
Friedrich-Alexander-Universität Erlangen-Nürnberg
Institute for Economics

https://www.iwf.rw.fau.de/discussion-papers/

No. 05/2020

Deep reinforcement learning for the optimal
placement of cryptocurrency limit orders

Matthias Schnaubelt
FAU Erlangen-Nürnberg

ISSN 1867-6707

Discussion Papers
in Economics

https://www.iwf.rw.fau.de/discussion-papers/

Deep reinforcement learning for the optimal placement
of cryptocurrency limit orders

Matthias Schnaubelta,1

aUniversity of Erlangen-Nürnberg, Department of Statistics and Econometrics, Lange Gasse 20, 90403 Nürnberg,
Germany

Abstract

This paper presents the first large-scale application of deep reinforcement learning to optimize

the placement of limit orders at cryptocurrency exchanges. For training and out-of-sample evalua-

tion, we use a virtual limit order exchange to reward agents according to the realized shortfall over

a series of time steps. Based on the literature, we generate features that inform the agent about

the current market state. Leveraging 18 months of high-frequency data with 300 million historic

trades and more than 3.5 million order book states from major exchanges and currency pairs, we

empirically compare state-of-the-art deep reinforcement learning algorithms to several benchmarks.

We find proximal policy optimization to reliably learn superior order placement strategies when

compared to deep double Q-networks and other benchmarks. Further analyses shed light into the

black box of the learned execution strategy. Important features are current liquidity costs and

queue imbalances, where the latter can be interpreted as predictors of short-term mid-price re-

turns. To preferably execute volume in limit orders to avoid additional market order exchange fees,

order placement tends to be more aggressive in expectation of unfavorable price movements.

Keywords: Finance; Optimal Execution; Limit Order Markets; Machine learning; Deep

Reinforcement Learning

Email address: matthias.schnaubelt@fau.de (Matthias Schnaubelt)
1The author has benefited from many helpful discussions with Ingo Klein, Christopher Krauss, Thomas Fischer,

Oleg Seifert and Markus Schmitz.

1. Introduction

According to Cont and Kukanov (2017), the trading process of professional market participants

can be split into several stages of decision making: First, the portfolio allocation stage involves

multiple decisions to select asset classes and individual assets for buying or selling and to assign

portions of managed capital. Second, during the order scheduling stage, the volume allocated to a

specific asset is split into smaller blocks that are to be executed over a time frame of several minutes

to days. Third, in the order placement stage, volume slices are translated into a series of orders

submitted to a trading venue, and further order details such as order type and limit price need to

be specified. With optimized execution strategies for the last two stages, investors seek to minimize

the implementation shortfall (Perold, 1988), i.e., the difference between observed market prices at

the time of the portfolio allocation decision and the actually executed price. With this paper, we

present the first large-scale empirical evaluation of deep reinforcement learning to optimize order

placement in cryptocurrency limit order markets.

Beginning with the seminal works of Bertsimas and Lo (1998) and Almgren and Chriss (2001),

optimal execution problems have been theoretically studied by academics.2 Bertsimas and Lo (1998)

analyze the stage of optimal order scheduling as a stochastic control problem with explicit models

of price dynamics and market impact, which is solved by dynamic programming to minimize the

implementation shortfall. Almgren and Chriss (2001) extend the analysis by also including volatility

risk and the trader’s risk aversion. Subsequently, extensions to multiple assets or dynamic liquidity

were considered (see, for example, Obizhaeva and Wang, 2013; Tsoukalas et al., 2017, and references

therein). By contrast, other works focus on the stage of optimal order placement, for example, by

proposing models to study the optimal limit order price, the optimal ratio between market and limit

orders or the optimal allocation across exchanges (see, for example, Bayraktar and Ludkovski, 2014;

Cartea and Jaimungal, 2015; Cont and Kukanov, 2017).

To optimize execution, these approaches typically use explicit models of limit order dynamics,

whose formulation requires substantial approximations, and extensions to practical applications

are in many instances either difficult or impossible. By contrast, model-free reinforcement learning

(RL) algorithms promise a data-driven approach to optimal execution problems by “learning what

to do—how to map situations to actions—so as to maximize a numerical reward signal” (Sutton

and Barto, 2018, p. 1). Inspired by recent successes of deep RL in solving complex tasks such

as playing Go or controlling a robot’s hand to solve the Rubik’s Cube (see, for example, Silver

et al., 2018; Akkaya et al., 2019), there is rising interest in both academia and practice to apply

2See also Cartea et al. (2015) for a survey of further works.

2

RL to optimal execution problems. In theory, investors could train RL algorithms to directly learn

an execution strategy that minimizes the implementation shortfall under specific constraints, such

as exchange commissions, by choosing the best action from a given set of alternatives. These

alternatives could, for example, include decisions on the order type, limit price, traded volume, or

trading venue. Hence, it is less surprising that RL is already used by market professionals, such as

JPMorgan Chase & Co. (Terekhova, 2017; Noonan, 2017) or the broker firm Instinet Inc. (Cheng,

2017), to optimize execution.

Compared to the relatively large number of theoretical works modeling optimal execution as

a stochastic control problem, empirical academic research on the use of RL in this domain is

limited, which may partially be attributed to the substantial data requirements of such studies. In

their seminal work, Nevmyvaka et al. (2006)3 propose a problem-specific RL algorithm for order

placement: Over several discrete time steps, the agent has to decide on the price of a limit order

with the goal of selling all volume with minimal implementation shortfall. The study is based on

a limit order exchange simulation backed by 1.5 years of high-frequency data for three stocks and

shows that their algorithm reduces realized shortfalls compared to a submit-and-leave strategy.

Most subsequent applications of RL for execution optimization focus on the stage of order

scheduling: Hendricks and Wilcox (2014) study how to split volume between market orders by

extending the model of Almgren and Chriss (2001) to Q-learning, a table-based form of RL (Sutton

and Barto, 2018). Their empirical analysis is based on one year of market data aggregated to

5 minute-bins with five levels of the limit order book. Similarly, Ning et al. (2018) apply deep

double Q-networks (DDQN) in optimizing the volume trajectory of market orders. To evaluate the

approach, they employ time series of mid prices from nine stocks and model the price impact as

a quadratic function of executed volume. Other works study RL for order scheduling in simulated

market environments without using market data (Bao and Liu, 2019; Daberius et al., 2019).

The academic evaluation of deep RL for order placement in the spirit of Nevmyvaka et al.

(2006) seems to be still in its infancy: Rantil and Dahlen (2018) apply Sarsa(λ) and proximal

policy optimization (PPO) to 1.5 years of data from four future contracts. Their results show that

PPO may reduce the implementation shortfall in comparison to their benchmarks. Patel (2018)

trains separate agents for portfolio allocation and order placement with DDQN and evaluates their

performance on a few days of cryptocurrency data.

To our knowledge, no work has systematically tested the promise of deep RL for limit order

placement in a large-scale empirical study. With this paper, we seek to close this gap by applying

3Parts of this initial work have been put in a broader context in Kearns and Nevmyvaka (2013).

3

state-of-the-art deep RL algorithms to optimize the placement of limit orders in cryptocurrency

markets. Specifically, we make the following contributions to the literature: First, we provide a

detailed description of an environment suited to train and evaluate reinforcement learning agents

on the task of optimal limit order placement, in which an agent is asked to decide on the price of

submitted limit orders over the course of several time steps. Based on cryptocurrency market data,

order execution is simulated in a virtual limit order exchange. Our empirical evaluation is based on

264 GB of high-frequency limit order data covering 18 months, which comprises 300 million historic

trades and more than 3.5 million order book states from major exchanges and cryptocurrency pairs.

Based on the literature, we generate several features that inform the agent about current market

liquidity and short-term return-predictive signals. A reward function rewards the agent based on

the realized implementation shortfall and allows the direct inclusion of exchange-specific constraints

such as order commissions.

Second, we compare the performance of two state-of-the-art deep RL algorithms in optimizing

limit order placement. Specifically, we employ deep double Q-learning (van Hasselt et al., 2015)

and proximal policy optimization (Schulman et al., 2017b), and benchmark their performance

against several static and dynamic execution policies. Training the models multiple times in a

rolling-window validation scheme, we find that PPO realizes the lowest mean total implementation

shortfall. Compared to immediate execution in a single market order, PPO is found to reduce total

transaction costs by up to 37.71 percent. The superior performance is found to be fairly robust,

as PPO achieves the lowest shortfall among all strategies in 89.06 percent of all studied train-test

splits and exchange-market combinations.

Third, we shed light into the black box of the PPO algorithm and assess whether the agent’s

actions align with economic rationale. In a first analysis, we find that the agent preferably uses

limit orders to avoid additional exchange commissions of market orders. A second analysis on the

contribution of features reveals that liquidity costs and queue imbalances provide the highest value

– well in line with an interpretation of the latter in terms of short-term predictors of mid-price

returns. In a third analysis, we find the agent’s order placement to become more aggressive, i.e.,

to use more competitive limit prices, in anticipation of disadvantageous price movements.

The remainder of this paper is organized as follows: In Section 2, we describe the data sets and

software used for our work. Section 3 details all building blocks of our methodology, i.e., the order

execution environment and employed RL algorithms. Our results are presented in Section 4, and

we conclude in Section 5.

4

2. Data and software

2.1. Data

Our empirical study is based on a large sample of cryptocurrency limit order data which com-

prises the 18 months from January 1st, 2018 to June 30th, 2019. In total, we have obtained over

264 GB of raw data. For our empirical evaluation, we select the largest exchanges and currency

pairs in terms of traded volume. For the currency pair Bitcoin against US Dollar (BTC/USD), we

hence obtain data from the exchanges BitFinex, Kraken and Coinbase. In total, we estimate that

these three exchanges have covered 65 percent of BTC/USD limit order trading volume for the time

period of our study.4 To also evaluate algorithms for other currency pairs, we obtain data for the

currency pair Ethereum to Bitcoin (ETH/BTC) and Ethereum to US Dollar (ETH/USD). Despite

being relatively new and largely unregulated, cryptocurrency limit order exchanges exhibit most

stylized facts from established exchanges (Schnaubelt et al., 2019). One of their key idiosyncrasies,

relatively shallow limit order books and consequently a relatively high level of liquidity costs, in-

creases their potential as test bed for optimal execution algorithms. Table 1 provides further details

on the properties of the exchanges used in this study.

Following Schnaubelt et al. (2019), we obtain data from the selected exchanges using their

application programming interfaces (API). Specifically, the data consist of transaction data (times-

tamp with millisecond resolution, executed price, volume and buy/sell flag) and data from the limit

order book. The latter records the limit order volume at all price steps of the order book that were

available during the time of retrieval via the exchange’s API. To prepare limit order data for our

models, we reconstruct the limit order book at a minutely sampling frequency. We also match

sequences of trades to the respective time interval between order book states.

Exchange Market Tick size Maker fee [bp] Taker fee [bp]

BitFinex BTC/USD 10−1 10 20
ETH/USD 10−2 10 20
ETH/BTC 10−5 10 20

Kraken BTC/USD 10−1 16 26
Coinbase BTC/USD 10−2 0 30

Table 1: Overview of exchange properties. This table reports tick sizes, i.e., the smallest possible increments of
the limit price at the exchange, and relative exchange commissions (in basis points) for all exchanges and markets
used in this study. Commissions are split into a maker fee for providing liquidity to the order book and a taker fee
for removing liquidity from the order book, e.g., in a market order.

5

Count Mean S.D. Q1% Q25% Q50% Q75% Q99%

Panel A: BitFinex BTC/USD
Trade volume [BTC] 87972104 0.3483 1.8636 0.0009 0.0125 0.0550 0.2455 4.3243
Trade price [USD/BTC] 87972104 7061 2483 3440 5260 6722 8434 14369
Trade value [USD] 87972104 2393 12296 6.2272 83.20 368.09 1664 30082
Minutely trade volume [BTC] 786240 38.97 77.78 0.0000 4.5751 16.78 44.59 318.20
Minutely trade count 786240 111.89 91.65 0.0000 50.00 92.00 149.00 443.00
Daily trade volume [BTC] 546 56111 20947 15893 43198 53584 67396 117699

Panel B: Kraken BTC/USD
Trade volume [BTC] 64828482 0.3782 1.1407 0.0000 0.0109 0.0663 0.3000 4.6166
Trade price [USD/BTC] 64828482 6870 2463 3346 4146 6705 8373 13770
Trade value [USD] 64828482 2322 6883 0.0203 79.61 428.78 1896 26686
Minutely trade volume [BTC] 776740 31.57 98.32 0.0000 0.1516 5.5000 26.11 390.25
Minutely trade count 776740 83.46 136.83 0.0000 12.00 48.00 108.00 571.00
Daily trade volume [BTC] 540 45410 22895 0.0000 35512 45702 56880 102264

Panel C: Coinbase BTC/USD
Trade volume [BTC] 74310311 0.1723 0.7369 0.0002 0.0036 0.0178 0.0948 2.5000
Trade price [USD/BTC] 74310311 6879 2450 3359 5058 6596 8283 13977
Trade value [USD] 74310311 1202 5139 1.3742 21.25 101.51 589.81 17286
Minutely trade volume [BTC] 776634 16.48 26.00 0.0000 3.6937 8.1705 18.56 123.88
Minutely trade count 776634 95.68 78.04 0.0000 60.00 86.00 117.00 310.00
Daily trade volume [BTC] 540 23706 10693 7516 15751 22137 29596 58229

Panel D: BitFinex ETH/USD
Trade volume [ETH] 32772982 4.8417 19.37 0.0020 0.3000 1.1127 4.7082 50.33
Trade price [USD/ETH] 32772982 408.11 300.06 90.34 167.00 276.54 589.22 1278
Trade value [USD] 32772982 1528 5733 0.7214 93.42 391.04 1338 15910
Minutely trade volume [ETH] 776634 204.32 404.44 0.0000 18.29 77.40 225.42 1807
Minutely trade count 776634 42.20 42.30 0.0000 12.00 30.00 58.00 190.00
Daily trade volume [ETH] 540 293848 147843 94392 197124 250747 340583 753885

Panel E: BitFinex ETH/BTC
Trade volume [ETH] 43952499 2.5096 17.43 0.0045 0.1745 0.5075 1.9775 28.00
Trade price [BTC/ETH] 43952499 0.0510 0.0233 0.0260 0.0318 0.0360 0.0726 0.1049
Trade value [BTC] 43952499 0.1058 0.9591 0.0002 0.0076 0.0280 0.0808 1.1934
Minutely trade volume [ETH] 786240 140.29 908.35 0.0000 0.0000 19.26 87.62 1912
Minutely trade count 786240 55.90 88.68 0.0000 0.0000 32.00 72.00 397.00
Daily trade volume [ETH] 546 202018 108480 61362 114206 184444 260677 487366

Table 2: Descriptive statistics of trade data. This table reports descriptive trade statistics for all studied
exchanges and markets. Data is shown for the sample period from January 1st, 2018 to June 30th, 2019. Column
S.D. contains the respective standard deviation, and columns Q1% to Q99% indicate quantiles at the given levels.

2.2. Descriptive data statistics

Table 2 reports summary statistics of our trade data. In terms of traded volume, BitFinex

is the largest exchange serving the BTC/USD market in our sample (average daily volume of

56111 BTC). The Kraken exchange ranks second (45410 BTC), and the lowest daily volume was

traded at the Coinbase exchange (23706 BTC). With 0.3483 BTC and 0.3782 BTC, average trade

4To estimate exchange trading volume shares, we obtain data from data.bitcoinity.org for our sample period.

6

data.bitcoinity.org

2018-03 2018-05 2018-07 2018-09 2018-11 2019-01 2019-03 2019-05

0.4

0.6

0.8

1.0

1.2

1.4
Da

y-
en

d
pr

ice
 [U

SD
/B

TC
]

×104

0

1

2

3

4

5

6

7

W
ee

kl
y

tra
di

ng
 v

ol
um

e
[B

TC
]

×105

Figure 1: Evolution of BTC/USD price and traded volume. This plot depicts the day-end price (in UTC time,
left axis, black line) and weekly cumulated trading volume (right axis, blue bar plot) for the BitFinex BTC/USD
market for our sample period.

sizes at the BitFinex and Kraken exchanges are comparable. Again, the Coinbase exchange presents

an exception with an average trade size of 0.1723 BTC. In an average minute, about 100 single trades

are recorded at the exchanges. Figure 1 depicts the evolution of the day-end price and weekly

traded volume for the BTC/USD market at the BitFinex exchange. Our sample period covers

both relatively volatile and stable periods, with phases of price declines and increases. Turning to

descriptive statistics for the BitFinex ETH/USD and ETH/BTC markets, we note a lower number

of trades. On average, 42.20 and 55.90 trades occur per minute for the ETH/USD and ETH/BTC

pairs, respectively. Also, the average value of the trades is lower. For the BitFinex ETH/USD

exchange, we find a mean trade value of 1528 USD, which is lower than the average trade value for

the BTC/USD pair at the same exchange (2393 USD). Similarly, the average trade value for the

ETH/BTC pair is only 0.1058 BTC, which corresponds to less than one third of the mean trade

volume at the BitFinex BTC/USD market (0.3483 BTC).

Table 3 presents summary statistics of the reconstructed limit order book data. Mean relative

bid-ask spreads for the BTC/USD currency pair at the BitFinex and Coinbase exchanges are

at 0.679 bp and 0.385 bp, which is roughly one order of magnitude smaller than at the Kraken

exchange. Compared to the bid-ask spread, mean liquidity costs, i.e., the relative change of the

volume-weighted-average price of market order execution compared to the mid price, for a volume

of 10 BTC (for example, 3.222 bp for the BitFinex exchange), are considerably above the mean bid-

ask spread. The largest average volume at the best-bid price for the BTC/USD pair is found at the

BitFinex exchange (7.742 BTC), and the lowest at the Coinbase exchange (1.217 BTC). Looking at

the results for the BitFinex ETH/USD and ETH/BTC pairs (Panels D and E of Table 3), we find

bid-ask spreads (1.283 bp and 2.822 bp, respectively) to be considerably higher than those of the

7

Count Mean S.D. Q1% Q25% Q50% Q75% Q99%

Panel A: BitFinex BTC/USD
Relative bid-ask spread [bp] 726722 0.679 1.575 0.104 0.143 0.170 0.393 7.044
Best-bid volume [BTC] 726722 7.742 22.067 0.004 0.657 2.586 7.867 72.070
Best-ask volume [BTC] 726722 7.425 20.397 0.004 0.595 2.610 8.060 68.744
Rel. bid VWAP for 10 BTC [bp] 726722 3.222 3.552 0.057 0.313 2.183 4.933 15.067
Rel. ask VWAP for 10 BTC [bp] 726722 3.384 3.775 0.057 0.287 2.250 5.208 15.995

Panel B: Kraken BTC/USD
Relative bid-ask spread [bp] 629457 3.465 4.721 0.094 0.272 1.926 4.953 20.670
Best-bid volume [BTC] 629457 2.589 9.894 0.003 0.186 0.950 2.008 29.547
Rel. bid VWAP for 10 BTC [bp] 629457 8.032 8.400 0.079 3.203 6.044 10.102 43.604

Panel C: Coinbase BTC/USD
Relative bid-ask spread [bp] 759005 0.385 1.505 0.007 0.013 0.016 0.026 6.020
Best-bid volume [BTC] 759005 1.217 4.161 0.001 0.017 0.200 1.000 17.878
Rel. bid VWAP for 10 BTC [bp] 759005 3.262 4.403 0.004 0.013 1.732 4.954 18.932

Panel D: BitFinex ETH/USD
Relative bid-ask spread [bp] 719326 1.283 2.609 0.107 0.224 0.486 0.851 12.453
Best-bid volume [ETH] 719326 74.511 640.457 0.040 10.354 25.102 55.656 578.518
Rel. bid VWAP for 100 ETH [bp] 719326 5.616 5.818 0.083 1.295 4.349 7.898 28.007

Panel E: BitFinex ETH/BTC
Relative bid-ask spread [bp] 723055 2.822 3.327 0.119 0.314 1.466 4.543 13.708
Best-bid volume [ETH] 723055 26.472 216.503 0.022 1.000 4.089 14.745 247.687
Rel. bid VWAP for 100 ETH [bp] 723055 10.195 6.709 0.145 5.443 9.517 13.966 30.015

Table 3: Summary statistics of order book data. This table reports descriptive statistics for the order book
data. Data is shown for the sample period from January 1st, 2018 to June 30th, 2019. Column S.D. contains the
respective standard deviation, and columns Q1% to Q99% indicate quantiles at the given levels.

BTC/USD currency pair. Judging by best-bid volumes and relative VWAP spreads, the BitFinex

ETH/BTC market is the least liquid among the studied pairs at the BitFinex exchange.

2.3. Software

We implement both the execution environment and the reinforcement learning algorithms in

Python (Python Software Foundation, 2016). We store all trade and limit order data in a Post-

greSQL database (PostgreSQL Global Development Group, 2018), which we access using psycopg2

(Varazzo, 2011). Data processing is performed using pandas (McKinney, 2010) and numpy (Van

Der Walt et al., 2011). We implement the order execution environment in line with the interface

specification of the OpenAI Gym library (Brockman et al., 2016). To speed up the implementation

of the virtual limit order exchange, we employ the Numba just-in-time compiler for Python (Lam

et al., 2015). Finally, we use the implementation of the stable-baselines library (Hill et al., 2018)

for the deep double Q-network and proximal policy optimization algorithms. Computations are

performed on an AMD Ryzen Threadripper 1950X CPU, and neural networks are trained with

TensorFlow (Abadi et al., 2015) on a Nvidia GeForce GTX 1080 GPU.

8

3. Methodology

In this section, we describe our methodology. First, we outline how we simulate limit order

matching based on the available market data in a virtual limit order exchange (Section 3.1). Sec-

ond, we formulate the optimal limit order placement problem in the framework of reinforcement

learning (Section 3.2). Third, we train different reinforcement learning algorithms (Section 3.3)

and benchmark the learned strategies against three static execution policies (Section 3.4). Finally,

the performance evaluation of the learned strategies is outlined in Section 3.5.

3.1. Simulating order matching in a virtual limit order exchange

To train and evaluate algorithms for the task of optimal order placement, we set up a virtual

limit order exchange that is based on high-frequency market data. In the following, we describe

how the simulation models the execution of a limit order that is submitted at time step t, and which

we denote as xt = (pt, ωt) with a limit price pt ∈ R+ and volume ωt ∈ R. For ωt > 0, the order is a

sell order, and else a buy order. We assume that the order is valid until the next discrete time step

t+ 1. The simulation of the execution of order xt proceeds in two consecutive steps similar to the

price-time prioritized matching found at most real limit order exchanges (compare, for example,

Gould et al., 2013), and is inspired by the simulation used in Rantil and Dahlen (2018). In the first

step, the simulation checks whether the order can be matched immediately with current orders in

the limit order book. In case of an ask order, the algorithm compares the order’s limit price px

with the prices of limit orders on the bid side of the limit order book, starting with the best-bid

order. By contrast, if the submitted order is a bid order, the ask side of the limit order book is

considered. If prices of order pairs are compatible, i.e., ask prices are below bid prices, a virtual

trade is executed. After completion of the immediate matching, ωim
t and pimt store the resulting

matched volume and volume-weighted execution price, respectively. The sign of ωim
t corresponds

to the sign of ωt. In the second step, the remaining limit order volume ωt − ωim
t enters the virtual

limit order book and execution is simulated based on the historic stream of trades between time

steps t and t+ 1. Same-side orders in the order book at time t with equal or better limit prices are

given priority, since these would have been matched before our newly submitted order. Effectively,

these orders increase the volume of our own limit order. The matching of limit order volume then

proceeds as follows: Any trade from the time-ordered stream of trades following the limit order

book in time step t is checked in terms of execution price. If the trade was executed at a price

higher (lower) than the ask (bid) limit price pt, the traded volume reduces the remaining volume

of our own limit order. After all trades between time steps t and t + 1 have been checked, the

limit order matching results in the execution of some volume ωlim
t with |ωlim

t | ∈ [0, ωt − ωim
t] at the

9

volume-weighted execution price plimt .

Several approximations are made by simulating limit order matching this way. First, we assume

that the submission of our own orders is instantaneous in the sense that there is no time delay

between the observation of the limit order book and the subsequent generation and submission

of our own limit order. In practice, this time delay could be minimized by technological means

such as direct short-distance links to the exchange and optimized hard- and software. Second,

we assume that there is no hidden liquidity in the limit order book, e.g., from iceberg orders.

As only one exchange has supported hidden liquidity during our sample period (the BitFinex

exchange, compare Schnaubelt et al., 2019), we conjecture that this assumption does not severely

affect empirical results. Third, we assume that the submission of our limit orders does not have a

permanent impact on market price or liquidity and does not impact the behavior of other market

participants.5 A rule of thumb is that permanent price impact is insignificant as long as the daily

participation rate is below 10 percent (Almgren and Chriss, 2001, p. 24). Limit order markets are

typically found to possess a relatively high resilience of liquidity, i.e., liquidity levels revert to their

average within a short period of time (Degryse et al., 2005; Cummings and Frino, 2010; Gomber

et al., 2015). For cryptocurrency limit order markets, Schnaubelt et al. (2019) similarly find that

liquidity close to the bid-ask spread recovers within a few seconds after trades in the top percentile

of trading volume. As our empirical study focuses on the stage of optimal order placement and

assumes that large volumes have been split into smaller blocks distributed over the day during

order scheduling, and to keep our empirical analysis within the limits of these assumptions, we

select initial volumes v0 that are in the order of magnitude of typical average minutely trading

volume. Also, our sampling frequency of one minute is considerably larger than typical recovery

time scales.

3.2. A reinforcement learning formulation of optimal order placement

Next, we formulate the optimal order placement problem as given in Nevmyvaka et al. (2006)

in the framework of reinforcement learning.6 The agent, which we can think of as an investor,

faces the following problem: Over the course of an episode, i.e., a finite number T of discrete time

steps, the agent has to liquidate an initial position of v0 ∈ R units of an asset (e.g., stocks, future

contracts, foreign exchange) at a limit order exchange. The initial volume v0 is positive in the

case of selling the asset, and negative when buying. The overall goal of the agent is to minimize

5This assumption is not uncommon in the study of reinforcement learning for optimal execution, see, for example,
Nevmyvaka et al. (2006) or Hendricks and Wilcox (2014).

6In the following, we use the common notation and terminology for reinforcement learning from Sutton and Barto
(2018).

10

the total execution costs of the full volume, which consist of an implementation shortfall (Perold,

1988; Almgren and Chriss, 2001) and an order commission charged by the exchange. In every time

step t ∈ {0, . . . , T − 1}, the agent observes the current environment through a state variable st and

chooses an action at from a discrete set of possible actions to execute the position. This action

encodes the price of a limit order that is submitted to the virtual exchange. The agent follows

a policy π that specifies which action to choose given the observed state. Our virtual exchange

then simulates the execution of the order, which may result in (partial) order execution. Based on

the volume and price of the executed trade, the agent receives an immediate reward rt+1, and the

remaining volume is retained for execution in the next time step as vt+1.

In the following, we formalize this description and extend it to a complete description of the

reinforcement learning environment for the subsequent empirical analysis. First, Section 3.2.1

describes the action space. Second, Section 3.2.2 provides details on the reward function. Third,

we discuss the state space in Section 3.2.3.

3.2.1. Action space

The agent chooses an action at from a finite set of actions A = {0, 1, . . . , 2Naction} at every time

step t, where Naction specifies the size of the action space. The first action (a = 0) encodes the

trivial limit order of zero size. In line with Nevmyvaka et al. (2006), the remaining actions encode

the number of ticks that the order is placed away from the current best-bid or best-ask price. The

size of the limit order is always the remaining volume in the current time step, vt. Specifically, if

vt > 0, the submitted order xt = (pt, ωt) with limit price pt and size ωt for a given action at is

xsellt =

 (askt + ∆p(at −Naction), vt) , if at > 0,

(0, 0), if at = 0.
(1)

Herein, ∆p denotes the tick size, i.e., the minimal increment of the limit price of the exchange, and

askt is the best-ask price at time step t. Similarly, if vt < 0, the limit order xt is given by

xbuyt =

 (bidt −∆p(at −Naction), vt) , if at > 0,

(0, 0), if at = 0,
(2)

where bidt denotes the best-bid price at time step t. The limit order persists until complete

execution or until the limit order is updated in time step t+1. In the last time step, any remaining

volume to sell (buy) is executed with a market order, i.e., with a limit order price pT−1 = −∞

(pT−1 =∞) to ensure that the position is closed.

11

3.2.2. Reward function

After its action at has been executed in the matching simulation, we reward the agent with a

scalar reward signal rt+1 ∈ R given by

rt+1 =
ωex
t

v0

(
ωex
t p

ex
t − cext

ωex
t mid0

− 1

)
. (3)

Here, ωex
t = ωim

t + ωlim
t denotes the total executed volume, and pext = (pimt ω

im
t + plimt ωlim

t)/ωex
t

is the corresponding volume-weighted average execution price. The total exchange commission is

given in terms of a fraction of trade value, i.e., cext = C im|ωim
t |pimt + C lim|ωlim

t |plimt ≥ 0, where

C im, C lim ∈ R+ are relative exchange commissions for taking and providing liquidity, respectively.

We measure the total realized implementation shortfall relative to the mid price at the first time

step, i.e., mid0 = (ask0 + bid0)/2. Instead of considering absolute proceeds from the trade as in

Nevmyvaka et al. (2006), we use a scaled reward function to account for potential changes in market

prices over the course of the training and testing periods. This form of the reward function has the

favorable property that the sum of all rewards of an episode is the relative total implementation

shortfall for executing the volume v0, i.e.,

T∑
t=1

rt =

∑T−1
t=0 [ωex

t p
ex
t − cext]

v0 mid0
− 1. (4)

After each episode, we store the executed volume profile (ωex
0 , . . . , ω

ex
T−1), a per-step reward profile

(r1, . . . , rT) and a commission profile (cex0 , . . . , c
ex
T−1) for subsequent performance evaluation.

3.2.3. State space and feature generation

To support its choice of action, the agent observes the market state represented as a vector

st = (ϑt, ρt, x̃t,1, . . . , x̃t,Nfeature
) ∈ S = (0, 1]× [−1, 1]× RNfeature . (5)

The first entry encodes the time remaining to liquidate the position, scaled to the unit interval, i.e.,

ϑt = 1 − t/T . For the second entry, we calculate the remaining volume as a fraction of the initial

volume as ρt = vt/|v0|. For the remaining entries, we generate Nfeature features xt,1, . . . , xt,Nfeature

that capture the current state of the limit order book and previous trading activity. Based on

the literature7, we determine several measures of market liquidity and determinants of temporary

and permanent price impact. All features employed in this study are listed in Table 4. Following

7A survey on the topic can be found in Gould et al. (2013).

12

Variable Description Reference(s)

Transaction imbalances
TC-IMBAL Trade count imbalance: Difference of the number of sell trades

to the number of buy trades in the past minute, normalized by
the sum of these counts

Gopikrishnan et al.
(2000); Plerou et al.
(2002)

TV -IMBAL Trade volume imbalance: Difference of the sell to buy trade vol-
ume in the past minute, normalized by the total traded volume
in the past minute

Cao et al. (2009); Cont
et al. (2014)

Best-order volumes and imbalances
BO-IMBAL Best-order imbalance: Difference between the current best-bid

volume and the current best-ask volume, scaled by the sum of
best-bid and best-ask volumes

Gould and Bonart
(2016)

V OL-BID
V OL-ASK

Best-order volumes: Current volume in the order book at the
best-bid and best-ask prices

Ranaldo (2004)

Q-IMBAL(Np) Queue imbalance: Difference between the bid and ask volumes
at the Np ∈ {5, 10, 15, 20} best price steps of the current order
book, scaled by the sum of the volumes

Cao et al. (2009)

CV OL-BID(Np)
CV OL-ASK(Np)

Cumulated order volumes: Current cumulated volume in the
order book at the best Np ∈ {10, 15, 20} bid or ask price steps

Cao et al. (2009)

Volatility and current price drift
V OLA Mid-price volatility: Volatility of the mid price, calculated as

the square root of the mean of squared logarithmic mid-price
returns over the past 30 minutes

Danielsson and Payne
(2001); Ranaldo (2004)

DRIFT Mid-price return drift: Simple return of the mid price relative
to the mid price of the first time step

Current cost of liquidity
LC-BID(V)
LC-ASK(V)

Relative buy/sell liquidity cost: Current cost of the immedi-
ate execution of a buy or sell market order, relative to current
mid price. We use volumes of V ∈ {10, 20, 30, 50}BTC and
V ∈ {10, 20, 30, 50, 100}ETH for the BTC/USD pair and ETH
denominated markets, respectively.

Gomber et al. (2015)

BA-SPREAD Bid-ask spread: Current bid-ask spread, calculated as the dif-
ference between ask and bid price scaled by the mid price

Ranaldo (2004); Cao
et al. (2009)

Table 4: Description of features. This table describes all features used within the reinforcement learning models
along with relevant references.

common procedure for data preprocessing when applying neural networks, we scale every feature

with a rolling-window standardization,

x̃t,i =
xt,i − x̄t,i
σt,i

, ∀ i ∈ {1, . . . , Nfeatures}, (6)

where x̄t,i and σt,i denote the rolling mean and standard deviation over the past 1440 values (i.e.,

one trading day) of the i-th feature.

13

3.3. Reinforcement learning algorithms

The goal of the agent is to maximize cumulated future rewards, which are expressed as the sum

of all discounted future returns following time step t, i.e.,

Gt =

T∑
k=t+1

γk−t−1Rk, (7)

where γ ∈ [0, 1] denotes the discount factor.8 For small values of γ, the agent’s goal is to maximize

immediate rewards; if instead γ is close to one, the agent behaves long-sighted (Sutton and Barto,

2018). As we assess the agent’s performance in terms of the total implementation shortfall after

T steps, we set γ = 1 to obtain an equal weight for all time steps. The behavior of the agent is

described by a policy π(a|s), which is the probability of choosing action At = a conditional on the

observed state St = s. The expected return of a state s is described by the state-value function

vπ(s) = Eπ [Gt|St = s] , ∀s ∈ S, (8)

where Eπ[•] denotes the expected value of a random variable given that the agent behaves according

to policy π (Sutton and Barto, 2018). The action-value function under policy π describes the

expected return of an action a for an agent in some state s, and is defined as

qπ(s, a) = Eπ [Gt|St = s,At = a] , ∀s ∈ S,∀a ∈ A. (9)

An optimal policy π∗ has the optimal state-value function v∗(s) = maxπ vπ(s) and the optimal

action-value function q∗(s, a) = maxπ qπ(s, a). The optimal action-value function fulfills a Bellman

optimality equation (Sutton and Barto, 2018) which states that the optimal action-value function

is given by the expected reward of action a plus the discounted expected value of the best action

in the subsequent state St+1, i.e.,

q∗(s, a) = ESt+1,Rt+1

[
Rt+1 + γmax

a′
q∗(St+1, a

′) |St = s,At = a

]
. (10)

In the following, we describe the reinforcement learning algorithms studied in this paper, specif-

ically, a problem-specific backward-induction Q-learning algorithm (Section 3.3.1), deep double Q-

networks (Section 3.3.2) and proximal policy optimization (Section 3.3.3). We choose the latter

two algorithms as they are state-of-the-art representatives of two common (deep) reinforcement

8Therein, we use uppercase letters to emphasize random variables.

14

learning approaches, i.e., value-based and policy-based algorithms, and are suitable for discrete

action spaces.

3.3.1. Backward-induction Q-learning

As a first benchmark, we employ the problem-specific reinforcement learning algorithm of

Nevmyvaka et al. (2006). Their reinforcement learning algorithm is similar to the tabular Q-

learning method, however exploits the specific structure of the optimal placement problem and the

fact that all market data used in training are known a priori. Tabular Q-learning (Watkins, 1989)

approximates the optimal action-value function q∗ by iteratively updating the so-called Q table

according to the update rule

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
, (11)

where α ∈]0, 1] denotes a constant step-size parameter.

By contrast, the approach of Nevmyvaka et al. (2006) assumes that the optimal placement

problem can be approximated by a Markov decision process. Consequently, the optimal action

does not depend on any previous action, and the optimal action-value function can be learned

backwards in time, starting at the last time step, t = T − 1. As market data are finite, we

can introduce the following sampling scheme to collect all possible state-action-reward experience

tuples that can occur in time step t: First, quantile-based discretization functions for the remaining

volume, cρ : [−1, 1] 7→ {0, . . . , kρ}, and for the market variables, cx : RNfeature 7→ {0, . . . , kx}Nfeature ,

are introduced, which return the indices of one of kρ + 1 (for cx, kx + 1) classes. In a second step,

we iterate over all possible discretized state variables

s̃t = (T − t, cρ(ρt), cx(x̃t)), ∀ρt ∈ R, x̃t ∈ T , (12)

where T denotes the available standardized training data, and R is the set of discretized remaining

volumes given by R = {0, 1/kρ, 2/kρ, . . . , 1} in the case of selling the asset. Third, for every state,

we simulate the execution of all actions a ∈ A in the environment, and add the resulting new states

s̃t+1,a = (T − t− 1, cρ(ρt+1), cx(x̃t+1)), ∀a ∈ A, (13)

and rewards rt+1,a as experience tuples ea = (s̃t, at, rt+1,a, s̃t+1,a), ∀a ∈ A, to the experience set Dt
for this time step. Finally, the action-value table can be updated for all states of time step t by

15

averaging over expected returns, i.e.,

Q(s̃, a) =
1

|Dt(s̃)|
∑

(s̃t,at,rt+1,s̃t+1)∈Dt(s̃)

rt+1 + max
a′

Q(s̃t+1, a
′), (14)

where Dt(s̃) = {(s̃t, at, rt+1, s̃t+1) ∈ Dt : s̃t = s̃} denotes the subset of experience for the updated

state s̃. The elements of the Q-table for the next state, Q(s̃t+1, a
′), are already fully populated as

time step t+ 1 has been visited in the last iteration. The algorithm proceeds backwards until the

first time step is reached. In line with Nevmyvaka et al. (2006), we use a volume discretization with

kρ = 8 and feature discretization with kx = 10, where bin edges are based on the feature’s deciles.

3.3.2. Deep double Q-networks

As second reinforcement learning algorithm, we employ deep double Q-networks (DDQN), which

have been successfully applied to complex tasks such as playing Atari video games (van Hasselt

et al., 2015). The following summary of the algorithm is based on the initial papers (Mnih et al.,

2013; van Hasselt et al., 2015; Mnih et al., 2015) as well as the implementation in Hill et al. (2018).

For high-dimensional state spaces, tabular Q-learning does not generalize well. Therefore, the

action-value function is often estimated by a function approximator. Specifically, deep Q-learning

(Mnih et al., 2013, 2015) uses a neural network (Q-network), parametrized by network weights θ,

to estimate the optimal action-value function, Qθ(s, a) ≈ q∗(s, a). To train the Q-network, one

iteratively minimizes a sequence of loss functions,

Li(θi) = ES,A
[(
yi(S,A)−Qθi(S,A)

)2]
, (15)

where θi denotes the currently optimized network weights, and the target yi(s, a) is the expected

action value obtained from a target Q-network with parameters θ−i , i.e.,

yDQN

i (s, a) = ES′
[
Rt+1 + γmax

a′
Qθ−i

(S′, a′) |St = s,At = a

]
. (16)

The target network parameters θ−i are set to the current parameter values θi after every C steps,

and are kept constant in between. The expectation in Equation (15) is taken with respect to the

behavior distribution, i.e., the probability distribution over states S and actions A. To decorrelate

the sequence of training observations, increase data efficiency and avoid unstable parameters during

training, deep Q-learning introduces a replay memory. The agent’s last N experience tuples et =

(st, at, rt+1, st+1) are stored in a data set D = {e1, . . . , eN}. In every time step, the agent first

executes an action according to an ε-greedy policy: With probability 1 − ε, the algorithm selects

16

the optimal (greedy) action according to the current policy, i.e., argmaxa′Qθ−i
(st, a

′), and with

probability ε, it selects a random action to explore the environment. Then, previous experience

is replayed: A minibatch consisting of random experience observations from the replay memory

and the experience from the currently executed action is used to minimize the loss function with

stochastic gradient descent. In Equation (16), the use of the maximum operator implies that

the same network weights θ−i are used to select and evaluate action a′, which bears the risk of

overoptimistic value estimates. To prevent this, deep double Q-networks (van Hasselt et al., 2015)

decouple the selection and evaluation of the action by replacing the target with

yDDQN

i (s, a) = ES′
[
Rt+1 + γQθ−i

(S′, argmaxa′Qθi(S
′, a′)) |S = s,A = a

]
. (17)

In our study, we use the implementation of deep double Q-learning from Hill et al. (2018),

and keep most parameters at their default values. Specifically, we use a feed-forward network

architecture with two hidden layers, each consisting of 64 neurons. The size of the replay memory

is N = 5 × 104 experience tuples, and we update the target network every C = 500 steps. We

increase the minibatch size to 256 to reduce noise by averaging over larger experience samples. The

algorithm is trained over a total of 107 time steps. The probability of selecting a random action, ε,

is 1 at the beginning of the training, and reduced linearly in time over the first quarter of training

time steps to a value of 0.02, which is then kept constant until the end of training.

3.3.3. Proximal policy optimization

As third reinforcement learning algorithm, we employ the proximal policy optimization (PPO)

algorithm. The following summary is based on Schulman et al. (2017a) and Schulman et al. (2017b),

as well as the implementation in Hill et al. (2018). PPO is a state-of-the-art actor-critic method that

targets data efficiency and robustness, rendering it an attractive choice in light of noisy financial

data. As a policy gradient method, PPO seeks to directly learn a parameterized stochastic policy

πθ(a|s) : S × A 7→ [0, 1] (also called policy surrogate), by maximizing an objective function L(θ)

with respect to θ. In our implementation, the policy function is approximated by a neural network.

PPO introduces the objective function

LPPO
t (θ) = ÊN [LCLIP

t (θ)− cVFL
VF
t (θ) + cHH[πθ](st)] , (18)

where ÊN denotes an average over a finite sample of experience. Typically, the current policy π is

run for N time steps, and then the sampled experience trajectory is used to update the policy π

with minibatch stochastic gradient descent or Adam (Kingma and Ba, 2017). With the first term,

17

PPO introduces a clipped objective function,

LCLIP
t (θ) = min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)
, (19)

which suppresses very large policy updates by clipping the probability ratio rt(θ) = πθ(at|st)
πθold (at|st)

such

that it falls within the interval [1− ε, 1 + ε]. The advantage function Aπ(s, a) measures how much

better the action is compared to the policy’s default behavior, i.e., Aπ(s, a) = Qπ(s, a)− vπ(s). In

practice, the advantage function is estimated from the sampled trajectory of length N with the

generalized advantage estimator (Schulman et al., 2018) given by

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)N−t+1δN−1, (20)

which computes an exponentially-weighted average of the temporal-difference residual of vπ, δt =

rt + γvπ(st+1)− vπ(st) over time steps t to N − 1. The advantage estimator depends on the state-

value function vπ(st), which is estimated with a second network, the critic network. As parameters

are shared between the state-value function estimator and the policy surrogate π(a|s; θ), a value-

function error term

LVF
t = (vθ(st)− vtarg

t)2 (21)

is added to the objective function (scaled by a positive constant parameter cVF), where vtarg

t denotes

the state-value function’s training target. Following Williams (1992) and Mnih et al. (2016), PPO

also adds the entropy of the policy πθ for state st, H[πθ](st), scaled by a constant positive parameter

cH, to the objective in order to discourage early convergence to purely deterministic policies, and

hence to improve exploration.

Our parameter settings are based on the default values of Hill et al. (2018). Specifically, the

policy network is a feed-forward network with two hidden layers, each consisting of 64 neurons. We

sample from a single environment and use the default trajectory length of N = 128. The weighting

factor of the generalized advantage estimator is set to λ = 0.95. The clipping parameter ε is set to

0.2, the value-function error and entropy terms are scaled by cVF = 0.5 and cH = 0.01, respectively.

The objective is maximized with an Adam minibatch size of 4 and a learning rate of 2.5 × 10−4.

The algorithm is trained over a total of 107 time steps.

3.4. Benchmark execution strategies

3.4.1. Submit-and-leave execution

As a first benchmark, we employ a submit-and-leave strategy (Nevmyvaka et al., 2005, 2006).

In the first time step, the strategy submits a limit order with the full volume v0 at the best limit

18

price observed in this time step. Specifically, for a sell volume, v0 > 0, (buy volume, v0 < 0), the

limit order is placed at the best-ask price, i.e., at xsell0 = ask0 (xbuy0 = bid0). This order stays

unchanged and uncancelled until the end of the episode. If the limit order is not executed, all

volume remaining at the final time step is executed with a market order.

3.4.2. Immediate market-order execution

As a second benchmark, we consider a strategy that immediately executes all volume v0 at the

initial time step using an appropriate market order. The market order matches with orders at the

opposite side of the limit order book, thereby accepting potentially high liquidity costs.

3.4.3. Time-weighted market-order execution

As last benchmark strategy, we employ time-weighted market-order execution. This strategy

executes a volume fraction of v0/T in every time step as a market order. Under the assumption

that price impact is linear in executed volume and in absence of short-term price predictability,

this strategy is optimal (Bertsimas and Lo, 1998).

3.5. Study design and performance evaluation

We validate reinforcement learning models in a rolling-window forward-validation scheme (Tash-

man, 2000; Schnaubelt, 2019). Specifically, we train models on six months of training data, and

apply models on the subsequent out-of-sample validation period of three months. We then roll for-

ward the validation period by three months. Hence, the first validation period comprises the months

July, August and September 2018. We use a total of four non-overlapping validation periods, i.e.,

train models in four runs for every setting of exchange, market and initial volume.

Each simulated episode in the execution environment corresponds to a block of consecutive

observations from our data set. For the training of deep reinforcement learning algorithms, we

randomly select a root observation from the data set to initialize the state of the environment at

the beginning of an episode. As the agent steps forward in time, observations from the block of

data following the root observation are used in the environment. For out-of-sample testing, we

iterate over all observations in the validation period and select every observation exactly once as

root observation to initialize the execution environment.9 To evaluate the performance of execution

strategies, we consider the average relative implementation shortfall, i.e., the total realized shortfall

of an episode relative to the mid price at the start of the episode.

9To be precise, we do not select an observation as root observation during training or validation if observations
are missing in the subsequent block of T − 1 contiguous time steps.

19

4. Results

We present our results in four steps: First, we compare the out-of-sample performance of

reinforcement learning algorithms and benchmark strategies (Section 4.1). Next, we perform in-

depth analyses to shed light into the black box of deep reinforcement learning. To this end,

we examine the executed volume profile of the strategies in Section 4.2. Third, we analyze the

contribution of features in Section 4.3. To understand their decision making in greater detail, we

finally examine the chosen actions conditional on individual feature values (Section 4.4).

4.1. Overview of empirical findings

First, we compare the out-of-sample performance of reinforcement learning algorithms with our

benchmark execution strategies. To this end, we independently train the agents on our four training

sets for different combinations of exchange, currency pair and initial trading volume v0. Following

Nevmyvaka et al. (2006), we select an episode length of T = 4. For the BTC/USD market, we

calculate results for initial trading volumes v0 of 10 BTC, 20 BTC and 50 BTC. On the one hand,

these volumes correspond to approximately 25 to 300 percent of average minutely trading volume

(compare Table 2), hence seem still in line with the approximations outlined in Section 3.1. On

the other hand, these volumes exceed typical best-bid/best-ask order book depths (compare Table

3), hence their execution would typically incur high liquidity costs. Similarly, we select initial

volumes of 100 ETH and 200 ETH for the ETH/USD and ETH/BTC markets. Then, we evaluate

the trained agents in validation environments that are based on the respective test data sets.

4.1.1. Comparing algorithms by total out-of-sample shortfall

Panel A of Table 5 depicts mean realized implementation shortfalls including exchange com-

missions relative to the mid price at the beginning of the episode. For example, if the agent

is asked to sell starting from an initial mid price mid0 = 5000 USD, a realized implementation

shortfall of -15 bp corresponds to an average execution price including exchange commissions of

4992.5 USD. As expected, executing all volume in the first time step with a market order (strategy

IM) yields the worst realized shortfall in all settings, as the market order ‘eats into the order book’

to fill the requested volume. In comparison, splitting the market order equally over all T time

steps (strategy TW) significantly reduces the realized implementation shortfall. For the example

of selling v0 = 20 BTC at the BitFinex BTC/USD market, the IM strategy results in a shortfall of

-24.98 bp, which is reduced by 13.29 percent to -21.66 bp with TW execution. Averaging over all

exchanges, the TW strategy reduces the total shortfall for 10 BTC by 7.24 percent and for 50 BTC

by 19.57 percent when compared to the IM strategy. A further improvement over the TW strategy

20

Exchange Market Volume v0 IM TW S&L BQL DDQN PPO

Panel A: Mean relative shortfall, including all exchange commissions
BitFinex BTC/USD -10 BTC -22.8704 -21.0937 -16.8267 -16.9715 -16.8998 -15.7637

(485984 obs.) -20 BTC -25.0609 -21.7078 -18.5535 -18.1985 -18.1207 -17.1031
-50 BTC -30.1776 -23.4662 -23.0463 -21.4878 -21.4081 -20.7630
10 BTC -22.8517 -21.0325 -16.8143 -16.9482 -16.9093 -15.7672
20 BTC -24.9760 -21.6577 -18.5294 -18.2759 -18.1973 -17.1093
50 BTC -30.0132 -23.3858 -22.9998 -21.5530 -21.3757 -21.1172

ETH/BTC 100 ETH -27.8538 -23.7508 -22.8057 -21.4498 -22.9759 -21.2470
(482924 obs.) 200 ETH -31.9487 -25.3424 -26.7186 -24.3196 -25.7515 -24.6528
ETH/USD 100 ETH -24.2229 -21.5278 -18.8991 -18.4362 -18.8688 -17.3880
(478633 obs.) 200 ETH -26.9632 -22.5119 -21.1788 -20.1197 -20.2406 -19.2230

Kraken BTC/USD 10 BTC -31.6315 -28.8502 -23.7581 -23.2141 -23.5195 -22.4810
(435983 obs.) 20 BTC -34.3564 -29.9004 -26.1868 -25.1410 -25.3096 -24.5956

50 BTC -40.9416 -32.3358 -32.1192 -30.0486 -30.1216 -30.1082
Coinbase BTC/USD 10 BTC -32.7858 -31.1540 -19.7012 -19.7012 -17.8253 -16.1073

(518911 obs.) 20 BTC -34.6456 -31.7403 -24.2416 -24.0410 -22.5267 -20.9857
50 BTC -39.4232 -33.2700 -32.3775 -30.5668 -30.5148 -29.4034

Panel B: Mean relative shortfall, excluding exchange commissions
BitFinex BTC/USD -10 BTC -2.8648 -1.0916 -2.3127 -2.2816 -1.3899 -1.3475

(485984 obs.) -20 BTC -5.0510 -1.7044 -3.2922 -2.7487 -2.2311 -1.9357
-50 BTC -10.1577 -3.4594 -6.5148 -4.5511 -3.9597 -4.1483
10 BTC -2.8576 -1.0346 -2.2899 -2.2513 -1.3583 -1.3373
20 BTC -4.9863 -1.6610 -3.2626 -2.8805 -2.2582 -1.9664
50 BTC -10.0338 -3.3928 -6.4723 -4.6790 -4.3049 -4.2280

ETH/BTC 100 ETH -7.8695 -3.7583 -5.8203 -3.7579 -4.4381 -3.7656
(482924 obs.) 200 ETH -11.9727 -5.3531 -9.1389 -5.7677 -6.9593 -6.2346
ETH/USD 100 ETH -4.2314 -1.5308 -3.6133 -2.9864 -2.2410 -1.7288
(478633 obs.) 200 ETH -6.9772 -2.5169 -5.0705 -3.5393 -3.2318 -2.6883

Kraken BTC/USD 10 BTC -5.6462 -2.8576 -2.9150 -2.1588 -1.8293 -1.7620
(435983 obs.) 20 BTC -8.3782 -3.9106 -4.6408 -3.2633 -3.2253 -3.2507

50 BTC -14.9806 -6.3523 -9.4454 -7.3105 -7.4165 -7.4708
Coinbase BTC/USD 10 BTC -2.8001 -1.1598 -2.5853 -2.5853 -1.1749 -1.4980

(518911 obs.) 20 BTC -4.6670 -1.7493 -3.7709 -3.3530 -2.1598 -2.3942
50 BTC -9.4656 -3.2852 -7.8789 -5.2631 -4.8892 -5.5259

Table 5: Comparison of execution strategies by realized shortfall. This table compares the performance of
execution strategies for different exchanges, markets and initial execution volumes v0 for out-of-sample test data. All
results are averaged over four model runs with each with individual training and test data sets. We depict results for
immediate market-order execution (IM), time-weighted market-order execution (TW), submit-and-leave execution
(S&L), backwards-induction Q-learning (BQL), deep double Q-networks (DDQN) and proximal policy optimization
(PPO). Panel A shows the mean realized implementation shortfall including exchange commissions relative to the
mid price at the beginning of the episode, in basis points. Panel B reports mean relative implementation shortfalls
excluding exchange commissions, in basis points.

is achieved by the submit-and-leave strategy (S&L), which submits a single limit order at the start

of the episode and executes all volume remaining in the last time step as a market order. This way,

part of the volume is executed in limit orders at lower commissions compared to market orders,

which reduces the total implementation shortfall on average by 11.45 percent over the TW exe-

cution strategy. Switching to the more flexible backwards-induction Q-learning approach (BQL)

results in a marginal improvement of 3.51 percent over the static S&L strategy.

21

Turning to the performance of deep reinforcement learning agents, we find that deep double

Q-networks (DDQN) achieve an average performance improvement of 3.61 percent over the S&L

strategy. In comparison, proximal policy optimization (PPO) reduces the overall implementation

shortfall by an average of 8.53 percent over the S&L strategy. For executing a volume of 20 BTC

at the Coinbase exchange for the currency pair BTC/USD, the realized shortfall with the PPO

agent is at -20.9857 bp, a significant improvement when compared to the value of -34.6456 bp

for IM execution and -22.5267 bp for the second-best result realized with DDQN. We find that

implementation shortfalls for selling and buying are very similar. For example, buying a volume

of 10 BTC at the BitFinex BTC/USD market with the PPO agent results in a total shortfall of

-15.7637 bp, while selling results in nearly the same value of -15.7672 bp. As bid- and ask-side

statistics of limit order books exhibit a large degree of symmetry (compare, for example, Biais

et al., 1995; Potters and Bouchaud, 2003; Schnaubelt et al., 2019), similar behaviors for buying and

selling are unsurprising. We also observe that the relative performance improvement of strategies

involving limit orders declines with increasing execution volumes. While using the PPO agent to

execute 10 BTC results in an average shortfall reduction of 37.71 percent over IM execution, trading

20 BTC (50 BTC) results in a relative improvement of 26.95 (23.72) percent.

The complexity of deep reinforcement learning algorithms makes it difficult to trace the observed

performance differences. We hypothesize that the performance improvement of PPO over DDQN

might be due to several factors: First, in cases where the policy function is easier to approximate

than the action-value function, PPO as a policy gradient method has an advantage over value-

based algorithms such as DDQN (Sutton and Barto, 2018, p. 266). We conjecture that the

action-value function might be difficult to approximate in our case because of the high degree of

noise in limit order data. Second, policy gradient methods are able to learn stochastic policies,

which could, compared to the ε-greedy policy of DDQN, result in a better exploration of the

available action space. Third, PPO explicitly targets robustness, fast convergence and high data

efficiency (Schulman et al., 2017b), which might represent a key advantage for applications with

noisy financial data, such as the limit order placement problem studied here. As “the design of an

ANN [artificial neural network] is more of an art than a science” (Zhang et al., 1998, p. 42) and we

have not been able to tune hyperparameters of neither the DDQN nor the PPO algorithm because

of their computationally very expensive training, we conjecture that there might be parameter

settings with even better performance.

The economic significance of shortfall differences between limit order placement strategies be-

comes apparent when comparing shortfall reductions to average excess returns of statistical arbi-

trage strategies. In comparison to the S&L strategy, which does not require training and is easily

22

implemented, PPO reduces average execution costs by roughly 2 bp. Taking the random forest-

based cryptocurrency trading strategy of Fischer et al. (2019) as an example, typical mean returns

per trade are at 3.8 bp after transaction costs. A reduction of transaction costs by 2 bp would

increase mean excess returns by the same amount to 5.8 bp, corresponding to a performance im-

provement of the strategy of over 50 percent. Hence, even relatively small reductions of execution

costs may greatly impact the financial performance of high-turnover trading strategies.

4.1.2. The role of exchange commissions

To study the role of exchange commissions for total shortfall results, Panel B of Table 5 reports

raw shortfalls, i.e., realized shortfalls before including exchange commissions. Comparing these

results to the results of Panel A, i.e., including exchange commissions, we find that the larger part of

total realized implementation shortfalls is caused by exchange commissions. For smaller execution

volumes of 10 BTC, roughly ten percent of execution costs are due to the raw implementation

shortfall, i.e., are related to realized price differences. The majority of costs can be attributed

to exchange commissions. For larger volumes, the fraction of shortfall that is due to exchange

commissions is still well above 50 percent. Hence, the avoidance of exchange commissions is a major

factor in the reduction of total implementation shortfalls at all studied cryptocurrency exchanges.

As exchange commissions are part of the agent’s reward function, reinforcement learning models are

trained to reduce the total implementation shortfall, rather than the raw shortfall. Nevertheless,

we find similar rankings of algorithms before and after the inclusion of exchange commissions.

In many cases, PPO realizes the lowest magnitude in implementation shortfall before exchange

commissions among all reinforcement learning algorithms. There is one exception in the similarity

of strategy rankings: Time-weighted execution with market orders (TW) yields the best results in

terms of raw shortfall. However, as this strategy executes all volume in market orders incurring

higher exchange commissions, this advantage vanishes after exchange commissions. In summary,

we note that – due to the elevated role of exchange commissions in overall shortfalls – differences in

total shortfalls between strategies are driven by differences in realized exchange commissions rather

than differences in raw implementation shortfalls. Hence, a large part of the reduction of shortfalls

is due to a better use of limit orders, for example, by achieving better execution prices or a higher

probability of limit order execution.

4.1.3. Fraction of limit order execution

To further analyze the latter reason, we calculate the fraction of volume that is executed with

limit orders, and present results in Table 6. We make the following observations: First, with

increasing initial volume v0, the fraction of volume executed in limit orders decreases. We conjecture

23

Exchange Market Volume v0 S&L BQL DDQN PPO

BitFinex BTC/USD 10 BTC 0.5476 0.5303 0.4449 0.5570
20 BTC 0.4733 0.4605 0.4061 0.4857
50 BTC 0.3473 0.3126 0.2929 0.3111

ETH/BTC 100 ETH 0.3015 0.2308 0.1462 0.2519
200 ETH 0.2420 0.1448 0.1208 0.1582

ETH/USD 100 ETH 0.4714 0.4550 0.3372 0.4341
200 ETH 0.3892 0.3420 0.2991 0.3465

Kraken BTC/USD 10 BTC 0.5157 0.4945 0.4310 0.5281
20 BTC 0.4454 0.4122 0.3916 0.4655
50 BTC 0.3326 0.3262 0.3295 0.3363

Coinbase BTC/USD 10 BTC 0.4295 0.4295 0.4450 0.5130
20 BTC 0.3176 0.3104 0.3211 0.3803
50 BTC 0.1834 0.1565 0.1458 0.2041

Table 6: Fraction of volume executed with limit orders. This table depicts the average fraction of volume
executed with limit orders instead of immediate market order execution. We depict results for submit-and-leave
execution (S&L), backwards-induction Q-learning (BQL), deep double Q-networks (DDQN) and proximal policy
optimization (PPO), for different exchanges, markets and initial volumes v0. Results for immediate and time-weighted
execution are not shown as they execute all volume in market orders, thus exhibit a zero limit order fraction.

that liquidity is insufficient to execute larger volumes in limit orders over a relatively short time

frame. Second, for the BTC/USD currency pair, the BitFinex exchange exhibits the highest fraction

of limit orders. Looking at the descriptive statistics in Tables 2 and 3, BitFinex also has the tightest

bid-ask spread and the highest trade volume and frequency, which might well explain a higher

probability of limit order execution. Also, the reduction in the fraction of limit order execution

with increasing volume is less pronounced for BitFinex than for Coinbase. Third, the S&L strategy,

which submits orders at the best-ask price, executes a larger share of volume in limit orders than the

BQL or DDQN strategies, and in some cases also more than the PPO agent. Yet, PPO execution

still yields superior overall results in most of these cases, for example in executing 20 BTC at the

Coinbase BTC/USD market (Panel A of Table 5). We conjecture that PPO compensates the lower

limit order volume by posting limit orders at less aggressive prices, which are adapted in every time

step and potentially better reflect the expected probability of execution given the current market

state.10

4.1.4. Robustness of empirical results

For the majority of settings in Table 5, PPO outperforms the other order placement strategies.

In only two out of 16 cases, the realized shortfall after commissions for PPO is slightly below the

one of BQL. The ranking of methods and the dominance of PPO is also evident when considering all

validation subperiods separately. Table 7 depicts average rank of execution strategies by exchange

and market. In three out of five exchange-market configurations, PPO achieves an average rank of

10We will further investigate the limit order prices chosen by the agent in Section 4.4.

24

Exchange Market Count IM TW S&L BQL DDQN PPO

BitFinex BTC/USD 24 6.00 4.92 3.58 2.88 2.62 1.00
ETH/BTC 8 6.00 3.88 3.88 1.62 3.62 2.00
ETH/USD 8 6.00 4.88 3.88 2.12 3.12 1.00

GDAX BTC/USD 12 6.00 4.92 3.88 3.04 2.17 1.00
Kraken BTC/USD 12 6.00 4.83 3.92 1.92 2.92 1.42

Table 7: Mean ranking of strategies in subperiods by exchange-market configuration. This table depicts
the average ranks of all execution strategies according to their realized shortfall including commissions by exchange
and market. For every row, we average ranks over all initial volumes and over all validation subperiods. A rank of
1.0 indicates that the strategy yields the best result in all subperiods and for all initial volumes.

Mean relative shortfall,
excluding commissions

Mean relative shortfall,
including commissions

Panel A: Seed robustness
Mean -1.9415 -17.1310
Std. Dev. 0.0207 0.0274
Minimum -1.9757 -17.1807
Maximum -1.9192 -17.0900

Panel B: Alternative hyperparameter settings
Baseline configuration -1.9664 -17.1093
Two hidden layers of 128 neurons -1.9791 -17.1516
Two hidden layers of 32 neurons -1.8745 -17.1850
Trajectory length N = 256 -1.9340 -17.2434
Trajectory length N = 64 -2.0319 -17.2301

Table 8: PPO robustness. This table presents robustness checks for results obtained with proximal policy opti-
mization and the BitFinex BTC/USD market and v0 = 20 BTC. Panel A depicts descriptive statistics from 10 runs
of the PPO agent (i.e., training and out-of-sample testing for all subperiods) with different consecutive seed values
of the random number generator. Panel B shows results from PPO runs with different hyperparameter settings.

1.0, indicating that PPO always performs best, i.e., yields the lowest shortfall magnitude including

commissions for all volume settings and in all four train-test splits of the data. In the two remaining

exchange-market configurations, the average rank of PPO is still fairly low. Over all exchange-

market-subperiod combinations, PPO achieves the highest rank in terms of total out-of-sample

shortfall in 89.06 percent of cases.

Next, we check whether the superior performance of PPO is due to a favorable choice of seed

value or hyperparameter configuration. First, we train the PPO agent 10 times with consecutive

seed values of the random number generator for all subperiods, and evaluate the distribution of

out-of-sample shortfalls. From the results in Panel A of Table 8, we observe that a variation of seed

value leads to small variations in shortfalls only. Second, we investigate the sensitivity of results to

changes of the hyperparameter configuration. To this end, we retrain the PPO agent with different

numbers of neurons in the hidden layers and different trajectory lengths (Panel B of Table 8). We

observe that, despite larger variations than obtained from the seed study, results are still fairly

similar to the baseline results that use the algorithm’s default hyperparameters.

25

4.2. Analyzing the profile of traded volume

Next, we analyze the volume traded in every time step to further explore performance differences

between strategies. Figure 2 depicts the distribution of the executed volume fraction, i.e., ωex
t /v0,

for every time step, averaged over all exchanges and for the BTC/USD currency pair. Results are

shown for different initial volumes v0 (rows) and for all models involving limit orders (columns).

We observe several common patterns in the profiles of mean executed volume fractions: First, a

large fraction of volume is executed in the final time step, which corresponds to the execution

of remaining volume in a market order. Second, comparing the fraction of volume in the first

three time steps, typically most volume is executed in the first step, where all initial volume is

still unexecuted. Third, the volume executed in the final time step increases with initial volume

v0, and correspondingly, the volume fraction in the first time steps tends to decrease with v0.

Both observations can be explained by the limited liquidity in the first three time steps. Turning

to differences between execution strategies, we first note that the S&L strategy executes a lower

fraction of the volume in the first three steps than the deep reinforcement learning agents PPO

and DDQN. While the mean volume fraction of the S&L strategy is positive, the median volume

fraction is zero in all of the first three time steps. The DDQN and PPO agents exhibit fairly similar

volume profiles, where the largest fraction of volume is traded in the first time step.

4.3. Importance of feature sets

We proceed with an analysis of the contribution of the features available to the PPO agent.

To this end, we retain the PPO algorithm in environments with different features and calculate

respective mean total realized shortfalls for the BTC/USD currency pair for selling an initial volume

of v0 = 20 BTC. Also, we calculate a feature importance score from the inverse distance to the

total shortfall using the full feature set. Table 9 presents the results for different exchanges.

We make the following observations: First, we find that the most important features are related

to the current shape of the limit order book. For the BitFinex exchange, by far the most important

features are related to queue imbalances, i.e., volume differences between the bid and ask sides of

the limit order book (BO-IMBAL and Q-IMBAL(Np)). Second and third important are features

on cumulated order volumes (V OL-BID and CV OL-BID(Np)) and liquidity costs related to the

bid side (LC-BID(V)). For the exchanges Kraken and Coinbase, the same feature sets appear

among the most important ones. However, liquidity costs related to the bid side (LC-BID(V))

now lead to the largest reduction in shortfalls. The least important features are related to past trade

imbalances (TC-IMBAL and TV -IMBAL), the bid-ask spread (BA-SPREAD) or past realized

volatility (V OLA). Second, we find bid-side features to be more important than ask-side features.

26

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

S&L
V 0

=
10

BT
C

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

BQL

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

DDQN

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

w
ex t

/v
0

PPO

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

V 0
=

20
BT

C

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

w
ex t

/v
0

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

V 0
=

50
BT

C

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4
t

0.0
0.2
0.4
0.6
0.8
1.0

w
ex t

/v
0

Figure 2: Fraction of traded volume by time step. This plot depicts the distribution of executed volume
by time step (horizontal axis), initial volume v0 (rows) and execution strategy (columns). Results for submit-and-
leave execution (S&L), backwards-induction Q-learning (BQL), deep double Q-networks (DDQN) and proximal policy
optimization (PPO) are shown. We calculate the fraction of traded volume ωex

t /v0 for the BTC/USD market averaged
over all exchanges. Box plots display interquartile ranges, medians (orange lines), means (green triangles), and 10/90
percent quantiles (whiskers).

For the BitFinex exchange, cumulated bid volume features (V OL-BID and CV OL-BID(Np))

result in a total shortfall of -17.53 bp, compared to a value of -17.96 bp for the ask-side features

(V OL-ASK and CV OL-ASK(Np)). We make similar observations for the other two exchanges.

Third, we find a further reduction of total shortfall when providing all features to the agent, as

the the PPO agent seems to be able to successfully exploit a larger feature set in learning suitable

policies. For example, with the best single feature set for the Coinbase exchange, bid-side liquidity

(LC-BID(V)), total shortfall is at 21.1852 bp, which is further improved to -20.9857 bp (see Table

5) when providing all features to the agent.

4.4. Exploring the agent’s decision making

Finally, we analyze the impact of market state variables on the decision making of the PPO

agent. To this end, we evaluate the agent’s action conditional on the value of individual features.

Specifically, we compute average action values for all observations with feature values in the respec-

tive quantile intervals. Figure 3 plots the mean difference of the chosen limit price to the current

best-ask price, in units of the tick size, as a function of a feature’s value for selling different volumes

27

Total shortfall Importance score

Feature(s) BitFinex Kraken Coinbase BitFinex Kraken Coinbase

TC-IMBAL -18.1673 -25.2428 -24.0553 0.0605 0.0757 0.0331
TV -IMBAL -18.4534 -25.2474 -24.0613 0.0476 0.0752 0.0330
BO-IMBAL, Q-IMBAL(Np) -17.3317 -25.0991 -22.0463 0.2877 0.0973 0.0958
V OL-BID, CV OL-BID(Np) -17.5296 -25.1236 -22.4134 0.1523 0.0928 0.0712
V OL-ASK, CV OL-ASK(Np) -17.9558 -25.2673 -22.8120 0.0756 0.0729 0.0556
V OLA -18.2896 -25.3367 -24.0051 0.0542 0.0661 0.0336
DRIFT -18.1472 -25.2615 -23.8873 0.0617 0.0736 0.0350
LC-BID(V) -17.6075 -24.7595 -21.1852 0.1285 0.2988 0.5093
LC-ASK(V) -18.0681 -25.2360 -22.0444 0.0668 0.0765 0.0960
BA-SPREAD -18.0901 -25.2836 -23.7010 0.0653 0.0712 0.0374

Table 9: Importance of features. This table depicts results from an analysis on the importance of features on
proximal policy optimization performance. We retrain the PPO agent in environments with different features and
calculate respective mean total realized shortfalls (columns Total shortfall) for the BTC/USD currency pair traded at
the indicated exchanges for selling an initial volume of v0 = 20 BTC. Columns Importance score calculate a feature
importance score from the inverse distance to the total shortfall using the full feature set.

at the BTC/USD market. Negative values indicate a more aggressive posting of orders, i.e., setting

the limit price below the current best-ask price.

Looking first at features related to the current volume present in the first ten price steps of the

order book (top row of Figure 3), we find that sell pressure, i.e., an overweight of order volume in

the ask side of the order book, gives rise to a more aggressive placement of the agent’s own sell

order. By contrast, positive values of the queue imbalance (Q-IMBAL(10) > 0), indicative of a

larger bid than ask volume, is followed by less aggressive orders. A similar behavior is evident when

looking at the volumes at both sides of the order book separately (CV OL-BID(10) and CV OL-

ASK(10)), with a larger influence of the opposite (bid) side of the order book. We can understand

these results by interpreting the queue imbalance as a short-term predictor of mid-price returns

(compare, for example, Cao et al., 2009; Gould and Bonart, 2016, for an empirical investigation of

the influence of imbalances on price): The smaller the value of the queue imbalance, the higher is

the supply overweight in the order book, which might indicate a downshift of the mid price over

the subsequent time period. Consequently, we find the agent to place orders more aggressively to

ensure execution of its own limit order.

We find a similar influence of the cost of immediate execution on the agent’s decision making

(middle row of Figure 3), which could likely be due to a high degree of correlation between features

that are based on the current order book. For example, low immediate execution costs of the ask

side of the order book (LC-ASK) tend to indicate high cumulated volumes in the first ask-side

price steps, which again result in a more aggressive order placement.

The chosen action is fairly independent of the bid-ask spread (BA-SPREAD). This could be a

consequence of a high level of noise in this variable, generated for example by frequent jumps of best-

28

0.50 0.25 0.00 0.25 0.50 0.75
Q-IMBAL(10)

8

6

4

2

0

2

10 20 30 40 50
CVOL-ASK(10)

20 40 60
CVOL-BID(10)

V0 = 10 BTC
V0 = 20 BTC
V0 = 50 BTC

20 40 60
LC-ASK(10)

8

6

4

2

0

2

40 80 120
LC-ASK(50)

60 40 20
LC-BID(10)

120 80 40
LC-BID(50)

V0 = 10 BTC
V0 = 20 BTC
V0 = 50 BTC

1.5 2.0 2.5 3.0
BA-SPREAD

8

6

4

2

0

2

0.5 0.0 0.5
TC-IMBAL

0.5 0.0 0.5
TV-IMBAL

40 60 80 100
VOLA

V0 = 10 BTC
V0 = 20 BTC
V0 = 50 BTC

Figure 3: Action limit price conditional on feature value. This figure depicts the limit price selected by
proximal policy optimization conditional on feature values for selling an initial volume of v0 = 10, 20, 50 BTC, for the
BitFinex BTC/USD market. The limit price (vertical axis) is shown relative to the current best-ask price in units of
the tick size. Feature values are shown prior to rolling-window standardization. The top row depicts features related
to the limit order volume in the first ten steps of the limit order book (CV OL-BID(10), CV OL-ASK(10): cumulated
order volume in the ten best-bid/best-ask steps, Q-IMBAL(10): queue imbalance), the middle row shows features
related to current levels of liquidity costs (LC-BID(V), LC-ASK(V): cost of immediate execution for a volume of
V , in basis points). The bottom row displays the bid-ask spread relative to the mid price (BA-SPREAD, in basis
points), past trade count and volume imbalances (TC-IMBAL, TV -IMBAL) as well as past realized mid-price
volatility (V OLA).

ask and best-bid prices, which renders it an unattractive feature for the model. The effect of the

trade count imbalance (TC-IMBAL) and the trade volume imbalance (TV -IMBAL) on the chosen

limit price is similar to the effect of the queue imbalance, however with a lower magnitude. Higher

levels of past realized mid-price volatility (V OLA) slightly decrease the agent’s order aggressiveness,

potentially because less aggressive orders have a higher probability of execution in times of high

29

volatility.

Generally, the shape of the feature-action dependence is – up to a shift towards more aggressive

orders for larger volumes – fairly similar across different levels of executed volume v0. While

conditional actions for 10 BTC and 20 BTC are similar and the larger volume of 20 BTC exhibits

only a slight tendency towards more aggressive orders, PPO places significantly more aggressive

orders for a volume of 50 BTC. Comparing the relative price tick of the market at the average

trade price (0.14 bp at 7000 BTC, compare Table 1) to average bid-ask spreads (0.679 bp, Table 3),

we find that typical order placement occurs a few price ticks inside the bid-ask spread.

5. Conclusion

With this paper, we have successfully demonstrated that deep reinforcement learning, espe-

cially proximal policy optimization, may be used to optimize the placement of limit orders in

cryptocurrency limit order markets. Leveraging a large high-frequency data set of 300 million his-

toric trades and more than 3.5 million order book states from major exchanges and currency pairs,

we empirically compare state-of-the-art deep reinforcement learning algorithms to several simpler

benchmarks. We contribute to the existing literature in the following ways: First, we describe

in-depth how deep reinforcement learning can be applied to the problem of optimal limit order

placement. In the simulated environment, the agent is asked to decide on the limit price of limit

orders over the course of several time steps, and is rewarded based on the realized shortfall. To

inform the agent about its environment, we handcraft several features based on the literature. Sec-

ond, we compare the out-of-sample performance of two state-of-the-art deep reinforcement learning

algorithms to several benchmarks. In comparison to deep double Q-networks as well as all static

and dynamic benchmark strategies, we find proximal policy optimization to reliably learn a su-

perior order placement policy. Applied to out-of-sample data, this policy reduces average total

implementation shortfalls by 37.71 percent over an execution in a single market order. Third, we

perform in-depth analyses to ask whether the PPO’s actions are in line with economic rationale.

We find the policy to preferably execute volume in limit orders to avoid additional exchange fees for

market orders. Also, the most important features are related to volumes at the first price steps of

the limit order book and queue imbalances – well in line with an interpretation of queue imbalances

as short-term predictors of mid-price returns. Finally, PPO’s order placement tends to be more

aggressive in expectation of unfavorable price movements.

Our study reveals several interesting directions for future research: First, our research design

may be used in future empirical studies applying deep reinforcement learning for optimal order

placement in other limit order exchanges, for example stock exchanges. Second, another interest-

30

ing extension could be to move beyond handcrafted features. For example, convolutional neural

networks or the neural network architecture of Sirignano (2019) could be used to directly learn

suitable feature representations from the data. Third, the approach could be extended to adjacent

problems with practical relevance, such as routing orders to multiple exchanges or deciding between

different order types such as iceberg orders. These extensions could be integrated easily into the

action space and reward function of our environment.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,

Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,

Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,

Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,

Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems.

URL: https://www.tensorflow.org/.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-

pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N., Tworek, J., Welinder, P., Weng, L.,

Yuan, Q., Zaremba, W., Zhang, L., 2019. Solving Rubik’s Cube with a robot hand. arXiv

1910.07113.

Almgren, R., Chriss, N., 2001. Optimal execution of portfolio transactions. The Journal of Risk 3,

5–39.

Bao, W., Liu, X.y., 2019. Multi-agent deep reinforcement learning for liquidation strategy analysis.

arXiv 1906.11046.

Bayraktar, E., Ludkovski, M., 2014. Liquidation in limit order books with controlled intensity.

Mathematical Finance 24, 627–650.

Bertsimas, D., Lo, A.W., 1998. Optimal control of execution costs. Journal of Financial Markets

1, 1–50.

Biais, B., Hillion, P., Spatt, C., 1995. An empirical analysis of the limit order book and the order

flow in the Paris Bourse. The Journal of Finance 50, 1655–1689.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.,

2016. OpenAI Gym. arXiv 1606.01540.

31

https://www.tensorflow.org/

Cao, C., Hansch, O., Wang, X., 2009. The information content of an open limit-order book. Journal

of Futures Markets 29, 16–41.

Cartea, A., Jaimungal, S., 2015. Optimal execution with limit and market orders. Quantitative

Finance 15, 1279–1291.

Cartea, A., Jaimungal, S., Penalva, J., 2015. Algorithmic and high-frequency trading. Cambridge

University Press, Cambridge, UK.

Cheng, A.T., 2017. AI jumps into dark pools. URL: https://www.institutionalinvestor.com/

article/b15yx290rz5pcz/ai-jumps-into-dark-pools (visited 14/03/2020).

Cont, R., Kukanov, A., 2017. Optimal order placement in limit order markets. Quantitative Finance

17, 21–39.

Cont, R., Kukanov, A., Stoikov, S., 2014. The price impact of order book events. Journal of

Financial Econometrics 12, 47–88.

Cummings, J.R., Frino, A., 2010. Further analysis of the speed of response to large trades in

interest rate futures. Journal of Futures Markets 30, 705–724.

Daberius, K., Granat, E., Karlsson, P., 2019. Deep execution – value and policy based reinforce-

ment learning for trading and beating market benchmarks. SSRN Scholarly Paper ID 3374766.

Social Science Research Network. Rochester, NY. URL: https://papers.ssrn.com/abstract=

3374766.

Danielsson, J., Payne, R., 2001. Measuring and explaining liquidity on an electronic limit order

book: Evidence from Reuters D2000-2. SSRN Scholarly Paper ID 276541. Social Science Research

Network. Rochester, NY. URL: https://papers.ssrn.com/abstract=276541.

Degryse, H., Jong, F.D., Ravenswaaij, M.V., Wuyts, G., 2005. Aggressive orders and the resiliency

of a limit order market. Review of Finance 9, 201–242.

Fischer, T.G., Krauss, C., Deinert, A., 2019. Statistical arbitrage in cryptocurrency markets.

Journal of Risk and Financial Management 12, 31.

Gomber, P., Schweickert, U., Theissen, E., 2015. Liquidity dynamics in an electronic open limit

order book: An event study approach. European Financial Management 21, 52–78.

Gopikrishnan, P., Plerou, V., Gabaix, X., Stanley, H.E., 2000. Statistical properties of share volume

traded in financial markets. Physical Review E 62.

Gould, M.D., Bonart, J., 2016. Queue imbalance as a one-tick-ahead price predictor in a limit order

book. Market Microstructure and Liquidity 2, 1650006.

32

https://www.institutionalinvestor.com/article/b15yx290rz5pcz/ai-jumps-into-dark-pools
https://www.institutionalinvestor.com/article/b15yx290rz5pcz/ai-jumps-into-dark-pools
https://papers.ssrn.com/abstract=3374766
https://papers.ssrn.com/abstract=3374766
https://papers.ssrn.com/abstract=276541

Gould, M.D., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D., 2013. Limit

order books. Quantitative Finance 13, 1709–1742.

van Hasselt, H., Guez, A., Silver, D., 2015. Deep reinforcement learning with double Q-learning.

arXiv 1509.06461.

Hendricks, D., Wilcox, D., 2014. A reinforcement learning extension to the Almgren-Chriss model

for optimal trade execution, in: 2014 IEEE Conference on Computational Intelligence for Finan-

cial Engineering & Economics (CIFEr), pp. 457–464.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C.,

Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu, Y., 2018. Stable

baselines. URL: https://github.com/hill-a/stable-baselines.

Kearns, M., Nevmyvaka, Y., 2013. Machine learning for market microstructure and high frequency

trading, in: Easley, D., de Prado, M.L., O’Hara, M. (Eds.), High frequency trading: New realities

for traders, markets, and regulators. Risk Books, London, UK.

Kingma, D.P., Ba, J., 2017. Adam: A method for stochastic optimization. arXiv 1412.6980.

Lam, S.K., Pitrou, A., Seibert, S., 2015. Numba: A LLVM-based Python JIT compiler, in: Pro-

ceedings of the 2nd Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6.

McKinney, W., 2010. Data structures for statistical computing in Python, in: Proceedings of the

9th Python in Science Conference, pp. 51–56.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., Kavukcuoglu,

K., 2016. Asynchronous methods for deep reinforcement learning. arXiv 1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.,

2013. Playing Atari with deep reinforcement learning. arXiv 1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,

Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,

I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control

through deep reinforcement learning. Nature 518, 529–533.

Nevmyvaka, Y., Feng, Y., Kearns, M., 2006. Reinforcement learning for optimized trade execution,

in: Proceedings of the 23rd International Conference on Machine Learning, ACM, New York,

NY, USA. pp. 673–680.

Nevmyvaka, Y., Kearns, M., Papandreou, A., Sycara, K., 2005. Electronic trading in order-driven

markets: Efficient execution, in: Proceedings of the seventh IEEE International Conference on

33

https://github.com/hill-a/stable-baselines

E-Commerce Technology (CEC’05), pp. 190–197.

Ning, B., Ling, F.H.T., Jaimungal, S., 2018. Double deep Q-learning for optimal execution. arXiv

1812.06600.

Noonan, L., 2017. JPMorgan develops robot to execute trades. URL: https://www.ft.com/

content/16b8ffb6-7161-11e7-aca6-c6bd07df1a3c (visited 19/09/2018).

Obizhaeva, A.A., Wang, J., 2013. Optimal trading strategy and supply/demand dynamics. Journal

of Financial Markets 16, 1–32.

Patel, Y., 2018. Optimizing market making using multi-agent reinforcement learning. arXiv

1812.10252.

Perold, A.F., 1988. The implementation shortfall: Paper versus reality. Journal of Portfolio Man-

agement 14, 4.

Plerou, V., Gopikrishnan, P., Gabaix, X., Stanley, H.E., 2002. Quantifying stock-price response to

demand fluctuations. Physical Review E 66, 027104.

PostgreSQL Global Development Group, 2018. PostgreSQL database management system. URL:

www.postgresql.org.

Potters, M., Bouchaud, J.P., 2003. More statistical properties of order books and price impact.

Physica A: Statistical Mechanics and its Applications 324, 133–140.

Python Software Foundation, 2016. Python 3.5.2. URL: https://docs.python.org/3.5/.

Ranaldo, A., 2004. Order aggressiveness in limit order book markets. Journal of Financial Markets

7, 53–74.

Rantil, A., Dahlen, O., 2018. Optimized trade execution with reinforcement learning. Mas-

ter’s thesis. Linkoeping University. Sweden. URL: https://www.semanticscholar.org/

paper/Optimized-Trade-Execution-with-Reinforcement-med-Rantil-Dahl%C3%A9n/

fff05d2f0f414eead861a251aeff77f706804f6f.

Schnaubelt, M., 2019. A comparison of machine learning model validation schemes for non-

stationary time series data. Discussion Papers in Economics 11/2019. Friedrich-Alexander-

Universität. Erlangen/Nürnberg, Germany. URL: https://www.iwf.rw.fau.de/files/2019/

11/11_2019.pdf.

Schnaubelt, M., Rende, J., Krauss, C., 2019. Testing stylized facts of Bitcoin limit order books.

Journal of Risk and Financial Management 12, 25.

34

https://www.ft.com/content/16b8ffb6-7161-11e7-aca6-c6bd07df1a3c
https://www.ft.com/content/16b8ffb6-7161-11e7-aca6-c6bd07df1a3c
www.postgresql.org
https://docs.python.org/3.5/
https://www.semanticscholar.org/paper/Optimized-Trade-Execution-with-Reinforcement-med-Rantil-Dahl%C3%A9n/fff05d2f0f414eead861a251aeff77f706804f6f
https://www.semanticscholar.org/paper/Optimized-Trade-Execution-with-Reinforcement-med-Rantil-Dahl%C3%A9n/fff05d2f0f414eead861a251aeff77f706804f6f
https://www.semanticscholar.org/paper/Optimized-Trade-Execution-with-Reinforcement-med-Rantil-Dahl%C3%A9n/fff05d2f0f414eead861a251aeff77f706804f6f
https://www.iwf.rw.fau.de/files/2019/11/11_2019.pdf
https://www.iwf.rw.fau.de/files/2019/11/11_2019.pdf

Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P., 2017a. Trust region policy optimiza-

tion. arXiv 1502.05477.

Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P., 2018. High-dimensional continuous

control using generalized advantage estimation. arXiv 1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017b. Proximal policy optimiza-

tion algorithms. arXiv 1707.06347.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,

L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D., 2018. A general rein-

forcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362,

1140–1144.

Sirignano, J.A., 2019. Deep learning for limit order books. Quantitative Finance 19, 549–570.

Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. 2nd ed., MIT Press,

Cambridge, MA.

Tashman, L.J., 2000. Out-of-sample tests of forecasting accuracy: An analysis and review. Inter-

national Journal of Forecasting 16, 437–450.

Terekhova, M., 2017. JPMorgan takes AI use to the next level. URL: https:

//www.businessinsider.de/jpmorgan-takes-ai-use-to-the-next-level-2017-8?r=

US&IR=T (visited 19/09/2018).

Tsoukalas, G., Wang, J., Giesecke, K., 2017. Dynamic portfolio execution. Management Science

65, 2015–2040.

Van Der Walt, S., Colbert, S.C., Varoquaux, G., 2011. The NumPy array: A structure for efficient

numerical computation. Computing in Science & Engineering 13, 22–30.

Varazzo, D., 2011. psycopg2. URL: http://initd.org/psycopg/.

Watkins, C.J.C.H., 1989. Learning from delayed rewards. PhD Thesis. King’s College, University

of Cambridge.

Williams, R.J., 1992. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine Learning 8, 229–256.

Zhang, G., Eddy Patuwo, B., Y. Hu, M., 1998. Forecasting with artificial neural networks: The

state of the art. International Journal of Forecasting 14, 35–62.

35

https://www.businessinsider.de/jpmorgan-takes-ai-use-to-the-next-level-2017-8?r=US&IR=T
https://www.businessinsider.de/jpmorgan-takes-ai-use-to-the-next-level-2017-8?r=US&IR=T
https://www.businessinsider.de/jpmorgan-takes-ai-use-to-the-next-level-2017-8?r=US&IR=T
http://initd.org/psycopg/

	Deckblatt 05_2020
	paper_final
	Introduction
	Data and software
	Data
	Descriptive data statistics
	Software

	Methodology
	Simulating order matching in a virtual limit order exchange
	A reinforcement learning formulation of optimal order placement
	Action space
	Reward function
	State space and feature generation

	Reinforcement learning algorithms
	Backward-induction Q-learning
	Deep double Q-networks
	Proximal policy optimization

	Benchmark execution strategies
	Submit-and-leave execution
	Immediate market-order execution
	Time-weighted market-order execution

	Study design and performance evaluation

	Results
	Overview of empirical findings
	Comparing algorithms by total out-of-sample shortfall
	The role of exchange commissions
	Fraction of limit order execution
	Robustness of empirical results

	Analyzing the profile of traded volume
	Importance of feature sets
	Exploring the agent's decision making

	Conclusion

