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1Department of Economics and Management, University of Pavia, Italy

2School of Business and Economics, University of Erlangen-Nuremberg, Germany

January 17, 2019

Preliminary and incomplete, please do not cite.

Abstract

So far, little work has been done on directly estimating differences of earning gaps. Studies

estimating pay differentials generally compare them across different subsamples or rely on

the Juhn-Murphy-Pierce decomposition. Both methods contain serious drawbacks that we

overcome by proposing an extension of the Oaxaca-Blinder-type decomposition. Our method

solves both the index number and the indeterminacy problem of standard Oaxaca-Blinder

type decompositions. We present two empirical applications to illustrate the methodology.
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1 Introduction

Gender differentials in the labor market have obtained much attention from policy makers and

researchers leading to the implementation of equal pay legislation and the promotion of equal

opportunities. However, differences in pay between men and women persist (see for example

Blau and Kahn, 1992, 2003,0,0; Goldin, 2014). Gender-related wage gaps are found in various

subsamples; across sectors and occupations as well as over time and countries. According to

Eurostat, the average Gender Pay Gap (GPG) in the European Union (EU) is at about 16

percent for the last five years. Yet, there are tremendous differences across countries: while

Italy and Portugal have average GPGs well below 10 percent, the differential in Germany, Great

Britain, Estonia and Slovakia, for example, is above 20 percent.

A general finding in the literature is that the difference in pay by gender cannot be entirely

explained by differences in human capital, job or firm characteristics, but that the unexplained

part of the gap is considerably large. Diverse policies (anti-discrimination laws, female board

quotas and family-friendly policies) were implemented in order to fight differences in pay by gen-

der. By decomposing the wage gap of interest for different sub-samples, the literature identified

various causes of the difference in pay between men and women.

Different GPGs are found across time. In particular, declining GPGs are observed with

slower convergence in recent decades (see Blau and Kahn, 2006; England, 2006). The main

reasons for this decline are found to be the catching-up of women in terms of education and

labor market experience (Goldin, 2006), technical development (Black and Spitz-Oener, 2010),

changes in attitudes towards women in the labor market, less occupational segregation (Cotter,

2004; England, 2006; Mandel and Semyonov, 2014) and anti-discrimination laws (Fortin, 2015).

In particular, research has shown that the unexplained part – also known as the coefficient effect

– of the GPG has been reduced subsequently over time (Mandel and Semyonov, 2014).

Differences in pay are revealed also across sectors and in particular in the public and pri-

vate sectors. Moreover, the Public-Private Sector Wage Gap (PPWG) differs for men and

women (Arulampalam et al., 2007; Lucifora and Meurs, 2006; Melly, 2005). In particular, the

difference in pay by gender is generally smaller in the public compared to the private sector

and, regardless of gender, levels in the public sector differ (Lucifora and Meurs, 2006). The
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public sector is generally the preferred sector of women due to its fairer recruitment and selec-

tion criteria as well as remuneration schemes and better implementation of anti-discrimination

laws (Gornick and Jacobs, 1998; Grimshaw, 2000; Castagnetti and Giorgetti, 2018).

In general, studies examining changes in the wage gap over time or between groups/sectors

make use either of the Juhn et al. (1991) method (Blau and Kahn, 1997, 2006) or of the double

Oaxaca-Blinder (OB) decomposition (Smith and Welch, 1989). Both methods rely on estima-

tions obtained on different subsamples. However, the conclusions about the drivers of the change

of wage gaps between groups are generally different when estimated directly or when based on

the comparison of results obtained on different subsamples. It is evident that in the second case

- estimation obtained on different subsamples - it is not possible to draw inference on the differ-

ence of the components of interest. Moreover, the standard method, i.e. ex-post comparison of

the decomposition results, does not allow to catch time - (or sector-) and gender-specific effects

that may exist simultaneously, i.e. interactions across gender and time or sector and gender.

In this paper we propose an extension of the OB decomposition (Blinder, 1973a; Oaxaca,

1973) for estimating the difference between two wage gaps. Our approach allows to perform both

the inference on the changes of the wage gap by groups across sub-samples and the comparison

of the different components across time or sectors. For instance, it can be tested if there has

been a significant change in the explained or unexplained part of the decomposition of interest.

Even though most applications of OB can be found in the labor market and discrimination

literature (see Stanley and Jarrell (1998) and Weichselbaumer and Winter-Ebmer (2005) for

meta studies), our method, as for the standard OB decomposition, can be employed to study

(the evolution of) group differences in any (continuous and unbounded) outcome variable.

However, the OB decomposition has several drawbacks. The most cited is the index number

problem: the decomposition is not unique to the choice of the non-discriminatory wage struc-

ture. Solutions in the literature consist in estimating a pooled wage structure (Neumark, 1988;

Oaxaca and Ransom, 1994) or assigning different weights to the two groups (Reimers, 1983;

Cotton, 1988). The intercept-shift approach (Fortin, 2008) generalizes the approach of Neu-

mark (1988) and Oaxaca and Ransom (1994) allowing different intercepts in the pooled sample.

Fortin (2008) re-writes the decomposition of the GPG in terms of advantages of men and dis-
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advantages of women by including the group indicator and parameter restrictions. Thereby,

the decomposition does no longer depend on the choice of the non-discriminatory wage struc-

ture. For a recent application, see for example Elder and Haider (2010) and Magnani and Zhu

(2012). However, as Lee (2015) stressed out, the intercept-shift approach of Fortin (2008) set

the reference parameter for the OB decomposition, i.e. the parameter that would prevail in a

world under no discrimination, on the variance difference among categories instead of on the

level difference. Moreover, the reference intercept in Fortin (2008) is arbitrary: the same OB

decomposition holds with different reference intercepts.

A second problem of the decomposition is known as the omitted group problem: in case

of categorical variables the decomposition depends on the choice of the omitted group in the

regression model (see Jones, 1983; Oaxaca and Ransom, 1994).

We show that our decomposition overcomes both the index number and the omitted group

problem. Moreover, our decomposition does not suffer of arbitrary reference intercepts and relies

on the level difference. We illustrate our method by presenting two empirical applications. First,

we examine the evolution of the GPG in Italy from 2005 to 2016. Second, we analyze the PPWG

between women and men in 2016 in Italy. For each application, we compare the standard Oaxaca-

Blinder decomposition to our proposed approach. We expect to find a statistically significant

change in differences in endowments by gender over time as well as a statistically significant

change in differences in remuneration between men and women over time. This may indicate

the effectiveness of anti-discrimination policies. For the analysis of the PPWG we expect, in line

with the literature, to find larger pay gaps for women between the public and the private sector

than for men. Additionally, we expect to find a larger effect of the unexplained component in

the PPWG for women; while differences in human capital may be the main driver of the pay

differential for men, they may not explain the difference in the PPWG for women.

For the first case, the findings of the study reveal interesting differences in results when

applying our proposed estimation methodology compared to the standard approach.1 Human

capital and individual characteristics are found to be the only statistically significant driving

force of the convergence of the GPG in the last decade in Italy. On the contrary, by comparing

1That is the OB decomposition and ex-post comparison of the decomposition results.
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the different components of the GPGs by OB, differences in returns to observable wage charac-

teristics, often referred to as the ‘unexplained’ part of the GPG, seem to play a role in closing

the gap over the last decade in Italy. For the second case, we can confirm the conclusions drawn

from the comparison

2 Changes in the Gender Pay Gap: Methods in Use in the

Literature

An often used methodology to study labor-market outcomes by groups (sex, race, and so on) is to

decompose mean differences in log wages based on linear regression models in a counterfactual

manner. The procedure is known in the literature as the Oaxaca-Blinder decomposition. It

estimates the wage separately for the two groups and then decomposes the wage differential in

two components; endowments and coefficients.

ȳM − ȳF = x̄
′
M β̂M − x̄

′
F β̂F

= (x̄
′
M − x̄

′
F )β̂M + x̄

′
F (β̂M − β̂F ) (1)

where ȳG is the dependent varaibel (e.g. the log of hourly wages) of group G = (M,F ) evaluated

at the mean and x̄G and β̂G are K×1 vectors of average characteristics and estimated coefficients

for group G, respectively.2

The first term is the effect due to differences in observable characteristics, such as education

or work experience. As different observed characteristics are expected to have different effects on

earnings, the difference in observed characteristics is also referred to as the explained component

or the quantity effect. The second term is the effect due to differences in returns on observable

2An alternative is represented by the three-fold decomposition that decomposes the wage differential in en-
dowments, coefficients and interactions:

ȳM − ȳF = x̄
′
M β̂M − x̄

′
F β̂F

= (x̄
′
M − x̄

′
F )β̂F + x̄

′
F (β̂M − β̂F ) + (x̄

′
M − x̄

′
F )(β̂M − β̂F )

where the last term (interaction term) accounts for differences in endowments and coefficients that may exist
simultaneously between groups.
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wage characteristics. This component is generally referred to as the unexplained part or the

price effect of the GPG. The unexplained part is often used as a measure for discrimination,

but it also incorporates the effect of group differences in unobserved predictors.3

The existence and degree of discrimination has been a controversial issue. One of the main

sources of the controversy is that the wage equation cannot include all relevant variables due

to unobservability of skills and individual productivity. Therefore, observationally equivalent

people based on the characteristics in the wage equation may not be truly equivalent (so-called

omitted variable problem). In this case the OB decomposition would over-estimate the degree of

discrimination, as the price effect is now the sum of discrimination and differences in unobserved

characteristics. Based on the OB decomposition, different studies examining changes in the wage

gap over time (or between groups/sectors) make use of the double OB decomposition as proposed

in Smith and Welch (1989):

∆(ȳMT − ȳFT ) = [(x̄
′
FT − x̄

′
MT )− (x̄

′
Ft − x̄

′
Mt)]β̂tM

+ (x̄
′
FT − x̄

′
Ft)(β̂tF − β̂tM )

+ (x̄
′
FT − x̄

′
MT )

′(β̂TM − β̂tM )

+ x̄
′
FT [(β̂TF − β̂TM )− (β̂tF − β̂tM )] (2)

where the subscripts T and t refer to current-year and base-year, respectively, and ∆(ȳMT −

ȳFT ) = (ȳMT − ȳFT ) − (ȳMt − ȳFt). The first term in (2) measures the predicted change in

group M − F wages that occurs because of differences in observed characteristics over time

T − t that are valued at base-year group M parameter values. The second term measures

group interactions. If individuals in group F are paid less than those in group M for a given

characteristic, (β̂tF − β̂tM ) < 0, then individuals in group F will lose relative to group M in the

case of increasing average sets of endowments over time and gender. The third term measures

year interaction and the fourth term measures group-year interaction. The decomposition in (2)

is conducted by comparing parameter estimates on different samples and periods; i.e. inference

cannot be drawn on the single components of the decomposition.

3The unexplained portion of the GPG may include effects of unobserved characteristics such as individual
productivity, motivation or educational quality (Blau and Kahn, 2006).
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Juhn et al. (1991) (JMP) proposed a decomposition equation for changes in wage differentials

that explicitly considers the effect of unobserved skills on the gender wage gap. Evaluated at

the sample mean, the wage equation for group G = (M,F ) may be written as:

ȳG = x̄
′
Gβ̂ + σ̂θ̂G (3)

where β̂ is the estimated parameter vector from a pooled wage regression,4 θ̂G is the mean

standardized residual in group G, and σ̂ is the mean standard error estimate, i.e. the average

percentile rank. While β̂ represents an estimate of the vector of observed prices, σ̂ is an estimate

of wage dispersion, which is often interpreted as an estimate of unobserved prices (see Blau and

Kahn, 1997 and Gupta et al., 2006) and θ̂G represents some measure of generally (unobserved)

labor market ability. Given (3), the wage differential between group M and F is:

ȳM − ȳF = (x̄
′
M − x̄

′
F )β̂ + (θ̂M − θ̂F )σ̂ (4)

where the first component represents the explained part of the wage gap, predicted gap, and the

second component represents the residual or unexplained part of the wage gap, residual gap.

From (4), the change in the wage gap between years T and t is:

∆(ȳMT − ȳFT ) = β̂T∆(x̄
′
MT − x̄

′
FT ) + (x̄

′
MT − x̄

′
FT )∆β̂T +

δ̂T∆(θ̂FT − ˆθMT ) + (θ̂Ft − θ̂Mt)∆δ̂T (5)

where the first term represents the difference in mean endowments and the second term rep-

resents difference in returns to endowments. The last two terms correspond to the change in

the residual wage gap. In particular, the first term of the residual wage gap has been termed

4The JMP decomposition considers the estimation of one group equation only, namely the non-discriminated
group, assuming that the discriminated group is affected by the same economic forces that influence the wage
distribution of the non-discriminated group. Thus, the estimated prices of measured characteristics are assumed
to affect both groups in the same way, and the residuals are decomposed into a portion reflecting the prices of
unmeasured skills and a portion reflecting the quantities of unmeasured skills, with the former affecting both
groups similarly (Yun, 2009). Therefore, the JMP decomposition relies on two strong assumptions; first, OLS
estimations of one group are unbiased while the OLS estimations of the other group are biased and, second, the
level of discrimination is constant over time. For these issues and for addressing the index number problem, we
present the JMP decomposition in the case of the pooled wage regression.
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the ranking effect and can be split between the effect of movements of group F in the wage

distribution after adjusting for changes in human capital characteristics, δ̂T∆(θ̂FT ), and the

term −δ̂T∆(θ̂MT ) which is the effect of movements of group M in the wage distribution at time

T after controlling for changes in human capital characteristics. The last term is interpreted as

the dispersion or unobserved prices effect (see Gupta et al. 2006).

However, unlike Oaxaca type decomposition analysis of wage differentials, the JMP method

provides coefficients and characteristics effects only at an aggregate level. Due to this shortcom-

ing, the JMP method cannot be used for the detailed decomposition of the variation in the GPG.

More importantly, as stressed by Suen (1997), the JMP decomposition of wage residuals into

standard deviation (the price of unobserved skills) and percentile ranks (the level of unobserved

skill) is unbiased only when the two measures are independent.

Moreover, Juhn et al. (1991) and Juhn et al. (1993) do not derive the statistic distribution

of decomposition components. Inference on the different components can be conducted by

using the approach in Gupta et al. (2006) where the standard errors are derived. However,

the standard errors are derived under two strong assumptions: (i) the standard deviation and

percentile ranks are independents; (ii) the covariance between estimators in different time periods

is approximately zero.

3 Proposed Decomposition

The method we propose starts from the OB decomposition proposed by Gelbach (2016) that

divides cross-specification differences in OLS estimates of the female coefficient in a path-

independent way. Following Gelbach (2016), we rely on the omitted-variable-bias (OVB)

formula, to consistently estimate the decomposition conditional on all covariates. As in the

standard OB framework, sequencing problem do not occur when using the OVB formula for

decompositions.5

5Indeed, when starting from a base specification and sequentially adding regressors, the order of addition
influences the coefficient estimates.
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The Role of the Intercepts

We start by focusing on the role of the intercept terms that are generally attributed to the second

term in (1): (α̂M − α̂F ). The difference in the intercepts is often commented as difference in the

starting points. Indeed Blinder (1973b) called this part the unexplained part of discrimination.

However, the interpretation of the difference in the intercepts may not be straightforward: the

intercept coefficients is influenced by the reference group(s) used for the indicator variable(s) in

the model. Moreover, the intercept is influenced by the choice of scale for continuous variables

in the model. Jones (1983) suggests that the problem is so critical that interpretation of the

intercept is arbitrary and concludes that the intercept is uninterpretable.

Relying on the OVB formula sequential decomposition of the wage gap, we propose a different

interpretation of the difference in the intercepts. Consider the following linear model for the

wage regression on the sample composed by both groups of interest. We consider as groups

those composed by males and female, G = (F,M):

y = ια+ Fα1 +Xβ1 +XFβ2 + ϵ1 (6)

where ι is a vector of ones, F is a vector of a dummy variable equal to 1 if the individual is

a female and zero otherwise, X is the matrix of regressors, XF is the interaction effect, and

ϵ1 is the vector of error terms. The specification in (6) represents, by using the terminology

of Gelbach (2016), the full model. Observe that the least squares estimate of α̂1 is equal to:

β̂F − β̂M where

y = ιβF +Xβ1F + ϵF for females

and

y = ιβM +Xβ1M + ϵM for males

are the two wage regressions for the female and male group, respectively. Observe also that the

difference in the average observed y between the two groups, i.e. ȳF − ȳM , is given by γ̂F in the

following regression:
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y = ιγ + FγF + ϵ2 for the whole sample (7)

where F is a vector of a dummy variable for being a female. The model in (7) represents the

base model. The difference between the base and full model reads as:

γ̂F − α̂1 = αbase
1 − αfull

1

represents the part of the gap explained by the regressors (X,XF ) and can be decomposed as

the sum of two components by means of the OVB formula as shown in the next Section. If

αfull
1 would be equal to zero, this would imply that the model explains all the observed GPG.

αfull
1 is the part of the GPG that cannot be explained by the quantity and the price effect.

Therefore, instead of attributing the difference in the intercepts to the price component without

a clear interpretation of its source, we focus the analysis on the components that can be truly

attributed to either part of the decomposition, i.e. to differences in endowments (the explained

component) or part of differences in remuneration (the unexplained component).

Changes in Wages over Time

We focus on the estimation of the difference in the GPG over time in order to be able to draw

inference on the difference of the respective pay gaps, i.e. gather information on the differences

of the GPG across years. Moreover, we can investigate what are the main contributors to the

convergence of the GPG over time: gender differences in educational attainment, in labor market

presence or institutional settings such as equal-pay legislation.

The method proposed can be applied to various distinct cases of group differences in outcome

variables over time, sector . . .

Consider to estimate the wage equation separately by G (gender) and J (year):

yGJ = ιαGJ +XGJβGJ + ϵGJ (8)

with G = F,M (for F = female and M = male), J = t, T (for t = starting period and
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T = ending period); and where yGJ is the N × 1 vector of logarithmic wages of G in year

J , αGJ is the intercept, ι is the N × 1 vector of constants, and X is a N × K matrix of

exogenous regressors. βFJ is the corresponding K × 1 vector of coefficients and ϵFJ is a N × 1

vector containing the error terms. The estimation provides four sets of parameter estimates of

the same dimension, given the assumption that the set of regressors is the same for the four

combinations considered. Evaluating the estimation at the mean, given the OLS property that

OLS estimates must go through the mean of the data, equation (8) becomes:

̂̄yGJ = ȳGJ = α̂GJ + x̄
′
GJ β̂GJ (9)

where α̂GJ is the intercept estimate, x̄GJ is theK×1 column vector of sample means of observable

characteristics in X:

x̄
′
GJ =

[
x̄1,GJ , x̄2,GJ , . . . , x̄K,GJ

]
and β̂GJ is the corresponding K × 1 vector of parameter estimates.

Now, consider estimating the joint model instead. As in Gelbach (2016), we distinguish

between two sets of regressors, X1 and X2, where X1, represents the regressors of the base spec-

ification containing only a constant, an interaction term between the gender and year dummies

as well as the group and time dummies themselves:

X1 =

[
1, FJ, F, J

]

where

F =


1 if female

0 if male

J =


1 if year = t

0 if year = T

The base model is defined as follows:

y = αbase
0 + FJαbase

1 + Fαbase
2 + Jαbase

3 + ϵbase (10)
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The second set of regressors, X2, of dimension (N × 4K), contains the matrix of characteristics

X and the interactions of the gender and year dummies with X:

X2 = [X,FX, JX,FJX] (11)

where FX and JX are the interaction variables between the regressors X, the female dummy,

F and the starting period dummy, J , respectively. Analogously, FJX represents the interaction

variable among regressors X, The full model is then defined as follows:

y = αfull
0 + FJαfull

1 + Fαfull
2 + Jαfull

3 +Xβ1 + FXβ2 + JXβ3 + FJXβ4 + ϵfull (12)

The link between the parameters of the full model and the four equations represented in (8)

follows straightforward.6

Now consider the set of regressors X2 as omitted variables. By means of the OVB formula

we have:

α̂base = α̂full + (X ′
1X1)

−1X ′
1X2β̂

full (13)

where the vector of parameter estimates from the base model (10) is:

α̂base′ = (α̂base
0 α̂base

1 α̂base
2 α̂base

3 ) (14)

and α̂full is the 4× 1 vector containing the coefficient estimates of X1 from the full model (12).

(X ′
1X1)

−1X ′
1X2 is the linear projection of X2 on X1 and

β̂full′ = (β̂1 β̂2 β̂3 β̂4) (15)

is the (1 × 4K) vector of coefficients from the full model (12). Model (13) can be decomposed

as follows:

α̂base = α̂full + δ̂ (16)

6Appendix A reports the relationship between the two sets of estimation results.
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where δ̂ ≡ α̂base − α̂full = (X ′
1X1)

−1X ′
1X2β̂

full and

δ̂ = δ̂X + δ̂FX + δ̂JX + δ̂FJX (17)

where δ̂S = Γ̂S β̂full
S , with Γ̂S = (X ′

1X1)
−1X ′

1S of dimension (4×K) and S is the portion of the

matrix (11) that corresponds to the set of regressors S, for S = X, . . . , FJX in (11).7

The Decomposition

Our interest relies in the estimation and decomposition of the GPG across two periods, t and

T :

∆T −∆t =

(
ȳMT − ȳFT

)
−

(
ȳMT − ȳFt

)

with ∆T being the GPG in T .

It can be easily shown that:

∆T =

(
ȳMT − ȳFT

)
= −α̂base

2

and

∆t =

(
ȳMt − ȳFt

)
= −α̂base

1 − α̂base
2

Therefore:

∆T −∆t = α̂base
1

Therefore, given (14), we are interested in the second row of α̂base, i.e. α̂base
1 in order to ob-

7Accordingly, δ̂X = Γ̂X β̂full
X , with Γ̂X = (X ′

1X1)
−1

X ′
1X of dimension (4×K) and β̂full

X is the (K × 1) vector

β̂1 in (15).
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tain the differences of the respective wage gaps; ∆T − ∆t. Following (13) and (16)-(17), we

decompose α̂base
1 accordingly. In particular, for decomposing α̂base

1 we refer to the second row of

(X ′
1X1)

−1X ′
1X2:

(X ′
1X1)

−1X ′
1X =



/

(x̄′MT − x̄′FT )− (x̄′Mt − x̄′Ft)

/

/



(X ′
1X1)

−1X ′
1FX =



/

(x̄′Ft − x̄′FT )

/

/



(X ′
1X1)

−1X ′
1JX =



/

(x̄′Ft − x̄′Mt)

/

/


and

(X ′
1X1)

−1X ′
1FJX =



/

x̄′Ft

/

/
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The second row of equation (13), i.e. the delta wage gap evaluated at the mean, is thus:

α̂1
base = (α̂MT − α̂FT )− (α̂Mt − α̂Ft)︸ ︷︷ ︸

α̂full
1

+ [(x̄′MT − x̄′FT )− (x̄′Mt − x̄′Ft)]β̂MT︸︷︷︸
β̂1

+ (x̄′Ft − x̄′FT )(β̂FT − β̂MT )︸ ︷︷ ︸
β̂2

+ (x̄′Ft − x̄′Mt)(β̂Mt − β̂MT )︸ ︷︷ ︸
β̂3

+ x̄′Ft[(β̂MT − β̂FT )− (β̂Mt − β̂Ft)]︸ ︷︷ ︸
β̂4

= ∆T −∆t

or, equivalently:

α̂1
base = α̂1

full + δ̂1 + δ̂2 + δ̂3 + δ̂4

where:

δ̂1 = (x̄Mt − x̄Ft)β̂Mt − (x̄MT − x̄FT )β̂Mt

δ̂2 = x̄Ft(β̂Mt − β̂Ft) + x̄FT (β̂Ft − β̂Mt)

δ̂3 = (x̄FT − x̄MT )β̂MT − (x̄FT − x̄MT )β̂Mt

δ̂4 = x̄FT (β̂Mt − β̂Ft)− x̄FT (β̂MT − β̂FT )

The above expression can be re-written as a double Oaxaca-Blinder decomposition:

α̂1
base − α̂1

full = (Q̂t +K)︸ ︷︷ ︸
δ̂1

+ (P̂t +W )︸ ︷︷ ︸
δ̂2

+ (−Q̂T −K)︸ ︷︷ ︸
δ̂3

+ (−P̂T −W )︸ ︷︷ ︸
δ̂4

where Q̂t = (x̄Mt − x̄Ft)β̂Mt, is the estimated quantity effect and P̂t = x̄Ft(β̂Mt − β̂Ft), the

estimated price effect in period t, and Q̂T = (x̄MT − x̄FT )β̂MT , and P̂T = x̄FT (β̂MT − β̂FT ), the

estimated quantity and price effect in period T , respectively.
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4 Inference

The asymptotic distribution of
√
N(δ̂ − δ), with δ̂ = (δ̂1, . . . , δ̂4) has been derived in Gelbach

(2016) and it is summarized in the Appendix XX. Given the distribution of the parameters δ̂ the

decomposition proposed allows to carry out inference on the dynamic of the single components

of the GPG.

If the interest relies, for instance, in investigating the convergence of the GPG, it can be

analyzed whether the convergence can be explained either by the convergence of human capital

endowments (explained or quantity components) or by the effect of policy intervention (unex-

plained or price components).

The hypothesis that the convergence has been driven by the catching up of the education

level can be tested by:

H0 : δ1 + δ3 = 0

that is equivalent to test for

H0 : Qt = QT

For the effectiveness of gender anti discrimination laws, it can be tested if the components of

the price effects have been constant over time:

H0 : δ2 + δ4 = 0

that is equivalent of testing:

H0 : Pt = PT

i.e. the H0 is that there was no change in characteristics between M and F over time. Moreover,

each δ̂ can be decomposed in its single components. For instance, the contribution to the GPG

of labor market experience to the quantity component in period t can be extracted from δ̂1 and

similarly for the other components. Indeed each δ̂ is given by

δ̂i =

G∑
g=1

δ̂ig =

G∑
g=1

Γ̂igβ̂g for i=1, ..., 4 (18)
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5 The Index Number Problem

As is well known in the literature, the Oaxaca-Blinder decomposition is not unique. Therefore,

the choice of the non-discriminatory wage structure (men or women) matters and leads to differ-

ent results (Oaxaca and Ransom, 1994; Cotton, 1988; Fortin et al., 2011a). Several approaches

have been proposed to circumvent this problem (Reimers, 1983; Cotton, 1988; Neumark, 1988;

Oaxaca and Ransom, 1994; Fortin, 2008).

We propose an extension of our method in order to have a wage decomposition invariant

to the reference category adopted. Considering the standard case of the GPG, Fortin (2008)

includes gender intercept shifts along with an identification restriction, in the regression of

females and males pooled together:

yi = γ0 + γ0FFi + γ0MMi +Xiγ + ϵi

subject to:

γ0F + γ0M = 0

where Fi (Mi) is equal to one if the individual is female (male) and zero otherwise. The

identification restriction, γ0F +γ0M = 0, imposes that the pooled wage equation truly represents

a non-discriminatory wage structure, i.e. a wage structure where the advantage of men is equal

to the disadvantage of women:

ȳM − ȳF = (X̄M − X̄F )γ̂ + (γ̂0M − γ̂0F ) (19)

The first component on the RHS, (X̄M − X̄F )γ̂, is the explained part, while γ̂0M and γ̂0F are

the advantage of men and the disadvantage of women, respectively. In particular:

γ̂0M = X̄M (β̂M − γ̂) + (α̂M − γ̂0) advantage of men

γ̂0F = X̄F (β̂F − γ̂) + (β̂0F − γ̂0) disadvantage of women.

where α̂M , α̂F , β̂M , β̂F are the estimated coefficients of the wage equations for men and women,
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respectively:

yiM = αM +XMβM + ϵiM (20)

yiF = αF +XFβF + ϵiF (21)

Solution for Differences in Wages over Time

The extension of the decomposition described above to the case of the estimation of the difference

of wage gaps follows straightforward. The set of regressors considered in Section 3 becomes:

X1 = [1, (F −M)J, (F −M), J ]

X2 = [X, (F −M)X, JX, (F −M)JX]

The base model is:

yi = γbase0 + (Fi −Mi)Jiγ
base
FJ + (Fi −Mi)γ

base
F + Jiγ

base
J + ϵbasei (22)

while the full model is defined as follows:

yi = γfull0 + (Fi −Mi)Jiγ
full
FJ + (Fi −Mi)γ

full
F + Jiγ

full
J +

+ Xiγ + (Fi −Mi)XiγXF + JiXiγXJ + (Fi −Mi)JiXiγXJF + ϵfulli (23)

(γbase0 γbaseFJ γbaseF γbaseJ ) is the vector of coefficients estimates of X1 from the base model (22),

and (γfull0 γfullFJ γfullF γfullJ ) is the vector containing the coefficient estimates of X1 from the full

model (23) while (γ γXF γXJ γXJF ) is the vector of coefficients estimates of X2 from the full

model (23). The linear projection of X with respect to X1 is equal to:

(X
′
1X1)

−1X
′
1X =



/

−[(x̄Mt − x̄Ft)− (x̄MT − x̄FT )]/2

/

/
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The linear projection of (F −M)X with respect to X1 is equal to:

(X
′
1X1)

−1X
′
1(F −M)X =



/

[(x̄Mt + x̄Ft)− (x̄MT + x̄FT )]/2

/

/


The linear projection of JX with respect to X1 is equal to:

(X
′
1X1)

−1X
′
1JX =



/

(x̄Ft − x̄Mt)/2

/

/


The linear projection of (F −M)JX with respect to X1 is equal to:

(X
′
1X1)

−1X
′
1(F −M)JX =



/

(x̄Ft + x̄Mt)/2

/

/


It can be easily shown that:

γ̂baseFJ =

(
ȳMT − ȳFT

)
−

(
ȳMt − ȳFt

)
2

=
∆GPG

2

and

γ̂fullFJ =
(α̂MT − α̂FT )− (α̂Mt − α̂Ft)

2

where, analogously to Section 3 α̂Mt, α̂MT , α̂Ft, α̂FT are the estimated coefficients of the wage
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equations for men and women at period t and T , respectively:

yiMt = αMt +XMtβMt + ϵiMt (24)

yiF t = αFt +XFtβFt + ϵiF t (25)

yiMT = αMT +XMTβMT + ϵiMT (26)

yiFT = αFT +XFTβFT + ϵiFT (27)

Hence, the relationship:

γ̂baseFJ = γ̂fullFJ + (X
′
1X1)

−1X
′
1Xγ̂ + (X

′
1X1)

−1X
′
1X(F −M)γ̂XF +

+ (X
′
1X1)

−1X
′
1XJγ̂XY + (X

′
1X1)

−1X
′
1XJ(F −M)γ̂XJF

can be re-written in terms of the ∆GPG as:

2γ̂baseFJ = ∆GPG =

= [(α̂MT − α̂FT )− (α̂Mt − α̂Ft)] + (∆x̄T −∆x̄t)γ̂ +

+(
∑

x̄t −
∑

x̄T )γ̂XF −∆x̄tγ̂XY +
∑

x̄tγ̂XY F

where ∆x̄Y ear is the difference between the average level of observed characteristics of men and

women in a certain year, with Year = t, T and
∑

x̄Y ear represents the sum of observable labor

market characteristics present for men and women in year=Year . Recall that the model can be

re-written in terms of the OVB formula as follows:

2γ̂baseFJ = γ̂fullFJ + δ̂A + δ̂B + δ̂C + δ̂D

P̂ + Q̂ = δ̂A + δ̂B + δ̂C + δ̂D

with P accounting for the price effect and Q for the quantity effect. In particular,
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δ̂A = (x̄MT − x̄FT )γ̂︸ ︷︷ ︸
QT

− (x̄Mt − x̄Ft)γ̂︸ ︷︷ ︸
W

δ̂B = x̄MT (β̂MT − γ̂)− x̄FT (β̂FT − γ̂)︸ ︷︷ ︸
PT

+(x̄Mt + x̄Ft)γ̂XF︸ ︷︷ ︸
K

δ̂C = (x̄Mt − x̄Ft)(γ̂ + γ̂XJF )︸ ︷︷ ︸
Qt

− (x̄Mt − x̄Ft)γ̂︸ ︷︷ ︸
W

δ̂D = −[x̄Mt(β̂Mt − γ̂ − γ̂XJ)− x̄Ft(β̂Ft − γ̂ − γ̂XY )︸ ︷︷ ︸
Pt

]− (x̄Mt + x̄Ft)γ̂XF︸ ︷︷ ︸
K

6 Data and Descriptive Statistics

We use the 2016 and 2005 files of the survey Isfol Plus from the Italian Institute for the De-

velopment of Vocational Training for Workers (Isfol). In 2005, Isfol Plus was conducted with

38,940 interviews. In 2016, 54,961 individuals were interviewed. In our analysis, we focus on

full-time employees aged between 18 and 64 years. We include only individuals in the sample

that work more than 35 hours per week. We exclude autonomous workers from the analysis.

The analysis is also constrained to earnings from the main job only, i.e. from the job that yields

the highest income. The selection criteria yielded a sample size of 9,718 in 2005 and of 8,871

in 2016. In 2005, there were 4,873 women (50.14%) and 4,845 men in the sample (49.86%).

In the 2016-release, 4,026 (45.44%) individuals were female and 4,835 (54.56%) were male. In

2016, 1,912 women (52.69% of total public-sector employment) and 1,717 men (47.31% of total

public-sector employment) were occupied in the public sector. Hence, we see in the data that

women seem to favor the public sector, what is in line with results in the literature outlined in

Section 1 on more egalitarian pay schemes in the public compared to the private sector. Table 1

and 2 report mean and standard deviation for human capital variables included in the analysis

for the two cases under consideration, respectively.

For the analysis of the evolution of the gender wage differential over time, we pool together

the two cross sections of 2005 and 2016 and drop individuals that were observed only in one

year. For the analysis of the PPWG between women and men, we use the latest release, i.e.
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the cross section of 2016. Detailed definitions along with the coding of the variables used in the

analysis can be found in the Appendix.

Descriptive Statistics Case 1

Table 1: Descriptive Statistics Case 1

(1) (2) (3) (4) (5) (6) (7) (8)
Women 2005 Women 2016 Men 2005 Men 2016

Variable Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Lhwage 1.851 0.368 2.072 0.439 2.003 0.403 2.159 0.459
Schooling 12.94 2.693 13.86 2.408 12.22 2.902 13.06 2.642
Exper 17.16 11.77 20.89 12.64 21.12 12.86 24.72 13.13
Tenure 11.82 10.54 15.42 12.04 14.65 11.76 18.11 12.91
Married 0.563 0.496 0.344 0.475 0.592 0.491 0.358 0.479
North 0.523 0.500 0.530 0.499 0.457 0.498 0.470 0.499
Centre 0.208 0.406 0.215 0.411 0.188 0.390 0.203 0.403
Observations 3,983 4,359 5,202 5,789

Table 1 shows that women have on average higher educational attainment than men and that

their human capital characteristics increased from 2005 to 2016. For men, the increase was less

significant and even decreasing for the proportion of men that obtained the maximum degree

when studying (Maximum D Mark). Men still outperform women in terms of labor market

characteristics (Exper, Tenure and Extra Hours). However, while those of women increased

that of men partly even decreased slightly (Exper). The proportion of married women was

reduced slightly, while that of men increased over the last decade. In 2016, less individuals have

children compared to 2005 (Kids and Kids 3 ). Finally, women engaged in the labor market are

about two to three years younger than men in 2016 and 2005, respectively.

Descriptive Statistics Case 2

When focusing on differences in characteristics by gender in the public and private sector, we

find that the level of educational attainment is on average higher in the public compared to

the private sector and that women have on average higher educational attainment than men in

both sectors, see Table 2. Hence, women employed in the public sector are even better educated

than their colleagues in the private sector. Similarly, men in the public sector exhibit higher
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Table 2: Descriptive Statistics Case 2

(1) (2) (3) (4) (5) (6) (7) (8)
Private Sector Men Private Sector Women Public Sector Men Public Sector Women

Variable Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Lhwage 2.086 0.471 1.952 0.461 2.295 0.402 2.203 0.372
Schooling 12.70 2.686 13.51 2.553 13.73 2.419 14.25 2.176
Exper 22.42 13.63 16.95 12.13 28.97 10.95 25.19 11.75
Exper2 688.3 615.4 434.6 506.1 959.3 549.1 772.6 560.7
Tenure 15.12 12.68 11.22 10.47 23.64 11.43 20.01 11.98
Married 0.422 0.494 0.454 0.498 0.239 0.426 0.223 0.416
North 0.547 0.498 0.613 0.487 0.327 0.469 0.440 0.497
Centre 0.199 0.400 0.202 0.402 0.211 0.408 0.229 0.421
Observations 3,756 2,275 2,033 2,084

educational performance (Schooling and Maximum D Mark) compared the men in the private

sector. The capability to speak English (Eng Skill) is more pronounced in the private sector

for both men and women. Also, men and women are substantially longer employed at the same

institution in the public sector (Tenure). Men do on average more over-work (Extra Hours),

what is more pronounced in the private than in the public sector for both, male and female

employees. Next, women are on average younger than men (Age). Employees are about ten

years older in the public than in the private sector. This relatively huge difference may be due

to the stop of recruitment in the public sector in Italy (Mandrone et al., 2012). About the equal

amount of male and female employees is married, yet, the proportion of married employees is

higher in the public sector. Similarly for the variable Kids; employees with children are more

often employed in the public sector. The proportion of individuals with children with less than

four years is more pronounced for women and for both, men and women, more in the private

sector. The latter is related to the fact that younger individuals work on average more often in

the private sector. In particular, given the sharp reduction in recruitment in the public sector

in Italy.
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7 Empirical Results

Empirical Results Case 1: The Gender Pay Gap between 2016 and 2005

Table 3, column (1) shows the base model of case 1, equation (8), and hence the change of the

GPG over time. The difference between the GPG in 2016 and 2005 amounts to −0.03 log points

and is statistically significant. Given the negative sign, the GPG has decreased over time. The

convergence amounts to —0.03— log points, as expected from the standard estimation technique

in Section ??. However, now we can also conclude that this reduction in the GPG is statistically

significant. The full model, equation (12), is presented in column (2) of Table 3. We immediately

see that the part of the price effect due to differences in the intercepts, α̂full
1 , is not statistically

significant. Similarly, the effect of being a woman or in Year 2005, all else equal, becomes

statistically insignificant compared to the base model in column (1). The remaining coefficient

estimates show the expected signs. In particular, we observe a positive effect of educational

attainment, labor market experience and tenure.

Besides looking at the average change in the GPG over time, we can easily extend our

proposed decomposition to test for changes in wages between men and women over time at

different points of the unconditional wage distribution. Therefore, we use unconditional quantile

regression, i.e. we use Recentered Influence Function (RIF) of the log of hourly wages at specific

quantiles as dependent variable. The method was first introduced by ?. 8

Table ?? shows the results from our proposed decomposition. The results suggest that the

reduction in the GPG from 2005 to 2016 was entirely due to observed wage characteristics.

Hence, the closing of the GPG is not explained by anti-discrimination laws, changes in attitudes

towards women in the labor market or changes in the family structure and birth control. The

latter is catched by I2, which accounts for changes in institutional settings, but is not statistically

significant. The reduction in the GPG from 2005 to 2016 is explained by women catching up to

men in terms of their educational background and their labor market experience. We know from

Section 1 that women’s human capital (Schooling, Maximum D Mark, Exper) is increasing, while

that of men is partly even decreasing (Exper) or remained lower than that of women (educational

8For further details on unconditional quantile regressions see Appendix ??.
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Table 3: Wage Regression Case 1, Base and Full Specification

(1) (2)
Basic Wage Regression Full Wage Regression

Lhwage Lhwage

female -0.087*** -0.201*
(0.009) (0.112)

inter -0.064*** 0.001
(0.012) (0.149)

year -0.156*** -0.116
(0.008) (0.080)

Schooling 0.033***
(0.002)

Exper 0.023***
(0.002)

Exper2 -0.000***
(0.000)

Tenure 0.004***
(0.001)

Married -0.061***
(0.010)

North 0.050***
(0.010)

Centre 0.018
(0.012)

Constant 2.159*** 1.485***
(0.006) (0.059)

Industry & Occupation Dummies No Yes
Set of Interactions No Yes
Observations 19,333 19,333
R-squared 0.064 0.338

Standard errors clustered at the individual level in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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attainment variables). In fact, in educational matters, women have outpaced men (Goldin, 2006).

Also, on average, the percentage of women having at least one child (Kids) or a child younger

than three years (Kids 3 ) declined from 69.80% to 54.80% from 2005 to 2016, respectively. The

results from Section ?? suggested that the coefficients part of the GPGs, i.e. the part due to

differences in returns on observable wage characteristics, was a main contributor to the GPG in

either year. However, by estimating the difference of the GPG over time directly, we have shown

that the only factor that contributes statistically significantly to the narrowing of the gap are

better observable wage characteristics for women.

Table 4: Decomposition Case 1 at the Mean & Selected Quantiles, Standard Approach

(1) (2) (3) (4) (5) (6) (7) (8)
2005 2016 2005 2016 2005 2016 2005 2016
Mean Mean 10 10 50 50 90 90

Panel A: Decomposition with Male-Reference Category
GPG 0.152*** 0.087*** 0.118*** 0.029** 0.121*** 0.072*** 0.252*** 0.133***

(0.008) (0.009) (0.013) (0.013) (0.009) (0.007) (0.017) (0.013)

Explained 0.006 -0.012* 0.012 -0.009 0.009 -0.015*** -0.008 -0.038***
(0.006) (0.007) (0.007) (0.009) (0.006) (0.005) (0.015) (0.010)

Unexplained 0.146*** 0.100*** 0.106*** 0.038*** 0.112*** 0.086*** 0.261*** 0.171***
(0.008) (0.009) (0.014) (0.015) (0.009) (0.007) (0.020) (0.015)

Observations 9,185 10,148 9,185 10,148 9,185 10,148 9,185 10,148

Panel B: Regression-Compatible Decomposition
GPG 0.152*** 0.087*** 0.118*** 0.029** 0.121*** 0.072*** 0.252*** 0.133***

(0.008) (0.009) (0.013) (0.013) (0.009) (0.007) (0.017) (0.013)

Explained -0.001 -0.014** -0.002 -0.015** 0.004 -0.017*** 0.006 -0.021***
(0.006) (0.006) (0.007) (0.007) (0.006) (0.004) (0.011) (0.008)

Unexplained 0.152*** 0.101*** 0.120*** 0.044*** 0.117*** 0.089*** 0.246*** 0.154***
(0.007) (0.009) (0.013) (0.014) (0.008) (0.006) (0.018) (0.014)

Observations 9,185 10,148 9,185 10,148 9,185 10,148 9,185 10,148

Robust standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 5: Detailed Decomposition Case 1 at the Mean and Selected Quantiles, Standard Approach

(1) (2) (3) (4) (5) (6) (7) (8)
2005 2016 2005 2016 2005 2016 2005 2016
Mean Mean 10 10 50 50 90 90

Panel A: Decomposition with Male-Reference Category
Explained:
X HC -0.023*** -0.023*** -0.023*** -0.023*** -0.023*** -0.023*** -0.023*** -0.023***

(0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003)
X LM 0.037*** 0.034*** 0.037*** 0.034*** 0.037*** 0.034*** 0.037*** 0.034***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
X Demo -0.003** -0.004*** -0.003** -0.004*** -0.003** -0.004*** -0.003** -0.004***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
X OccInd -0.006 -0.019*** -0.005 -0.019*** -0.006 -0.019*** -0.006 -0.019***

(0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005)
Total 0.006 -0.012* 0.005 -0.012* 0.006 -0.012* 0.006 -0.012*

(0.006) (0.007) (0.006) (0.007) (0.006) (0.007) (0.006) (0.007)
Unexplained:
X HC -0.060 -0.132** -0.060 -0.132** -0.060 -0.132** -0.060 -0.132**

(0.039) (0.058) (0.039) (0.058) (0.039) (0.058) (0.039) (0.058)
X LM 0.057*** 0.024 0.057*** 0.024 0.057*** 0.024 0.057*** 0.024

(0.019) (0.027) (0.019) (0.027) (0.019) (0.027) (0.019) (0.027)
X Demo -0.012 -0.016 -0.012 -0.016 -0.012 -0.016 -0.012 -0.016

(0.014) (0.015) (0.014) (0.015) (0.014) (0.015) (0.014) (0.015)
X OccInd -0.039 0.023 -0.039 0.023 -0.039 0.023 -0.039 0.023

(0.061) (0.070) (0.061) (0.070) (0.061) (0.070) (0.061) (0.070)
Total 0.146*** 0.100*** 0.146*** 0.100*** 0.146*** 0.100*** 0.146*** 0.100***

(0.008) (0.009) (0.008) (0.009) (0.008) (0.009) (0.008) (0.009)
Constant 0.200** 0.200** 0.200** 0.201** 0.200** 0.201** 0.200** 0.201**

(0.078) (0.078) (0.078) (0.101) (0.078) (0.101) (0.078) (0.101)

Panel B: Regression-Compatible Decomposition
Explained:
X HC -0.024*** -0.027*** -0.024*** -0.027*** -0.024*** -0.027*** -0.024*** -0.027***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
X LM 0.037*** 0.033*** 0.037*** 0.033*** 0.037*** 0.033*** 0.037*** 0.033***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
X Demo -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
X OccInd -0.009** -0.017*** -0.009** -0.017*** -0.009** -0.017*** -0.009** -0.017***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Total -0.001 -0.014** -0.001 -0.014** -0.001 -0.014** -0.001 -0.014**

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Unexplained:
X HC -0.059 -0.129** -0.059 -0.129** -0.059 -0.129** -0.059 -0.129**

(0.038) (0.054) (0.038) (0.054) (0.038) (0.054) (0.038) (0.054)
X LM 0.057*** 0.025 0.057*** 0.025 0.057*** 0.025 0.057*** 0.025

(0.021) (0.029) (0.021) (0.029) (0.021) (0.029) (0.021) (0.029)
X Demo -0.011 -0.017 -0.011 -0.017 -0.011 -0.017 -0.011 -0.017

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
X OccInd -0.036 0.021 -0.036 0.021 -0.036 0.021 -0.036 0.021

(0.080) (0.079) (0.080) (0.079) (0.080) (0.079) (0.080) (0.079)
Total 0.152*** 0.101*** 0.152*** 0.101*** 0.152*** 0.101*** 0.152*** 0.101***

(0.007) (0.009) (0.007) (0.009) (0.007) (0.009) (0.007) (0.009)
Constant 0.200** 0.201* 0.200** 0.201* 0.200** 0.201* 0.200** 0.201*

(0.098) (0.112) (0.098) (0.112) (0.098) (0.112) (0.098) (0.112)

Observations are 9,185 & 10,148 in 2005 & 2016, respectively. Robust standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 6: Hypotheses Testing Case 1 at the Mean & Selected Quantiles

(1) (2) (3) (4) (5) (6) (7) (8) (9)
H0 χ2-Statistic P-value χ2-Statistic P-value χ2-Statistic P-value χ2-Statistic P-value

Mean 10 50 90

Panel B: Regression-Compatible Decomposition
PT = Pt 0.24 0.626 2.24 0.134 0.03 0.854 1.98 0.160
QT = Qt 5.34 0.021 1.79 0.185 0.34 0.561 1.13 0.288
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Empirical Results Case 2: Public-Private Sector Wage Gap between Women

and Men

The regression results of the base model, i.e. equation (10), are outlined in column (1) of

Table ??. The results suggest that there has been a positive and statistically significant difference

in the PPWG between women and men, ∆̃Female−∆̃Male, equal to 0.04 log points. This is in line

with the estimation results obtained in Section ??, Table ??. The dummy variable for working

in the public sector (pub) positively and significantly influences wages (0.20). The coefficient on

the female-dummy shows that being a women has a significant and negative impact on labor

income, what is what we expected to find.

Again, we can easily extend the empirical estimation using unconditional quantile regressions.

In the full model, column (2) of Table ??, the effect of public-sector employment on wages

turns negative, but remains highly statistically significant, while the female coefficient becomes

statistically insignificant. Yet, the interaction of women and public-sector employment is statis-

tically significant and strongly positive (0.52). This tells us also that α̂full
1 , i.e. the part of the

price or unexplained effect due to differences in the starting points is statistically significant and

hence the unexplained component of the PPWG may not only play a role when estimating it

separately for male and female subsamples (Section ??), but also when estimating the difference

of the PPWG between women and men directly. Again, the remaining estimation coefficients

are in line with the literature, see for example Fortin (2008).

By applying our proposed estimation approach to case 2, we find that the difference in

observable wage characteristics across sectors and gender, E, does play a statistically significant

role in explaining the gap of the PPWG by gender, see Table ??). Moreover, also differences

in institutional settings across sectors do influence the PPWG differential between women and

men (I2). Indeed, I2 is found to be a main driver of the PPWG between women and men

(−0.06). Finally, the part attributed to differences in returns across sectors and gender exhibits

a statistically significant negative impact on the difference in the PPWG by gender. As we know

from Table ?? that α̂full
1 is positive and statistically significant (0.52), we develop a test in order

to be able to draw conclusions on the statistical significance of the price effect of the difference

in the PPWG between women and men.
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All in all, for case 2, the conclusions drawn from the standard estimation are confirmed; both

quantity and price effects contribute to the difference in the PPWG between women and men.

Nonetheless, we gain the additional insight that the set-up or organization of the sectors does

play a role as well in explaining the statistically significant difference in the PPWG by gender

in 2016 in Italy.

Table 7: Wage Regression Case 2, Base and Full Specification

(1) (2)
Basic Wage Regression Full Wage Regression

Lhwage Lhwage

Public Sec 0.252*** 0.467**
(0.013) (0.203)

inter -0.042** -0.358
(0.017) (0.236)

year 0.134*** 0.243*
(0.012) (0.133)

Schooling 0.036***
(0.003)

Exper 0.020***
(0.002)

Exper2 -0.000***
(0.000)

Tenure 0.004***
(0.001)

Married -0.042***
(0.014)

North 0.062***
(0.015)

Centre 0.031
(0.019)

Constant 1.952*** 1.234***
(0.010) (0.110)

Industry & Occupation Dummies No Yes
Set of Interactions No Yes
Observations 10,148 10,148
R-squared 0.070 0.253

Standard errors clustered at the individual level in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 8: Decomposition Case 2 at the Mean & Selected Quantiles, Standard Approach

(1) (2) (3) (4) (5) (6) (7) (8)
Men Women Men Women Men Women Men Women
Mean Mean 10 10 50 50 90 90

Panel A: Decomposition with Male-Reference Category
PPWG -0.210*** -0.252*** -0.214*** -0.228*** -0.168*** -0.221*** -0.179*** -0.188***

(0.012) (0.013) (0.018) (0.018) (0.009) (0.009) (0.023) (0.016)

Explained -0.134*** -0.131*** -0.113** -0.147*** -0.101*** -0.125*** -0.153*** -0.114***
(0.024) (0.022) (0.046) (0.035) (0.017) (0.015) (0.036) (0.020)

Unexplained -0.076*** -0.121*** -0.101** -0.081** -0.068*** -0.097*** -0.026 -0.074***
(0.026) (0.024) (0.048) (0.038) (0.018) (0.017) (0.041) (0.025)

Observations 5,789 4,359 5,789 4,359 5,789 4,359 5,789 4,359

Panel B: Regression-Compatible Decompositionn
PPWG -0.210*** -0.252*** -0.214*** -0.228*** -0.168*** -0.221*** -0.179*** -0.188***

(0.012) (0.013) (0.017) (0.018) (0.009) (0.009) (0.023) (0.016)

Explained -0.157*** -0.153*** -0.117*** -0.147*** -0.123*** -0.136*** -0.224*** -0.169***
(0.012) (0.014) (0.019) (0.018) (0.009) (0.009) (0.021) (0.016)

Unexplained -0.052*** -0.099*** -0.096*** -0.081*** -0.045*** -0.085*** 0.045* -0.018
(0.015) (0.018) (0.026) (0.024) (0.011) (0.012) (0.027) (0.020)

Observations 5,789 4,359 5,789 4,359 5,789 4,359 5,789 4,359

Robust standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 9: Detailed Decomposition Case 2 at the Mean & Selected Quantiles, Standard Approach

(1) (3) (9) (11) (17) (19) (25) (27)
Men Women Men Women Men Women Men Women
Mean Mean 10 10 50 50 90 90

Panel A: Decomposition with Male-Reference Category
Explained:
X HC -0.027*** -0.027*** -0.027*** -0.027*** -0.027*** -0.027*** -0.027*** -0.027***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
X LM -0.084*** -0.098*** -0.084*** -0.098*** -0.084*** -0.098*** -0.084*** -0.098***

(0.007) (0.010) (0.007) (0.010) (0.007) (0.010) (0.007) (0.010)
X Demo 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005

(0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006)
X OccInd -0.026 -0.010 -0.026 -0.010 -0.026 -0.010 -0.026 -0.010

(0.024) (0.020) (0.024) (0.020) (0.024) (0.020) (0.024) (0.020)
Total -0.134*** -0.131*** -0.134*** -0.131*** -0.134*** -0.131*** -0.134*** -0.131***

(0.024) (0.022) (0.024) (0.022) (0.024) (0.022) (0.024) (0.022)
Unexplained:
X HC -0.052 0.014 -0.052 0.014 -0.052 0.014 -0.052 0.014

(0.074) (0.092) (0.074) (0.092) (0.074) (0.092) (0.074) (0.092)
X LM 0.003 0.093** 0.003 0.093** 0.003 0.093** 0.003 0.093**

(0.048) (0.044) (0.048) (0.044) (0.048) (0.044) (0.048) (0.044)
X Demo 0.029** 0.031 0.029** 0.031 0.029** 0.031 0.029** 0.031

(0.014) (0.020) (0.014) (0.020) (0.014) (0.020) (0.014) (0.020)
X OccInd 0.055 0.207* 0.055 0.207* 0.055 0.207* 0.055 0.207*

(0.090) (0.121) (0.090) (0.121) (0.090) (0.121) (0.090) (0.121)
Total -0.076*** -0.121*** -0.076*** -0.121*** -0.076*** -0.121*** -0.076*** -0.121***

(0.026) (0.024) (0.026) (0.024) (0.026) (0.024) (0.026) (0.024)
Constant -0.109 -0.467*** -0.109 -0.467*** -0.109 -0.467*** -0.109 -0.467***

(0.131) (0.164) (0.131) (0.164) (0.131) (0.164) (0.131) (0.164)

Panel B: Regression-Compatible Decomposition
Explained:
X HC -0.029*** -0.027*** -0.029*** -0.027*** -0.029*** -0.027*** -0.029*** -0.027***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
X LM -0.089*** -0.095*** -0.089*** -0.095*** -0.089*** -0.095*** -0.089*** -0.095***

(0.006) (0.007) (0.006) (0.007) (0.006) (0.007) (0.006) (0.007)
X Demo -0.003 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
X OccInd -0.037*** -0.031*** -0.037*** -0.031*** -0.037*** -0.031*** -0.037*** -0.031***

(0.010) (0.012) (0.010) (0.012) (0.010) (0.012) (0.010) (0.012)
Total -0.157*** -0.153*** -0.157*** -0.153*** -0.157*** -0.153*** -0.157*** -0.153***

(0.012) (0.014) (0.012) (0.014) (0.012) (0.014) (0.012) (0.014)
Unexplained:
X HC -0.050 0.015 -0.050 0.015 -0.050 0.015 -0.050 0.015

(0.070) (0.082) (0.070) (0.082) (0.070) (0.082) (0.070) (0.082)
X LM 0.008 0.090** 0.008 0.090** 0.008 0.090** 0.008 0.090**

(0.049) (0.043) (0.049) (0.043) (0.049) (0.043) (0.049) (0.043)
X Demo 0.034** 0.036 0.034** 0.036 0.034** 0.036 0.034** 0.036

(0.015) (0.024) (0.015) (0.024) (0.015) (0.024) (0.015) (0.024)
X OccInd 0.065 0.229 0.065 0.229 0.065 0.229 0.065 0.229

(0.070) (0.154) (0.070) (0.154) (0.070) (0.154) (0.070) (0.154)
Total -0.052*** -0.099*** -0.052*** -0.099*** -0.052*** -0.099*** -0.052*** -0.099***

(0.015) (0.018) (0.015) (0.018) (0.015) (0.018) (0.015) (0.018)
Constant -0.109 -0.467** -0.109 -0.467** -0.109 -0.467** -0.109 -0.467**

(0.121) (0.202) (0.121) (0.202) (0.121) (0.202) (0.121) (0.202)

Observations are 5,789 & 4,359 for men and women, respectively.

Robust standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 10: Hypotheses Testing Case 2

(1) (2) (3) (4) (5) (6) (7) (8) (9)
H0 χ2-Statistic P-value χ2-Statistic P-value χ2-Statistic P-value χ2-Statistic P-value

Mean 10 50 90

Panel B: Regression-Compatible Decomposition
PT = Pt 2.14 0.144 0.25 0.614 0.01 0.940 4.67 0.031
QT = Qt 0.54 0.462 2.2 0.138 2.73 0.099 0.82 0.366
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8 Conclusion

This paper takes the cue from two empirical evidence that have been considered in literature

to introduce a new decomposition approach. Adding to the discussion of the convergence of

the GPG over time and the persistence of a PPWG between women and men, we propose an

alternative decomposition method allowing to draw inference on the difference of two wage gaps.

Additionally, the method allows us to catch otherwise unobserved interaction effects across the

respective groups of interest.

In fact, the PPWG which is found to differ for females and males is a topic of on-going

research (Melly, 2005). Similarly, the observed closing of the GPG over the last decades is

heavily discussed in the literature and the determination of the reasons of the narrowing are

of huge interest, especially with regard to policy implications (Blau and Kahn, 2006,0; Goldin,

2014).

Applying the decomposition to the case of the GPG over time (Section 7), the convergence

of the GPG in the last decade was found to be entirely explained by a reduction in differences in

observable labor market characteristics by gender, i.e. by the catching-up of women with respect

to men in these characteristics. On the contrary, by estimating the GPG separately for 2005

and 2016, i.e. following the double OB decomposition, the change in the significance of the price

component might have led to the conclusion that the implementation of anti-discrimination laws

and changing attitudes towards women in the labor market have influenced the narrowing of

the pay gap over time as well. Yet, these policies as well as changes in social norms seem to

have been less effective than expected a priori. In fact, even if the unexplained part is found to

be the main contributor to the GPG in a specific year, it turns insignificant when estimating

changes of the GPG over time directly.

The results for the second case examined, i.e. the PPWG between women and men, pointed

the attention to differences in the structure of the public and private sector, which are found to

be a main driver of the differential. In this case, the results obtained in Section ?? are confirmed.

Thanks to the decomposition carried on we can determine whether both parts of the price effect

- the difference in the intercepts and the difference in remuneration - drive the change in the

pay gap in a statistically significant way or not. Our conclusion is that both parts contribute to
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the difference in the PPWG between women and men.

All in all, our decomposition method offers a better understanding of what has lead to the

narrowing of the GPG in the last ten years and what drives the difference in the PPWG between

women and men. Most importantly, we can infer what drives the difference in the respective pay

gaps in a statistically significant manner. Thereby, we add to the literature on the convergence

of the GPG over time for the case of Italy, the finding that the closing of the pay differential

by gender over the last decade was entirely explained by the catching-up of women in terms of

observable labor market characteristics. For the second case of interest in this paper, the PPWG

between women and men, we can confirm the results obtained with the standard method in the

literature for other countries (Mandel and Semyonov, 2014; Melly, 2005).

Despite additional insights on the composition of differences in gaps, the method can be

extended to be robust to the choice of the reference category (Reimers, 1983; Cotton, 1988;

Neumark, 1988; Oaxaca and Ransom, 1994; Fortin, 2008) as well as to the indeterminacy prob-

lem (Lee, 2015). We propose to decompose the GPG following the intercept-shift approach

proposed by (Fortin, 2008) and applying the omitted variable bias formula (as proposed by (Gel-

bach, 2016)). Thereby, when conducting a detailed decomposition, the single parts of the en-

dowments effect can be associated to specific covariates and the invariance problem with respect

to categorical variables can be solved (Gardeazabal and Ugidos, 2004; Fortin, 2008).
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Appendices

A Link between the parameters on pag 12.

1. When F=1, i.e. Female, J=1, i.e. year t:

• α̂Ft = α̂full
0 + α̂full

1 + α̂full
2 + α̂full

3

• β̂Ft = β̂1 + β̂2 + β̂3 + β̂4

2. When F=0, i.e. Male, J=1, i.e. year t, we get:

• α̂Mt = α̂full
0 + α̂full

3

• β̂Mt = β̂1 + β̂3

3. When F=1, i.e. Female, J=0, i.e. year T, we get:

• α̂FT = α̂full
0 + α̂full

2

• β̂FT = β̂1 + β̂2

4. When F=0, i.e. Male, J=0, i.e. year T, we get:

• α̂MT = α̂full
0

• β̂MT = β̂1
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Re-arranging terms slightly, gives us:

α̂full
0 = α̂MT

α̂full
2 = α̂FT − α̂MT

α̂full
3 = α̂MT − α̂Mt

α̂full
1 = α̂Ft − α̂MT − α̂FT + α̂MT − α̂Mt + α̂MT

= (α̂MT − α̂FT )− (α̂Mt − α̂Ft)

β̂1 = β̂MT

β̂2 = β̂FT − β̂MT

β̂3 = β̂Mt − β̂MT

β̂4 = β̂MT − β̂FT − β̂Mt + β̂Ft

= (β̂MT − β̂FT )− (β̂Mt − β̂Ft)

B Solving the Index Number Problem for the level of the GPG

Section 5 presents the solution to the indeterminacy problem for the variation over time of the

GPG. This Appendix shows how to solve the indeterminacy problem for the level of the GPG

within the OVB decomposition. Our aim is to have a wage decomposition invariant to the

reference category adopted. Following Fortin (2008), we include gender intercept shifts along

with an identification restriction, in the regression of females and males pooled together, when

considering the standard case of the GPG:

yi = γ0 + γ0FFi + γ0MMi +Xiγ + ϵi

subject to:

γ0F + γ0M = 0

41



where Fi (Mi) is equal to one if the individual is female (male) and zero otherwise. The

identification restriction, γ0F +γ0M = 0, imposes that the pooled wage equation truly represents

a non-discriminatory wage structure, i.e. a wage structure where the advantage of men is equal

to the disadvantage of women:

ȳM − ȳF = (X̄M − X̄F )γ̂ + (γ̂0M − γ̂0F ) (28)

The first component on the RHS, (X̄M − X̄F )γ̂, is the explained part, while γ̂0M and γ̂0F

are the advantage of men and the disadvantage of women, respectively. In particular:

γ̂0M = X̄M (β̂M − γ̂) + (α̂M − γ̂0) advantage of men

γ̂0F = X̄F (β̂F − γ̂) + (α̂F − γ̂0) disadvantage of women.

where α̂M , α̂F , β̂M , β̂F are the estimated coefficients of the wage equations for men and

women, respectively:

yiM = αM +XMβM + ϵiM (29)

yiF = αF +XFβF + ϵiF (30)

In order to recast the wage decomposition of the full model with the conditional decomposition

framework proposed in Section 3 we estimate the following wage equation:

yi = γ0 + γ0FFi + γ0MMi +Xiγ +XiFiγXF +XiMiγXM + νi (31)

subject to:

γ0F + γ0M = 0

γXkF + γXkM = 0 for k = 1 . . .K

where γXkF and γXkM are the parameters of the interaction term between the kth regressor

Xk and the dummy F and M , respectively. The error term is represented by vi. Evaluating
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equation (31) at the mean yields:

ȳM = γ̂0 + γ̂0M + X̄M γ̂ + X̄M γ̂XM

ȳF = γ̂0 + γ̂0F + X̄F γ̂ + X̄F γ̂XF

Hence, the GPG is given by:

ȳM − ȳF = (γ̂0M − γ̂0F ) + (X̄M − X̄F )γ̂ + X̄M γ̂XM − X̄F γ̂XF (32)

= 2γ̂0M + (X̄M − X̄F )γ̂ + (X̄M + X̄F )γ̂XM (33)

First, we observe that there exists the following relationship between the parameter estimates

of equations (29)-(30) and (31):

γ̂ − γ̂XM = β̂F

γ̂0 − γ̂0M = α̂F

γ̂ + γ̂XM = β̂M

γ̂0 + γ̂0M = α̂M

Therefore, the GPG of (33) can be re-written in terms of the Fortin-decomposition as:

ȳM − ȳF = (α̂M − γ̂0)− (α̂F − γ̂0) + (X̄M − X̄F )γ̂ + X̄M (β̂M − γ̂)− X̄F (β̂F − γ̂) (34)

= (X̄M − X̄F )γ̂ + [X̄M (β̂M − γ̂) + (α̂M − γ̂0)]︸ ︷︷ ︸
advantage of men

− [X̄F (β̂F − γ̂) + (α̂F − γ̂0)]︸ ︷︷ ︸
disadvantage of women

(35)

Second, the estimation can be recast in terms of sequential decomposition by considering the

following base model:

yi = γbase0 + (Mi − Fi)γ
base
0M + ϵbasei (36)

where the set of regressors of the base model is given by X1 =

[
1, (M − F )

]
, the constant and

43



the difference between the two dummy variables F and M . The full model is defined as follows:

yi = γfull0 + (Mi − Fi)γ
full
0M +Xiγ +Xi(Mi − Fi)γXM + ϵfulli (37)

where X2 =

[
X,X(M − F )

]
. X(M − F ) is the interaction between the matrix of regressors X

and the vector that contains the difference between the two dummy variables M and F . By the

OVB formula the following relationship holds:

 γ̂base0

γ̂base0M

 =

 γ̂full0

γ̂full0M

+ (X
′
1X1)

−1X
′
1X2

 γ̂

γ̂XM

 (38)

where (γ̂base0 γ̂base0M )
′
is the vector of coefficient estimates of X1 from the base model (36);

(γ̂full0 γ̂full0M )
′
is the vector containing the coefficient estimates of X1 from the full model (37) and

(γ̂ γ̂XM )
′
is the vector of coefficients estimates of X2 from the full model (37). Observe that:

 γ̂base0

γ̂base0M

 =

 ȳM+ȳF
2

ȳM−ȳF
2

 (39)

and γ̂full0M is equal to α̂M−α̂F
2 .

Given (39), our interest relies on the second row of equation (38), that represents the de-

composition of the GPG. We observe that the linear projection of X with respect to X1 is equal

to:

(X
′
1X1)

−1X
′
1X =

 /

(X̄
′
M − X̄

′
F )/2


The linear projection of X(M − F ) with respect to X1 is equal to:

(X
′
1X1)

−1X
′
1X(F −M) =

 /

(X̄
′
M + X̄

′
F )/2
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Given (38), we observe that:

2γ̂base0M = 2(ȳM − ȳF ) = ∆(y) = 2γ̂full0M + (X̄M − X̄F )γ̂ + (X̄M + X̄F )γ̂XM

= 2γ̂full0M + (X̄M − X̄F )γ̂ + X̄M (β̂M − γ̂) +−X̄F (β̂F − γ̂)

= (X̄M − X̄F )γ̂ + [X̄M (β̂M − γ̂) + (α̂M − γ̂0)]︸ ︷︷ ︸
advantage of men

− [X̄F (β̂F − γ̂) + (α̂F − γ̂0)]︸ ︷︷ ︸
disadvantage of women

that completes the proof of the decomposition equivalence.

B.1 Invariance decomposition with respect to categorical variables

A second type of identification issue arises when dummy variables are considered in the wage

decomposition. Oaxaca and Ransom (1999) show that the assignment of the unexplained part

of the GPG to specific variables is not invariant to the choice of reference groups. This problem

can be easily solved by imposing the following parameters restrictions as proposed by Fortin

et al. (2011b):

Ck∑
j=1

γjk = 0, k ∈ C (40)

where C denotes the set of categorical variables, and Ck the number of categories for vari-

able k. The neutral, i.e. non-sensitive to any left-out category, Oaxaca-Blinder decomposition

follows. The zero-sum restriction (40) is applied to the wage equation, when female and male

wages are estimated separately as well as to the pooled regression with gender dummies. The

latter is additionally estimated with the identification restriction γ0M + γ0F = 0 on the gender

parameters. Thereby, the intercepts, αM , β0F and γ0, are no longer influenced by the choice

of the reference category and the single parts of the endowments effect can be associated to

specific covariates (Gardeazabal and Ugidos, 2004; Fortin, 2008). The restriction (40) can also

be applied to the method proposed in Section ?? leading to indicator variables that, in case of

categorical variables, are invariant to the choice of the left-out category.
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C Intercept-shift approach versus pooled-sample approach

Lee (2015) shows that the intercept-shift approach proposed by Fortin (2008) presents two

drawbacks. Firstly, the reference parameter for the Oaxaca-Blinder decomposition, i.e. the

parameter that would prevail in a ‘fair’ world under no discrimination, relies on the variance

difference among categories. Secondly, the reference intercept is arbitrary: the same Oaxaca-

Blinder decomposition holds with vastly different reference intercepts.

However, it can be easily shown that our proposed decomposition does not suffer from any

of these aspects. Our decomposition arises from a specification that allows different intercepts

and slopes. In addition, the constraints imposed on the parameters that identify the counter-

factual reference parameters are the parameters such that the advantage of men is equal to the

disadvantage of women.

In fact, in our model the slope that would prevail under no discrimination, γ, is the sample

average of the group slopes; αM and αF :

γ = 0.5αM + 0.5αF

i.e. it is equivalent to considering the weights proposed by Reimers (1983).9

Moreover, the constraint:

αF − γ0F = αM + γ0F

prevents the indeterminacy problem shown by Lee (2015) in eq. (6) page 74. It turns out,

that in our model, the intercept indeterminacy problem highlighted by Lee (2015) is ruled out

by imposing the constraint that the advantage of men should be equal to the disadvantage of

women.

D Inference

TO BE ADDED

9See also page 72 of Lee (2015).
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E Unconditional Quantile Regression

To be precise, the RIF-OLS regression model allows to estimate the effect of explanatory vari-

ables, X, on the unconditional quantile, Qτ , of an outcome variable, Y . The RIF is estimated

in quantile regressions by first calculating the sample quantile Q̂τ and computing the density

at Q̂τ , that is f(Q̂τ ) using kernel methods ?. This approach relies on the indicator function

1{Yt ≤ Qτ} taking value one if the condition in {·} is true, zero otherwise. Estimates for each

observation i of the RIF, R̂IF (Yit;Qτ ), are then obtained by inserting Q̂τ and f(Q̂τ ) in the

aggregate RIF-function, defined as:

RIF (Yt;Qτ ) = Qτ + IF (Yt;Qτ )

= Qτ +
τ − 1{Yt ≤ Qτ}

fY (Qτ )

=
1

fYt(Qτ )
1{Yt > Qτ}+Qτ −

1

fYt(Qτ )
(1− τ) (E.1)

where the RIF is the first order approximation of the quantile Qτ . IF (Yt;Qτ ) represents the

influence function for the τth quantile. It measures the (marginal) influence of an observation

at Y on the sample quantile. Adding the quantile Qτ to the influence function yields the RIF.

The probability density of Y at time t evaluated at Qτ is fYT
(Qτ ).

The model can then be estimated by OLS using the RIFs as dependent varaibles. ? (?) model

the conditional expectation of the RIF-regression function, E[RIF (Yt;Qτ )|X], as a function of

explanatory variables, X, in the UQR:

E[RIF (Yt;Qτ )|X] = gQτ (X) (E.2)

where a linear function Xβτ is specified for gQτ (X). The explanatory variables, X, contain

time-varying controls such as labor market experience and job tenure as well as time con-

stant controls like schooling. The average derivative of the unconditional quantile regression,

EX

[dgQτ (X)
dX

]
, captures the marginal effect of a small location shift in the distribution of covari-

ates on the τth UQ of Yt keeping everything else constant. Therefore, the coefficients, βτ , can be

unconditionally interpreted, as E[RIF (Yt;Qτ )] = EX

[
E
(
RIF (Yt;Qτ )|X

)]
= E(X)βτ . That is,
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the unconditional expectations E[RIF (Yt;Qτ )] using the LIE allow for the unconditional mean

interpretation. On the contrary, only the conditional mean interpretation is valid in the context

of CQRs; Qτ (Yt|X) = XβCQR
τ , where βCQR

τ can be interpreted as the effect of X on the τth

CQ of Y given X. The LIE does not apply here; Qτ ̸= EX [Qτ (Yt|X)] = E(X)βCQR
τ , where Qτ

is the UQ. Hence, βCQR
τ cannot be interpreted as the effect of increasing the mean value of X

in the UQ Qτ . In UQR, the coefficients βτ can be estimated by OLS in the following way:

Qτ = E[RIF (Yt;Qτ )] = EX [RIF (Yt;Qτ )|X] = E(X)βτ (E.3)
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F Definition of Variables

Variable Name Definition

Dependent Variables

Lhwage Net hourly wages; hourly wages in Euros,

net of taxes and social security contributions

Independent Variable

Dummy and Interaction Effects

female One if the respective individual is a woman, zero otherwise

year One if year is 2005, zero otherwise

pub One if firm is a publicly owned firm, zero otherwise

femyear Interactive effect of year and female, i.e. one if employee

is observed in 2005 and is female, zero otherwise

fempub Interactive effect of pub and female, i.e. one if employee

is employed in the public sector and is female, zero otherwise

Labor Market Presence

Exper Number of years of prior work experience

Exper2 Exper squared

Tenure Number of years worked for current employer

Extra Hours Measures the hours spent working overtime
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Educational Attainment

Schooling Number of years of schooling completed

Maximum D Mark One if maximum degree mark was, i.e. 110 e lode, attained, zero otherwise

Eng Skill One if individual is able to communicate in English, zero otherwise

Demographic Background

Age Age of individual (in years)

Italian One if individual is Italian, zero otherwise

Educ Moth4 One if mother’s education is at least equal to Diploma, i.e. 13 years of schooling,

zero otherwise

Educ Moth5 One if mother’s education is equal to Laurea,

i.e. mother holds a university degree, zero otherwise

Educ Fath4 One if father’s education is at least equal to Diploma, i.e. 13 years of schooling,

zero otherwise

Educ Fath5 One if father’s education is equal to Laurea,

i.e. father holds a university degree, zero otherwise

Homeowner One if employee owns a house, zero otherwise

Family Background

Kids One if individual has at least one child, zero otherwise

Kids 3 One if age of youngest child is less or equal to three years, zero otherwise

Married One if individual is married, zero otherwise

Industry and Occupations

Sec 2 One if individual is engaged in the industrial sector, zero otherwise
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Sec 6 One if individual is engaged in tourism, zero otherwise

Sec 7 One if individual is engaged in transport, zero otherwise

Sec 8 One if individual is engaged in communication, zero otherwise

Sec 9 One if individual is engaged in financial sector, zero otherwise

Sec 10 One if individual is engaged in firm services, zero otherwise

Sec 13 One if individual is engaged in health, zero otherwise

Sec 14 One if individual is engaged in science and other professional activities, zero otherwise

Manager One if individual executes intellectual professions;

scientific and highly specialized occupations, zero otherwise

Intermediate Prof One if individual executes intermediary positions in commercial, technical

or administrative sectors, health services and technicians, zero otherwise

Geographic Variables

North One if individual lives and works in the North of Italy, zero otherwise
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