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