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Abstract

This paper demonstrates that popular linear fixed-effects panel-data estimators are biased and
inconsistent when applied in a discrete-time hazard setting – that is, one in which the outcome
variable is a binary dummy indicating an absorbing state, even if the data-generating process is
fully consistent with the linear discrete-time hazard model. In addition to conventional survival
bias, these estimators suffer from another source of – frequently severe – bias that originates
from the data transformation itself and, unlike survival bias, is present even in the absence of
any unobserved heterogeneity. We suggest an alternative estimation strategy, which is instru-
mental variables estimation using first-differences of the exogenous variables as instruments for
their levels. Monte Carlo simulations and an empirical application substantiate our theoretical
results.
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1 Introduction

Many economically relevant outcomes are non-repeated events, also known as absorbing states.

Death, retirement, firm bankruptcy, plant closure, technology adoption, and smoking initiation

are just a few of many examples. Hazard models, also referred to as duration, failure-time, sur-

vival, time-to-event, and event history analysis, are commonly used to empirically analyze such

outcomes. If an analysis is based on panel data in which the outcome is not observed continuously

but only at a limited number of points in time1, discrete-time hazard models are often regarded as

the estimation method of choice. These models are simply stacked binary outcome models (Jenk-

ins, 1995; Tutz and Schmid, 2016), such as probit, logit, or cloglog (Prentice and Gloeckler, 1978).

The discrete-time hazard binary-outcome model considers the process that leads to the absorbing

state to be a finite series of binary choices and is therefore simple and intuitive.

Following the general trend in applied econometrics towards using linear models, which are

often not meant to specify the data-generating process correctly but rather to identify average

partial effects even in the presence of non-linearities (Angrist and Imbens, 1995), the linear proba-

bility model has developed into an increasingly popular alternative to non-linear binary outcome

models (cf. Angrist, 2001; Angrist and Pischke, 2009). One virtue of the linear probability model

is that it allows unobserved individual heterogeneity to be removed as a possible source of bias

in a straightforward fashion using the within- or the first-differences transformation. Allowing

for individual fixed effects is far less straightforward in non-linear models (e.g. Greene, 2004).

In fact, linear probability models with fixed effects at the level of observation units have

recently been applied not only to repeated events, but also frequently to non-repeated event

data. Examples are firm death (Frazer, 2005; Jacobson and von Schedvin, 2015; Fernandes and

Paunov, 2015), retirement (Brown and Laschever, 2012), technology and confession adoption

(Cantoni, 2012; Bogart, 2018), smoking onset (Do and Finkelstein, 2012), health insurance tran-

sition (Grunow and Nuscheler, 2014), school fees abolition (Harding and Stasavage, 2014), death

(Bloemen et al., 2017), and unfollowing social media posts (Wang et al., 2020). There seems to be

little awareness that the favorable properties of linear fixed-effects estimators do not apply in the

same way to non-repeated events as they do to other kinds of dependent variables. Indeed, we are

not aware of any article that explicitly establishes the properties of linear fixed-effects estimators

in a discrete-time hazard setting.2

1This includes cases in which the time structure is intrinsically discrete (e.g. termination of a rolling fixed-period con-
tract; see, for example, the application in section 5, where school teachers can retire by the end of an academic year) and
cases in which thinking of time as a sequence of periods of significant length is an artifact of incompletely observing the
process of interest (Cameron and Trivedi, 2005, p. 578).

2Allison and Christakis (2006) and Allison (2009, chap. 5) discuss obstacles to fixed-effects estimation of non-linear
hazard models but do not consider the linear model. Allison (1994) considers linear fixed-effects estimation but regards
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In this paper, we demonstrate that conventional linear fixed-effects estimators (first-differences,

within-transformation) exhibit severe shortcomings when applied to non-repeated event data. By

failing to remove unobserved time-invariant individual heterogeneity and, additionally, render-

ing the conditional mean of the disturbance a function of the explanatory variables, they are

biased and inconsistent in this setting. The bias originates from two sources: One is selective sur-

vival, which renders the unobserved heterogeneity correlated with the explanatory variables in

the estimation sample. It is worth noting that this bias is not specific to fixed-effects estimation but

– in a somewhat different way – also applies to pooled OLS. The second source of bias is specific

because it originates from taking first differences or using the within transformation, inducing the

exogenous variables to enter the conditional mean of the disturbance. For this reason, this second

source of bias – unlike the survival bias – is present even in the absence of any unobserved indi-

vidual heterogeneity. Moreover, this second source of bias turns out to be the clearly dominant

one in many settings. Building on these findings, we suggest an instrumental variables (IV) esti-

mator, which instruments the exogenous variables by their own first-differences. This estimator,

which can also be interpreted as an adjusted conventional first-differences estimator, eliminates

the second source of bias.

The contribution of this paper is twofold. First, we elucidate why conventional fixed-effects

estimators should not be used in a discrete-time hazard framework. Second, we suggest an alter-

native IV estimator that – though not consistent – usually suffers from a much smaller asymptotic

bias than the familiar estimators and confines it to the survival bias. This is a source of bias

researchers should already be aware of in our setting, even if the unobserved heterogeneity is

uncorrelated with the explanatory variables in the population.

The remainder of this paper is organized as follows. Section 2 introduces the model frame-

work. In section 3, we establish the biasedness of the conventional fixed-effects estimators and

develop a simple instrumental variables estimator that cures the asymptotic bias that is driven

by data transformation. In section 4, we use Monte Carlo simulations to compare the different

estimators. Section 5 presents an empirical application that is based on the analysis of peer effects

in the timing of retirement by Brown and Laschever (2012). Section 6 concludes.

non-repeated events as explanatory variables rather than outcome variables. Horowitz and Lee (2004) and Lee (2008)
suggest fixed-effects estimators for continuous-time proportional hazard models with multiple spells. Horowitz (1999)
proposes a random-effects estimator for a similar setting with single-spell data. Occasionally, the applied literature (e.g.
McGarry, 2004; Wettstein, 2020; Finkelstein et al., 2019) touch upon the idea that linear fixed-effects estimation may not be
advisable when the outcome is an absorbing state, but they do not dig deeper into this issue.
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2 Model

In order to illustrate our argument straightforwardly, we analyze the considered estimators in a

setting that is fully consistent with the linear hazard assumption. We therefore consider a linear

probability model in a panel data setting, which we assume correctly captures the true data-

generating process. We observe N units i in a panel of T waves t, i.e. i = 1, . . . , N and t = 1, . . . , T.

The units i are independently sampled from the population. The number of panel waves is fi-

nite, fixed and, compared to the number of cross-sectional units, small. Any argument regarding

asymptotic properties is thus in terms of N → ∞. yit denotes a binary outcome variable. xit is

a row vector of exogenous explanatory variables observed for unit i in period t. The scalar ai

denotes unobserved, time-invariant individual heterogeneity. If xit includes a constant term, we

can assume E(ai) = 0 with no loss of generality. β is a column vector of coefficients subject to

estimation. We assume ai + xitβ ∈ [0, 1] for any i and any t. That is, the argument of Horrace and

Oaxaca (2006) that the least squares linear probability estimator is biased and inconsistent does

not apply.

yit = 1 represents an absorbing state and, in consequence, only a single spell at risk is ob-

served for any unit i.3 In other words, after observing yit = 1 for the first time, any subsequent

observations of i do not contain additional information about the data-generating process of in-

terest because P (yit+s = 1|yit = 1) = 1 always holds for s ≥ 1, irrespective of xit+s. In many

applications, one might not even observe xit+s.4 The number of periods Ti ≤ T for which unit

i is (effectively) observed is therefore not fixed but endogenous. By thinking of T as fixed, we

implicitly allow for right censoring, i.e. we may not observe the (first) occurrence of yit = 1 for

some units. The data-generating process (DGP) of yit reads as

yit = ai + xitβ + εit with t ≤ Ti (1)

and for the disturbance term εit = yit − ai − xitβ necessarily holds

εit =


1− ai − xitβ if t = Ti and i is not censored

−ai − xitβ if t = Ti and i is censored

−ai − xitβ if t < Ti

(2)

3If the spell is considered the genuine unit of observation and, correspondingly, the aj is specific to the spell rather than
to the unit (individual, firm, country, etc.), the line of argument likewise applies to cases that allow for multiple spells at
risk being observed for one unit.

4Events such as death or bankruptcy may render some time-varying characteristics of i unobservable after the event
has occurred and will usually result in attrition from the panel.
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because yit equals one for the terminal observation of a noncensored unit and is otherwise zero.

Assuming zero conditional mean of the disturbance

E (εit|ai, xi1, . . . , xiT , t ≤ Ti) = 0 (3)

renders (1) a regression model and yields a conditional probability of the event yit = 1

P (yit = 1|ai, xi1, . . . , xiT , t ≤ Ti) = ai + xitβ (4)

which is linear in ai and xit.

3 Estimation

It is well-known that pooled ordinary least squares (OLS) estimation cannot take into account

the heterogeneity in ai, which renders pooled OLS biased and inconsistent if Cov(ai, xit) 6= 0.

One might therefore think of applying first-differences or the within transformation to the data

in order to eliminate ai and allow unbiased and consistent estimation by least squares. However,

we show that these well-established approaches do not succeed in the setting we consider here ,

i.e. with the outcome variable being a binary dummy indicating an absorbing state. We propose

an instrumental variable strategy that corrects the first-differences transformation. We could not

find an analogous correction for the regular within transformation.

3.1 First differences with non-repeated outcomes

First, we examine first-differences estimation bFD of the linear probability model outlined above.

bFD =

(
N

∑
i=1

Ti

∑
t=2

∆xit
′∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′∆yit

)
=

(
N

∑
i=1

Ti

∑
t=2

∆xit
′∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′yit

)
(5)

with ∆xit ≡ xit − xit−1 denoting the vector of the first-differenced right-hand-side variables, and

with ∆yit ≡ yit − yit−1 = yit because yit−1 = 0 follows from the fact that the outcome is a non-

repeated event. Therefore, the outcome remains unaffected by the first-differences transforma-

tion, implying that the disturbance needs to compensate fully for the transformation that is ap-

plied to the right-hand side. The disturbance in this regression model is εFD
it ≡ yit − ∆xitβ and its

conditional mean reads as

E
(

ε FD
it |ai, xi1, . . . , xiT , t ≤ Ti

)
= ai + xit−1β (6)
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see Appendix A.1 for details. In our setting, taking first-differences fails to remove unobserved

individual heterogeneity and also fails to generate a transformed disturbance that is conditional

mean independent of the exogenous variables, violating the conditions required for unbiasedness.

The impossibility of transforming the outcome variable is also reflected in the probability limit,

plim(bFD) =plim

( N

∑
i=1

Ti

∑
t=2

∆xit
′∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′xit

) β

+ plim

( N

∑
i=1

Ti

∑
t=2

∆xit
′∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′ai

) (7)

see Appendix A.2 for details. Equation (7) reveals that β enters plim(bFD) erroneously scaled

by the matrix
(

∑N
i=1 ∑Ti

t=2 ∆xit
′∆xit

)−1 (
∑N

i=1 ∑Ti
t=2 ∆xit

′xit

)
, which we further denote as G. This

misscaling bias is present even if ai is uncorrelated with the regressors in the population or even

in the absence of any unobserved, time-invariant individual heterogeneity. It therefore does not

originate from a failure to remove individual heterogeneity but from the nature of y, which does

not allow us to transform the outcome variable. Because (6) is non-negative and thus systemat-

ically deviates from zero, it is obviously important to include a constant in ∆xit. Note, however,

that doing so does not alter the fact that the conditional mean is function of xit−1 and, conse-

quently, that β enters (7) erroneously scaled.5

Our just-identified instrumental variables estimator with ∆xit serving as instruments6 for xit

can solve this issue

bIV =

(
N

∑
i=1

Ti

∑
t=2

∆xit
′xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′yit

)
(8)

with

plim
(
bIV) = β + plim

( N

∑
i=1

Ti

∑
t=2

∆xit
′xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′ai

) (9)

The suggested IV estimator also gives further insights into the shortcomings of bFD in our

setting. From a two-stage least-squares perspective, first differences would only estimate the

reduced-form coefficients. The corresponding first-stage estimates are collected in G. To obtain

informative estimates of the coefficients of interest, we have to rescale bFD by the inverse of the

first-stage estimates, giving us G−1bFD = bIV . The shape of the rescaling matrix G−1 depends

5In the vast majority of applications, ∆xit effectively includes a constant anyway, because discrete-time hazard models
usually allow for duration dependence of the baseline hazard by including a trend, a polynomial of t, or – more typically
– a saturated set of wave indicators.

6Considering a constant term in the first stage of the suggested IV is essential, but to keep the notion simple, we
continue denoting the vector of instruments as ∆xit.
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strongly on the data-generating process of the variables in xit. If xit follows a random walk,

asymptotically the first stage yields that each variable in xit is best predicted by its own change

and G−1 converges in probability to the identity matrix I. In this special case, bIV coincides

with the reduced-form estimator bFD. Another interesting special case is that xit is covariance

stationary. The population first stage then asymptotically yields G = 1
2 I. This makes the rescaling

of the reduced-form coefficients by a factor of two an important benchmark for settings in which

the process we consider here exhibits little selectivity.

An important related implication is that bIV exists only if the first stage does not degener-

ate and G is nonsingular. In other words, ∆xit need to be informative as instruments for each

and every element of xit. An extreme example of a violation of this condition is when xit in-

cludes a dummy variable agemin indicating the youngest age, measured in years, observed in an

individual-level yearly panel. In this case (cf. the application in section 5), agemin equals zero for

all observations that enter the first-stage regressions, that is for t > 1, making G contain a column

of zeros. More generally, the data-generating process of xit is decisive for whether ∆xit is a promis-

ing instrument for xit. Weak instruments may therefore be an issue for bIV even in settings that

are less extreme than that in the example above. The fact that our IV estimator cannot estimate

some empirical models that can be estimated using the conventional first-differences estimator

seems, at first glance, to be a major shortcoming of bIV. However, the non-existence of bIV reveals

that one cannot obtain information about some model parameters of interest, even if the corre-

sponding coefficients are seemingly identified by bFD. From (7) we see – ignoring for a moment

the second term on the right-hand-side – that bFD converges in probability to a matrix-weighted

sum of the true model parameters β. Yet, βl receives no weight in this sum if the lth column of G

is 0 and, consequently, there is no way to retrieve any information about βl from bFD.

The conventional within-transformation estimator, which is frequently regarded as ‘the fixed-

effects estimator’, is also biased in our setting. In fact, the situation is even worse. Unlike for

bFD, it is not the vector of observed lagged values xit−1 that enters the conditional mean of the

disturbance, but a conditional expectation of x̄i that involves (i) future values of xit, which may

not be observed for t > Ti, (ii) the unobserved individual heterogeneity, and (iii) the unknown

coefficients of interest. For this reason, unlike the first-differences estimator, the conventional

within-transformation provides no basis for an instrumental variables approach to eliminate the

asymptotic misscaling bias. We discuss this issue in more detail in Appendix A.3.
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3.2 Survival bias

Survival bias plays an important role when we analyze the remainder term of bIV in (9), which

involves

plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆x′itai

)
= plim

(
1
N

N

∑
i=1

Ti

∑
t=2

x′itai

)
− plim

(
1
N

N

∑
i=1

Ti

∑
t=2

x′it−1ai

)
(10)

This difference may deviate from 0 for two reasons: Firstly, (10) will obviously not vanish in the

limit if we have Cov(ai, xit) 6= Cov(ai, xit−1) in the population, i.e., the individual heterogeneity

is correlated with changes in the explanatory variables, which would clearly conflict with using

∆xit as instruments. For the population, one may rule this out by assumption, and we focus on

the cases for which this assumption is satisfied.

Yet, secondly, even assuming that ai is uncorrelated with ∆xit in the population does not render

(10) zero. The reason for this is survival bias, also referred to as ‘weeding out’ or the ‘sorting effect’

(Nicoletti and Rondinelli, 2010), in the sense that conditioning on t ≤ Ti affects the covariance of

ai and xit. This is most obvious for Cov(ai, xit−1|t ≤ Ti). Conditioning on t ≤ Ti means that xit−1

enters the conditional covariance only if yit−1 = 0 holds. This implies – for a nonnegative β – that

large xit−1 are more likely to enter for a small value of ai than for a large value of ai. Conditioning

on survival thus renders ai and xit−1 negatively correlated, unless xit−1 is immaterial for survival

that is β = 0. This does not apply one to one to Cov(ai, xit|t ≤ Ti) because that covariance is

unconditional on the contemporaneous yit. However, if xit exhibits some persistence over time,

the negative correlation with ai carries over to xit. In the case of perfect persistence – that is, if xit

follows a random walk – the conditional covariance is the same for xit−1 and xit. Consequently,

survival does not bias the estimates if xit follows a random walk unless it exhibits a drift that is

related to ai. The smaller the persistence of xit, however, the more Cov(ai, xit|t ≤ Ti) may deviate

from Cov(ai, xit−1|t ≤ Ti) due to selective survival, rendering ai and ∆xit positively correlated for

a positive β. In addition to the dynamic properties of xit, the variance of ai plays an important

role in determining the size the size of the survival bias. If the variance of ai is small, then survival

from t− 1 to t is hardly selective. If so, conditioning or not conditioning on the contemporaneous

yit makes little difference for the distribution of xit. This renders (10) close to zero and, in turn,

renders survival bias a minor issue.

It is important to note that survival bias is not specific to bIV or the first-differences estima-

tor. Pooled OLS, for instance, also suffers from survival bias, even if ai and xit are uncorrelated

in the population. Yet for OLS it is not the differences in conditional covariances but only the

levels of Cov(ai, xit|t ≤ Ti) that matter. Thus, for OLS the survival bias acts in the opposite di-
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rection and increases, rather than decreases, in the degree of persistence xit exhibits.7 Moreover,

because a conditional covariance rather than a difference in conditional covariances generates the

survival bias, between-group heterogeneity (that is, differences in the level of xit across the units

i) contribute to the bias.

The result that bIV suffers only from survival bias critically hinges on having Cov(ai, ∆xit) = 0

in the population. Contingent on the specific application, this non-testable assumption might

be neither valid nor plausible. However, assuming Cov(ai, ∆jxit) = 0 instead, with the integer

j greater than unity, may possibly be more plausible. In such settings, an estimator bIV, j based

on higher-order differences ∆jxit can – analogously to bIV – be constructed in a straightforward

manner. In other words, bIV, j is a just-identified IV with ∆jxit serving as instruments for xit. For

j = 2 we have ∆2xit ≡ ∆xit−∆xit−1, for j = 3 we have ∆3xit ≡ (∆xit−∆xit−1)− (∆xit−1−∆xit−2),

et cetera. Following the same line of argument as above, bIV, j suffers from survival bias but no

other source of asymptotic bias, as long as Cov(ai, ∆jxit) = 0 holds in the population. Naturally,

bIV, j coincides with bIV for j = 1, and with pooled OLS for j = 0. Evidently, taking higher-order

differences removes much variation from the variables used as instruments and may result in

weak instruments.

3.3 The Asymptotic Distribution of the suggested IV Estimator

Though the asymptotic properties of the just-identified IV estimator are, in general, well known,

some special features of bIV must be taken into account when establishing its asymptotic distribu-

tion and developing approaches to estimate asymptotic standard errors. From (2) to (4) we obtain

for the disturbance variance

Var(εit|ai, xi1, . . . , xiT , t ≤ Ti) = (ai + xitβ) (1− ai − xitβ) (11)

This is the error variance of a standard linear probability model (cf. Aldrich and Nelson, 1984,

p. 13), except for the constant being individual specific. For the disturbance covariance we obtain

Cov (εit, εit−s|ai, xi1, . . . , xiT , t ≤ Ti) = 0 for s ≥ 1 (12)

7This argument applies first of all to an ordinary least squares regression that includes a saturated set of period indi-
cators. In this case, only the covariance between ai and xit conditional on t contributes to the bias. If no period indicators
are included, another source of survival bias kicks in. More specifically, units with a small ai and – given that β is positive
– small xit have a higher chance of surviving and contributing many observations to the estimation sample. This may
generate, unconditionally on t, a positive correlation of ai and xit. In other words, if time dummies are not included, the
between-period correlation of ai and xit also contributes to the survival bias, which acts in the opposite direction to that
in the within-period correlation.
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because yit is observed conditionally only on yit−s = 0, and in consequence, conditionally on

εit−s taking one specific value. The disturbances are therefore subject to the familiar form of het-

eroscedasticity that applies to the linear probability model, albeit without exhibiting within-group

correlation. Building on general results for the properties of the linear instrumental variables es-

timator and using (9), (11), and (12), the asymptotic distribution of bIV reads as

bIV a∼ Normal
(

β + Q−1
∆xxQ∆xa ,

1
M

Q−1
∆xx Qσ∆x∆x Q

′−1
∆xx

)
(13)

where Q∆xx ≡ plim
(

1
M ∑N

i=1 ∑Ti
t=2 ∆xit

′xit

)
, Q∆xa ≡ plim

(
1
M ∑N

i=1 ∑Ti
t=2 ∆xit

′ai

)
, Qσ∆x∆x ≡

plim
(

1
M ∑N

i=1 ∑Ti
t=2 σ2

it∆xit
′∆xit

)
, M ≡ ∑N

i=1(Ti − 1), and σ2
it ≡ (ai + xitβ) (1− ai − xitβ).

Estimating the asymptotic covariance matrix is not straightforward, however, because estimat-

ing σ2
it is not trivial. Firstly, consistent estimators are not available for ai and, due to survival bias,

also not for β except in very special cases. Secondly, the prediction
(
âi + xit β̂

)
may well be neg-

ative or exceed unity, leading to invalid estimates of σ2
it. A natural alternative to the parametric

estimation approach is to use the heteroscedasticity-robust White (1980) estimator. More specif-

ically, this is estimating Qσ∆x∆x as 1
M ∑N

i=1 ∑Ti
t=2 e2

it∆xit
′∆xit, where eit denotes the residuals from

first-differences-based IV estimation. However, due to the survival bias of bIV, this estimator may

not be consistent for Qσ∆x∆x – although simulations suggest that the familiar robust estimator still

approximates the true variances fairly accurately. Moreover, the heteroscedasticity-robust esti-

mator is probably conservative because it typically overestimates the variance by using residuals

that capture bias.

4 Monte Carlo Analysis

In this section, we present results of our Monte Carlo (MC) simulations. For yit we consider the

data-generation process described in section 2, with xit consisting of just one variable xit.8 The

slope coefficient is β = 19 and the constant is α = 0.1. We specify ai to be iid. continuously

uniformly U(−0.05, 0.05) distributed. We consider a short panel with T = 5. We examine the

properties of the different estimators for three data-generating processes for xit:

8One may not feel comfortable with considering a DGP for yit that is consistent with the linear hazard model because
the linear model requires strong restrictions on the DGPs of xit and ai to guarantee P (yit = 1|ai , xit, t ≤ Ti) ∈ [0, 1]. For this
reason, applied researchers might be interested primarily in the performance – in terms of estimating average marginal
effects – of the linear estimators when applied to data that are generated by a process consistent with classical nonlinear
binary outcome models such as probit or logit. The simulation results presented in the Appendix A.4 consider this case.

9This choice was made simply to make the simulation results more easily comparable to the true parameter value.
It implies that xit is scaled such that a one unit change is all but a marginal change. Rescaling xit appropriately would
therefore yield a β-coefficient whose magnitude would be better in line with what one would consider a marginal effect
in a binary outcome model.
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(i) xST
it = ai + 0.165 + 0.07 · ζit, with ζit ∼ iid. B(0.2, 0.2),

i.e., xST
it is stationary

(ii) xRW
it = xRW

it−1 +
(
0.1 · νit − 0.05

)
, with xRW

i1 = ai + 0.2, and νit ∼ iid. B(0.2, 0.2),

i.e., xRW
it follows a random walk without drift

(iii) xTR
it = ai + 0.175 + 0.025 · t · ηit, with ηit ∼ iid. B(0.2, 0.2),

i.e., xTR
it exhibits a trend and increasing variance around the trend

B denotes the beta distribution. For all three data-generating processes, ai is positively correlated

with xit but uncorrelated with ∆xit in the population.10 In addition to bIV and bFD, we consider

pooled ordinary least squares bOLS as reference and the within-transformation estimator bWI,

which appears to be the most popular fixed-effects estimator in applied work. With regard to the

first-differences estimator, we focus on the version with a constant term because its reduced-form

interpretation only holds with a constant included.11

In order to assess the large-sample properties of the estimators, we choose N = 4 · 107. We

report the point estimates from one-shot regressions using this very large artificial sample; see

Table 1. Along with the point estimates, we report (heteroscedasticity-robust) standard errors.

Note that these are not generated non-parametrically by replicating the analysis, but are calcu-

lated following the procedure suggested in section 3.3. They are therefore not meant for assessing

the sampling variability of the different estimation methods by means of an MC simulation, but

rather are reported only to provide some intuition on ‘how distant from infinite size’ the artificial

sample is because the standard errors would collapse to zero in this case.

To study the estimators’ properties in a sample of moderate size, we choose N = 4 000. Here

we replicate the regressions 10 000 times. The reported coefficients are averages over the replica-

tions, and the reported standard deviations are calculated non-parametrically from the simulated

distribution. Thus, they illustrate the degree to which the different estimators suffer from sam-

pling error in our setting. We evaluate the estimators’ small-sample properties conditional on ai

and xit. Hence, we keep ai and xit fixed and only resample yit in each replication. See Table 2 for

the simulation results.12

10The parameter values are chosen to align P(yit = 1) and Var(∆xit) across the different data-generating processes
and to guarantee that the condition ai + α + xitβ ∈ [0, 1] is satisfied for any i and any t = 1, . . . , 5. For the correlations
with the unobserved heterogeneity, we have Cor(ai , xST

it ) = 0.70, Cor(ai , xRW
it ) = 0.44, and Cor(ai , xTR

it ) = 0.59. The beta
B(0.2, 0.2) distribution is chosen to have – e.g. compared to using U(0, 1) – much variation in xit, albeit using a continuous
distribution with bounded support.

11Results for bFD without a constant, which except for the case of xit following a random walk parallel the results for
bWI, are available upon request.

12Also resampling ai and xit makes little difference in the considered settings, the results get even closer to their large-
sample counterparts. In very small samples, however, the behavior of bWI becomes sensitive to whether ai and xit are
resampled in each replication.
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4.1 Large-Sample Properties

The large-sample results are presented in Table 1. In line with xit being positively correlated

with the unobserved individual heterogeneity ai, the estimated β-coefficient from bOLS exhibits

substantial upward bias. The results for bIV are also in line with the theoretical large-sample prop-

erties derived above. First, bIV hits the true value of β almost exactly. The simulations therefore

point to survival bias being of little importance in our setting. For xST
it and xTR

it , the estimate of β is

marginally bigger than the true parameter, which is in line with the direction of the survival bias

predicted by theory. Yet, the deviation from unity is small enough that it could also be attributed

to sampling error, though the standard errors are tiny. The fact that bIV yields an estimate β̂ clos-

est to the true coefficient value for xRW
it is also in line with theory because no survival bias occurs

in this case. A selection effect is, however, captured by the estimates of the baseline hazard α̂,

which are somewhat smaller than 0.1. This deviation from the true parameter value captures that

the averages of ai in the estimation samples are smaller than zero by about 0.005 due to selective

survival.

The simulation results for bFD also confirm the theoretical results. If xit follows a random

walk, the estimated slope coefficient almost coincides with its counterpart from the IV estimation,

reflecting that, in this case, the reduced form estimator and IV asymptotically coincide. For the

stationary right-hand-side variable xST
it , bFD yields a slope coefficient of almost exactly β/2. This

is approximately the value one should expect because of the misscaling bias suffered by bFD. If

the mean and variance of xit are functions of time, the slope coefficient of bFD is erroneously

scaled by a factor between one-half and one. The estimated constants strongly deviate from the

true α and also from the estimates yielded by bIV. They do not represent meaningful estimates

of the baseline hazard but capture the fact that the first-differences model has non-zero mean

disturbances as shown in (6).

Finally we turn to the results of the within estimator bWI. For the stationary regressor xST
it , the

estimated slope coefficient exhibits a substantial bias towards zero. The simulation also yields a

sizable downward bias if xit follows a random walk. When xit has a trend, bWI exhibits an upward

bias of bizarre magnitude. This simulation result is puzzling at first glance but can be easily

explained. If xit has a trend, the within-transformed regressor ẍit is strongly determined by the

individual survival time Ti. For the trend being positive, units that survive longer mechanically

exhibit lager values of the group mean x̄TR
i and, in turn, exhibit, conditionally on t, smaller values

of ẍTR
it . This generates a strong spurious correlation between ẍTR

it and yit; see Appendix A.3 for

a more detailed discussion. For this reason, bWI may even yield a large negative estimate for

12



Table 1: Monte Carlo Analysis - Large Sample Estimates

bOLS bWI bFD bIV

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.4866 0.0010 0.9023 0.0017 0.5043 0.0013 1.0045 0.0025
α̂ 0.0010 0.0002 0.1161 0.0003 0.2896 0.0001 0.0942 0.0005
xRW

it follows random walk

β̂ 1.2574 0.0007 0.9447 0.0013 0.9991 0.0013 0.9992 0.0012
α̂ 0.0468 0.0001 0.1075 0.0003 0.2859 0.0001 0.0952 0.0002
xTR

it with trend and increasing variance around trend

β̂ 1.4350 0.0010 3.9783 0.0014 0.6685 0.0013 1.0015 0.0019
α̂ 0.0095 0.0002 −0.5017 0.0003 0.2947 0.0001 0.0949 0.0004

Notes: True coefficient values: β = 1, α = 0.1; N = 4 · 107, T = 5; the # of observations for xST
it is 71 732 683, the

corresponding # of observations for xRW
it is 71 929 363, and for xTR

it it is 72 211 807. For bOLS the #s of observations
are higher by 4 · 107 observations because no wave is eliminated by the within transformation or the first-differences
transformation.

β if the trend in xTR
it is negative. 13 The extreme bias that bWI exhibits when using a regressor

with a trend is moderated if a set of wave indicators is included as additional right-hand-side

variables. However, the time effects themselves are then severely biased. Moreover, including

period indicators may exacerbate the bias of bWI for other DGPs; see Appendix A.5 for a more

detailed discussion of how including time indicators affects the results of the different estimators.

4.2 Small-Sample Properties

Turning to the simulations that consider a sample of moderate size, Table 2 indicates that – in

terms of biases – the small-sample results are very close the their large-sample counterparts. That

is, the simulations do not point to a sizable small-sample bias of bIV, while the other three esti-

mators turn out to be biased. bWI appears to be the most sensitive to the change in the simulation

design as it exhibits a substantially bigger bias for the case of xit following a random walk com-

pared to large-sample simulation. The results in Table 2 therefore suggest that the asymptotic

properties of the estimators, in particular those derived for bIV, matter in samples of a size famil-

iar to applied researchers, at least in settings similar to those considered in the present simulation.

This also applies to the standard errors estimated for bIV. The non-parametric, simulation-based

estimated standard errors match the averages of their analytically estimated counterparts (re-

ported in parentheses in Table 2) well. Moreover, they are almost exactly 100 times bigger than

their analytically derived counterparts reported in Table 1. This factor mirrors the square root

of the relative sample size. These results suggest that the method of White (1980) does a good

job estimating standard errors for bIV, at least in settings comparable to those considered in the

simulation. Not surprisingly, bOLS has the smallest variance because it uses all variation in xit.

As an IV, which by construction is picky in terms of the variation in xit that is used, bIV exhibits a

13For instance, β̂WI = −2.0734 if DGP (iii) is changed to xTR
it = ai + 0.225− 0.025 · t · ηit.
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Table 2: Monte Carlo Analysis - Small Sample Estimates

bOLS bWI bFD bIV

Mean S.D.† (S.E.‡) Mean S.D.† (S.E.‡) Mean S.D.† (S.E.‡) Mean S.D.† (S.E.‡)

xST
it stationary

β̂ 1.4896 0.1031 0.9134 0.1630 0.5065 0.1306 1.0079 0.2589
(0.1025) (0.1746) (0.1294) (0.2559)

α̂ 0.0007 0.0203 0.1142 0.0321 0.2901 0.0053 0.0938 0.0506
(0.0201) (0.0344) (0.0054) (0.0500)

xRW
it follows random walk

β̂ 1.2569 0.0701 0.8739 0.1091 1.0142 0.1242 1.0023 0.1219
(0.0703) (0.1277) (0.1257) (0.1228)

α̂ 0.0474 0.0135 0.1215 0.0214 0.2857 0.0052 0.0950 0.0232
(0.0136) (0.0248) (0.0053) (0.0234)

xTR
it with trend and increasing variance around trend

β̂ 1.4401 0.1014 3.9917 0.1443 0.6718 0.1307 1.0052 0.1936
(0.1023) (0.1446) (0.1293) (0.1922)

α̂ 0.0088 0.0204 −0.5042 0.0277 0.2951 0.0055 0.0944 0.0405
(0.0205) (0.0283) (0.0056) (0.0402)

Notes: True coefficient values: β = 1, α = 0.1; N = 4 000, T = 5; 10 000 replications. †S.D. denotes the empirical
standard deviation of the estimated coefficient in the simulation. ‡S.E. denotes the mean of the (heteroscedasticity-
robust) estimated standard errors calculated in each replication.

relatively large variance. The variance of bIV is smallest if xit follows a random walk. This finding

makes sense because, in this case, all variation in xRW
it , except for the variation in the initial values,

is explained by the instrument ∆xRW
it .

4.3 Analyzing the Survival Bias

The simulation results discussed above provide little evidence that survival bias is a substantial

issue for the considered estimation methods, for bIV in particular. This judgment, however, might

just be an artifact of the choice of model parameters, and survival bias might be a more important

issue in different settings. In order to account for this possibility and allow for settings more prone

to survival bias, we adjust the simulation design in several ways: (i) We analyze the behavior of

the estimators as a function of the variance of the unobserved heterogeneity. More precisely,

we sample ai from the U
(−q

2 , q
2
)

distribution and vary q between 0 and 0.96 and thus consider

values for
√

Var(ai) =
q√
12

in the range from 0 to 0.277. This allows for standard deviations that

substantially exceed the value considered in the simulations discussed so far. (ii) To guarantee

valid hazard rates within the unit interval, we have to make the constant a function of q; more

specifically we specify α = q/2. (iii) Considering larger values of α decreases the survival rate in

the artificial sample. For this reason, we adjust the number of units to N = 108 and the length

of the panel to T = 3. In this section we therefore analyze the properties of the estimators only

in a large sample. (iv) We exclude the initial wave from the estimation sample to bring left-

truncation into the simulation, which is a common feature of data used in duration analyses (e.g.

Kalbfleisch and Prentice, 2002). (v) We consider a DGP for which ai and xit are uncorrelated in
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the population. This makes survival bias the only source of bias for bOLS, allows this type of

bias to be compared between bOLS and bIV. (vi) Because survival bias in bOLS originates from

between-group variation in xit whereas within-group variation generates the survival bias in bIV,

we consider a stationary DGP for xit that involves both sources of variation. More specifically,

we consider xit =
1−q

2
(
µi + ωit

)
, with µi ∼ iid. B(0.2, 0.2) and ωit ∼ iid. B(0.2, 0.2). As above, q

needs to enter the DGP to bound the hazard rate to the unit interval. To consider an alternative

DGP, we replace B(0.2, 0.2) with B(6, 2). Otherwise, the DGP for yit is the same as above, with

unity still being the true value of β.

Figure 1 depicts the slope coefficients estimated by bOLS, bWI, bFD, and bIV as functions of√
Var(ai).14 The upper panel refers to the design for which B(0.2, 0.2) enters the DGP of xit,

and the lower panel refers to the design that involves B(6, 2). Dashed lines represent estimated

95 percent confidence intervals, which get wider with increasing values of q because xit then

exhibits less and less variation. The upper thin solid line marks the true parameter value β = 1.

The lower thin solid line signifies the value bFD would take if misscaling bias would be its sole

source of error, i.e. the β-element of Gβ.15

For Var(ai) = 0, i.e. in the absence of any unobserved heterogeneity, bOLS and bIV hit the true

parameter value of 1 almost perfectly. This does not apply to bFD and bWI, which are severely

biased. This illustrates that the misscaling bias in the latter two estimators does not originate from

the failure to remove unobserved heterogeneity, but from the within- and the first-differences

transformation itself. The vertical distance between the two thin solid subsidiary lines is the

misscaling bias in bFD that is eliminated by bIV. Hence, if ai exhibits little variation, misscaling is

almost the only source of bias in bFD, implying that bIV is close to asymptotic unbiasedness. If,

however, the variance of the unobserved heterogeneity increases, the survival bias kicks in. This

applies not only to bFD and bIV but also to bOLS. Yet, as predicted, for the latter the bias operates

in the opposite direction. With substantial survival bias in bFD – in Figure 1 this is the vertical

distance between bFD and the lower thin subsidiary line – bIV, which rescales the reduced form

estimator bFD, does not hit the true parameter value. Eliminating the misscaling bias comes at the

cost of rescaling the survival bias in bFD. Nevertheless, according to our simulations, misscaling is

the dominant source of bias in bFD, even if the variance of ai is very large. Thus, using bIV instead

of the reduced form estimator bFD still reduces the asymptotic bias substantially. This suggests

that using bIV is advisable even in settings that are prone to survival bias. Moreover, the survival

14Because we consider regressions with the initial period excluded, i.e. only two waves enter the estimation sample, bWI

coincides with bFD without constant. Moreover, bFD coincides with the within-transformation estimator, which includes
a wave indicator.

15Because of left-truncation, this line does not exactly hit the benchmark value of 0.5 for Var(ai) = 0.

15



.4
.6

.8
1

1
.2

E
s
ti

m
a
te

 f
o
r 

β

0 .05 .1 .15 .2 .25

Standard Deviation of ai

b
OLS

b
WI

b
FD

b
IV

.4
.6

.8
1

1
.2

1
.4

1
.6

E
s
ti

m
a
te

 f
o
r 

β

0 .05 .1 .15 .2 .25

Standard Deviation of ai

b
OLS

b
WI

b
FD

b
IV

Figure 1: Estimated β coefficients as functions of
√

Var(ai) = q/
√

12. DGPs of ai and xit: ai sampled
from the U(−q/2, q/2) distribution; xit = (1−q)/2 (µi + ωit) with µi and ωit independently sampled
from the beta B(0.2, 0.2) (upper panel) and the beta B(6, 2) (lower panel) distribution. q varies in
the range between 0 and 0.96. Dashed subsidiary lines represent 95 percent confidence intervals.
The thin solid subsidiary lines indicate the true coefficient value β = 1 and the β-element of Gβ,
respectively. Source: Authors’ own simulations.

16



bias in bIV seems to be of similar magnitude to that in bOLS, yet as discussed above, this crucially

depends on the properties of the DGP of xit.

The behavior of bWI turns out to be rather strange in our simulation. While considering differ-

ent beta distributions in the DGP of xit has little effect on the behaviors of bOLS, bFD, and bIV, the

bias of bWI is very sensitive to this choice. With B(0.2, 0.2), the within estimator is biased towards

zero throughout, yet the size of the bias is not monotonic in
√

Var(ai). If, however, B(6, 2) enters

the DGP of xit, bWI may – depending on the variance of the unobserved heterogeneity – exhibit a

substantial upward bias, a substantial downward bias, or no bias at all. This finding corroborates

our earlier result that bWI is very sensitive to how the right-hand-side variables are generated and

may exhibit a severe bias in any direction.

5 An Application to Real Data

The empirical application presented in this section is directly based on Brown and Laschever

(2012). More specifically, as the first step we replicate the results of one of their empirical models

(Brown and Laschever, 2012, page 104; table 2, column 7). Subsequently, we compare these results

to those we obtain from applying the estimators discussed in the previous sections. Thanks to the

fact that the data and the code are published in Brown and Laschever (2012/2019), replication of

the original results is straightforward. We provide here only very limited information about the

analysis of Brown and Laschever (2012). Readers interested in the details of their paper, including

in particular results from further empirical models, are referred to the original article.

The analysis of Brown and Laschever (2012) is concerned with the retirement behavior of

school teachers in the Los Angeles Unified School District (LAUSD). Although their article focuses

on how retirement decisions are affected by the retirement behavior of peer teachers, we concen-

trate on a relatively small and simple model specification from Brown and Laschever (2012) that

does not look at peer effects, but addresses the upstream16 question of whether financial incen-

tives matter for the timing of retirement.

In this specification, information from three panel waves is used to explain the dummy vari-

able ‘retirement’, indicating that a teacher retires in the respective period, by: (i) individual ‘pen-

sion wealth’ (present value of future pension income, Brown and Laschever, 2012, p. 99) and

a dummy for a ‘positive peak value’ (indicating that postponing retirement increases pension

16In the key regressions of Brown and Laschever (2012), identification rests on exogenous variation in the financial
incentives for retirement induced by two unexpected pension reforms. The effects of these reforms on teachers were
heterogeneous, allowing the reform-induced changes in financial incentives to be used as instruments for peers’ retirement
behavior. Establishing that financial incentives affect retirement decisions is thus a crucial precondition for identifying
peer effects.
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wealth, Brown and Laschever, 2012, p. 99), which capture the financial incentives for retiring in

the current period (Table 3, first panel); (ii) teacher-level controls (Table 3, second panel), (iii)

school-level controls (Table 3, third panel), (iv) age indicators, with an age of 55 years – the most

represented age in the sample – serving as reference (Table 3, fourth panel), (v) panel wave (aca-

demic year) indicators (Table 3, fifth panel), and (vi) teacher fixed effects. Because teachers are

no longer observed in the data after they have retired, retirement acts as an absorbing state. This

empirical model therefore fits very well into our framework.

Columns 1 and 2 of Table 3, denoted bWI, simply replicate the analysis of Brown and Laschever

(2012), for which the popular within-transformation estimator was used. We exclude from the es-

timation sample two teachers, whose reported ages are obviously incorrect. For one, the age

increases by several years from one year to the next, and for the other, the age decreases. Exclud-

ing these six observations has virtually no impact on the estimated coefficients. In the original

article, estimated coefficients are only reported for the explanatory variables in the first and the

second panel. The most important result is that the coefficient of ‘pension wealth’ is positive and

statistically highly significant while the coefficient of ‘positive peak value’ is negative and statisti-

cally significant as well. This confirms that teachers respond to financial incentives in timing their

retirement, which is crucial for the further analysis of Brown and Laschever (2012). We compare

the results from this model to the corresponding ones from alternative estimation methods, more

specifically bFD and bIV.

The original specification of Brown and Laschever (2012) includes a set of age dummies, in-

cluding one for the youngest age found in the sample, i.e., 53 years. This renders the matrix G

singular for the reason discussed in section 3. Therefore, the original model specification cannot

be estimated one to one by bIV. For this reason, we exclude the dummy indicating the youngest

age cohort in the sample from the IV estimation. Naturally, also one wave indicator must be

dropped if the estimation is based on first-differences.

Except for the key coefficients that capture the effects of financial incentives on retirement, the

estimates obtained from bFD are very close to the original ones. Yet, the coefficients of ‘positive

peak value’ and in particular ‘pension wealth’ are smaller in magnitude. However, they stay

– at least marginally – statistically significant. Thus, in qualitative terms, the results from first-

differences estimation does not challenge the main results of the original within-transformation

based regression.

Turning to the results from IV estimation, we see that this pattern changes. The coefficients

of the control variables are substantially different both in terms of magnitude and in terms of

statistical significance. School-characteristics seem, for instance, to be of greater importance for
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Table 3: Brown and Laschever (2012) Simple Retirement Model and Alternative Empirical Models

bWI ‡ bFD bIV

Coef. S.E. Coef. S.E. Coef. S.E.

pension wealth ($100 000) 0.038∗∗∗ 0.008 0.014∗ 0.008 0.021 0.016
positive peak value −0.088∗∗∗ 0.020 −0.066∗∗∗ 0.020 −0.100∗∗∗ 0.028

salary ($10 000) 0.023 0.016 0.020 0.017 0.054 0.043
years of service in LAUSD squared 0.001∗∗∗ 0.000 0.002∗∗∗ 0.000 −0.000 0.000

av. age of teachers aged ≥ 55 at school −0.001 0.003 −0.002 0.003 −0.000 0.007
av. service of teachers aged ≥ 55 at school −0.002 0.001 −0.002 0.001 −0.004∗ 0.002
pupil to teacher ratio 0.001 0.001 0.001 0.001 0.010∗∗ 0.005
share of teachers with masters or higher −0.115 0.074 −0.139∗ 0.072 −0.399∗∗ 0.173
share of female teachers 0.142∗∗ 0.067 0.145∗∗ 0.061 0.310∗ 0.178
av. rank on standardized math test 0.000 0.003 0.002 0.003 −0.004 0.009
# of teachers aged ≥ 55 at school −0.001 0.001 −0.002 0.001 0.002 0.001

age = 53 years 0.306∗∗∗ 0.025 0.350∗∗∗ 0.029
age = 54 years 0.141∗∗∗ 0.013 0.168∗∗∗ 0.015 −0.000 0.009
age = 56 years −0.156∗∗∗ 0.013 −0.178∗∗∗ 0.015 −0.025∗∗∗ 0.009
age = 57 years −0.310∗∗∗ 0.025 −0.356∗∗∗ 0.029 −0.026∗∗ 0.011
age = 58 years −0.452∗∗∗ 0.036 −0.522∗∗∗ 0.043 −0.020 0.013
age = 59 years −0.567∗∗∗ 0.048 −0.658∗∗∗ 0.057 0.008 0.016
age = 60 years −0.631∗∗∗ 0.060 −0.738∗∗∗ 0.071 0.060∗∗∗ 0.019
age = 61 years −0.694∗∗∗ 0.072 −0.799∗∗∗ 0.086 0.066∗∗∗ 0.022
age = 62 years −0.686∗∗∗ 0.086 −0.785∗∗∗ 0.101 0.119∗∗∗ 0.027
age = 63 years −0.727∗∗∗ 0.097 −0.804∗∗∗ 0.114 0.077∗∗ 0.032
age = 64 years −0.788∗∗∗ 0.109 −0.860∗∗∗ 0.127 0.025 0.031
age = 65 years −0.794∗∗∗ 0.119 −0.871∗∗∗ 0.141 0.066∗∗ 0.033
age ≥ 66 years −0.825∗∗∗ 0.131 −0.898∗∗∗ 0.154 0.046 0.036

academic year 2000-01 0.092∗∗∗ 0.016
academic year 2001-02 0.197∗∗∗ 0.029 0.030∗∗∗ 0.010 0.015∗ 0.009
constant −0.412∗ 0.224 0.103∗∗∗ 0.020 −0.437 0.472

Notes: ‡ Replication of the results of Brown and Laschever (2012, p. 104; table 2, column 7), subject to a marginal
modification of the estimation sample due to inconsistent age information. ∗∗∗ p-value < 0.01; ∗∗ p-value < 0.05;
∗ p-value < 0.1. Standard errors clustered at the school level. 21 290 observations, 8 320 teachers, and 586 school
clusters for within-transformation estimation. 12 968 observations, 7 088 teachers, and 578 school clusters for first-
differences estimation. Because N observations are redundant in the within-transformed model, the number of non-
redundant observations does not deviate between the within-transformed and the first-differences model. Two further
observations are missing in the first-differences estimation due to missing values in ‘average rank on standardized
math test’ for the year 2000. Although the within-transformation can still be applied to the corresponding observations
for 1999 and 2001, first-differences cannot be calculated unless one allows for unequally spaced periods. Source:
Brown and Laschever (2012) and authors’ own estimations; variable names are – subject to minor modifications –
borrowed from the online appendix to Brown and Laschever (2012); see https://www.aeaweb.org/aej/app/app/

2011-0132_app.pdf.

retirement if one considers the results from bIV. The divergence of the estimation results cannot be

attributed to ∆xit being only weak instruments for xit because the Kleibergen and Paap (2006) test

clearly rejects17 the null of general underidentification, and the Sanderson and Windmeijer (2016)

test rejects the null for each individual regressor. With respect to the coefficients of prime impor-

tance , the results from bIV are also not in line with the original ones because ‘pension wealth’

– which is of prime importance – loses statistical significance. One may, however, argue that

the confidence intervals of the incentive coefficients overlap for all three estimation procedures,

implying that their results differ merely in economic terms.

To shed more light on what is different about these results, we examine predicted conditional

17LM-χ2(1)-statistic: 45.06, p-value: 0.0000; stata® implementation underid by Schaffer and Windmeijer (2020) used. In
general weak instruments may, however, be an issue for bIV; cf. section 3. The underidentification tests are, for instance,
far from rejecting the null if the estimator is applied to a richer, reduced-form model specification (Brown and Laschever,
2012, p. 109; table 4, column 8).
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Figure 2: Sample distribution of predicted conditional retirement probabilities from bWI, bFD, and
bIV. Predictions from within-transformed estimator based on three waves, i.e. 21 290 obs.; pre-
dictions from first-differences estimators based on two waves, i.e. 12 968 obs. The mean outcome
(rel. frequency of retirement events) is 0.085 in the three-wave sample and 0.095 in the two-wave
sample. Source: Authors’ own calculations based on Brown and Laschever (2012/2019).

retirement probabilities.18 Figure 2 displays the sample distribution of the fitted values yielded

by the three estimation methods in the respective estimation samples. As to be expected when

using a linear probability model, all estimators yield some predicted probabilities outside the

unit interval. Yet the extent by which this happens varies a great deal: Whereas for bWI and bFD

more than 60 percent of the predictions are outside the valid range, the corresponding share for

bIV is smaller than 20 percent. Thus, the first two estimators do a very poor job in generating

reasonable predictions. In fact, little mass of the distribution of fitted values is located in the

meaningful range. On the basis of the predicted probabilities, one would judge bIV to be clearly

superior to bFD and bWI in the present application.

One possible explanation for the very different estimated distributions of retirement proba-

bilities is the estimated age coefficients, which in absolute terms are typically much bigger for

bWI and bFD than for bIV. Figure 3 depicts the baseline hazards19 that are estimated by the age

18The predictions are calculated as
(
α̂WI + xit β̂

WI), (α̂FD + xit β̂
FD), and

(
α̂IV + xit β̂

IV), respectively. They are thus
unconditional on ai .

19The level of the baseline hazard is individual-specific and only its shape is estimated by the age coefficients. In Figure
3 we normalize the level such that estimated baseline hazards coincide with their descriptive counterpart for the reference
age-category of 55 years.
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Figure 3: Estimated baseline-hazards; levels normalized to match the descriptive sample hazard
(83/2 491 = 0.033) at the reference age (55 years); thin dashed lines mark 95 percent confidence
intervals. Source: Authors’ own calculations based on Brown and Laschever (2012/2019).

coefficients and compares them to their descriptive counterpart, i.e. to the age-specific relative

retirement frequency. Descriptively, the retirement hazard is close to zero for teachers younger

than 55 and then steadily increases until the age of 62, where it reaches roughly 20 percent. The

baseline hazard estimated by bIV roughly follows this pattern but exhibits a smaller age gradi-

ent. The latter finding makes sense because the empirical hazard – unlike the estimated baseline

hazard for which financial incentives have been controlled for – not only captures the genuine

age-specific inclination to retire, but also pension rules that financially disincentivize early retire-

ment; see Brown and Laschever (2012, p. 94). In sharp contrast, bWI and bFD yield a steady and

steep decrease in the baseline retirement hazard for teachers over virtually the entire considered

age range, a decrease that is in no way mirrored by the unconditional sample retirement rates. In-

deed, according to the results from the within estimator, the baseline retirement hazard decreases

by 110 percentage points between the ages of 53 and 65, a result that makes little sense. A poorly

estimated baseline hazard would appear to be the main reason for the poor predictions generated

by the within-transformation and the simple first-differences estimator. This interpretation is cor-

roborated by simulation results in which the with-transformation estimator yields heavily biased

results for the baseline hazard; see Table A3 in Appendix A.5.
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6 Conclusions

Taking first-differences or applying the within-transformation estimator to eliminate individual

time-invariant heterogeneity are powerful tools in applied econometrics that make the linear re-

gression model very appealing when analyzing panel data. However, the logic that these trans-

formations remove individual time-invariant heterogeneity and therefore allow for consistent and

unbiased estimation by least squares does not apply in a discrete-time hazard setting, in which an

observation unit is observed only until that period in which the event of interest occurs. Indeed,

as shown above, conventional fixed-effects estimators are biased and inconsistent in this case. In

addition to conventional survival bias, which would also affect pooled OLS even if the individual

heterogeneity were uncorrelated with the explanatory variables in the population, these estima-

tors suffer from a second source of bias that originates from the data transformation itself and is

therefore present even in the absence of any unobserved heterogeneity. Examining the classical

linear fixed-effects estimators from an instrumental-variables perspective makes the nature of this

bias more obvious. For the first-differences estimator, this bias is simply the failure to rescale the

coefficient estimates of the reduced-form model. For the within-transformation, this bias origi-

nates from the fact that the endogeneity of the survival time invalidates group-mean deviations

as instruments. This second source of bias turns out to be the dominant one in many settings,

with its magnitude depending heavily on the data-generating process for the explanatory vari-

ables. The conventional first-differences and the within-transformation estimators should, for this

reason, not be applied to discrete-time hazard models.

In this paper, we suggest an alternative instrumental variables estimator that uses first-differ-

ences as instrument for the levels. It addresses the misscaling bias inherent to first-differences

estimation by appropriately rescaling the estimated coefficients. Under the assumption that any

unobserved time-invariant, individual heterogeneity is uncorrelated with the first – or alterna-

tively higher-order – differences of the explanatory variables, it confines the bias to survival bias

– and it does so under alternative, weaker assumptions than pooled OLS, for which uncorrelat-

edness with the levels of the explanatory variables is required. The contribution of this paper is

thus twofold. First, it shows why conventional linear fixed-effects estimators should not be used

in a discrete-time hazard framework. Second, it introduces an alternative estimator that confines

possible bias to a single source. This remaining source is simply a variant of the conventional

survival bias that researchers should always be aware of when estimating a linear discrete-time

hazard model.
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A Appendix

A.1 Conditional Mean of Disturbances of FD Estimation

The disturbance in the first-differences model is εFD
it ≡ yit − ∆xitβ. For its conditional mean

follows

E(εFD
it |ai, xi1, . . . , xiT , t ≤ Ti) = E(εFD

it |ai, xit, xit−1, t ≤ Ti)

= P(yit = 1|ai, xit, t ≤ Ti) (1− ∆xitβ)

+P(yit = 0|ai, xit, t ≤ Ti) (−∆xitβ)

= (ai + xitβ) (1− ∆xitβ) + (1− ai − xitβ) (−∆xitβ)

= ai + xit−1β (14)

A.2 Probability Limit of the FD Estimator

We rewrite the first-difference estimator (5) as

bFD = β +

(
N

∑
i=1

Ti

∑
t=2

∆xit
′∆xit

)−1( N

∑
i=1

Ti

∑
t=2

∆xit
′εFD

it

)
(15)

Based on (6) and assuming that the data are well behaved, i.e. finite first and second moments of

xit and xit−1 exist, we get

plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆xit
′εFD

it

)
= plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆xit
′ai

)
+ plim

(
1
N

N

∑
i=1

Ti

∑
t=2

∆xit
′xit−1

)
β (16)

Using the identity
(

I +
(

∑N
i=1 ∑Ti

t=2 ∆xit
′∆xit

)−1 (
∑N

i=1 ∑Ti
t=2 ∆xit

′xit−1

))
≡(

∑N
i=1 ∑Ti

t=2 ∆xit
′∆xit

)−1 (
∑N

i=1 ∑Ti
t=2 ∆xit

′xit

)
, which follows from xit−1 = xit − ∆xit, from (15)

and (16) we get (7).

A.3 Estimation by the Within-Transformation Estimator

In this Appendix we examine the classical within-transformation estimator, denoted bWI. To align

the way of representing the estimator with section 3, we think of the within-estimator as ap-

plying the within-transformation only to the right-hand-side variables, i.e. ẍit ≡ (xit − x̄i), with

i



x̄i ≡ 1
Ti

∑Ti
t=1 xit, serve as explanatory variables. It is important to note that in terms of the esti-

mated slope coefficients, this way of formulating the estimator is fully equivalent to applying the

within-transformation also to yit, which is presumably the most popular way of thinking about

bWI.20 In this model the disturbance term εWI
it reads as yit − ẍitβ and for its conditional mean we

obtain

E
(

εWI
it |ai, xi1, . . . , xiT , t ≤ Ti

)
= P(yit = 1|ai, xit, t ≤ Ti)

(
1−

(
xit −

1
t

t

∑
s=1

xis

)
β

)

+
T

∑
r=t+1

[
P(yir = 1|ai, xir, r ≤ Ti)

(
r−1

∏
s=t

P(yis = 0|ai, xis, s ≤ Ti)

)

×
(
−
(

xit −
1
r

r

∑
s=1

xis

)
β

)]

+

(
T

∏
s=t

P(yis = 0|ai, xis, s ≤ Ti)

)(
−
(

xit −
1
T

T

∑
s=1

xis

)
β

)

= (ai + xitβ)

(
1−

(
xit −

1
t

t

∑
s=1

xis

)
β

)

+
T

∑
r=t+1

[
(ai + xirβ)

(
r−1

∏
s=t

(1− ai − xisβ)

)(
−
(

xit −
1
r

r

∑
s=1

xis

)
β

)]

+

(
T

∏
s=t

(1− ai − xisβ)

)(
−
(

xit −
1
T

T

∑
s=1

xis

)
β

)

= (ai + xitβ)− xitβ +
T

∑
r=t

(
P (Ti = r|ai, xi1, . . . , xiT , Ti ≥ t)

1
r

r

∑
s=1

xis

)
β

= ai + E(x̄i)tβ (17)

with E(x̄i)t ≡ E (x̄i|ai, xi1, . . . , xiT , t ≤ Ti) = ∑T
r=t

(
P (Ti = r|ai, xi1, . . . , xiT , Ti ≥ t) 1

r ∑r
s=1 xis

)
. That

is E(x̄i)t denotes the expected value of x̄i conditional on unit i having survived at least until pe-

riod t. For t = T, E(x̄i)t simplifies to 1
T ∑T

s=1 xis. Equation (17) reveals that applying the within-

transformation – just as taking first-difference – does neither remove the unobserved heterogene-

ity nor does it yield a disturbance that is conditional mean independent of the explanatory vari-

ables. The necessary conditions for unbiasedness are, thus, also violated for the classical within-

estimator, even in the absence of unobserved time-invariant heterogeneity.

Unlike for the first-differences estimator, the explanatory variables enter the conditional mean

of disturbance not in terms of observed lagged values but in terms of unknown conditional

20The equivalence become obvious by thinking of the within-transformation as ‘partialling out’ a saturated set of group
indicators, which does not require transforming the left-hand-side variable (e.g. Wooldridge, 2009). This holds because,
for any product of two data matrices, it makes no difference if either both or just one of them is transformed into group-
mean deviations, since the ‘residual marker’ is symmetric and idempotent (Greene, 2014).
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means. This is why the within-transformation estimator does not provide a basis for an instru-

mental variables estimator that mirrors bIV. In this respect, it is telling that bWI is already an IV

that uses ẍit as instruments for xit, as shown in Arellano and Bover (1995) and with more rigor

also in Im et al. (1999).21 However, in a non-repeated event setting ẍit is endogenous and ill-suited

as instrument, since it is an immediate function of the ultimate outcome Ti. It is worth mentioning

that Im et al. (1999) stress that the classical panel data setting – i.e. one without an absorbing state

at the left-hand-side – allows for numerous instruments that can be used instead of ẍit, with ∆xit

being among them.

21In applied econometrics the close link between fixed effects and instrumental variables estimation seems to have
attracted little attention. Notable exceptions are Hausman and Taylor (1981) and Amemiya and MaCurdy (1986).
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A.4 Simulation Results for Probit Model as True DGP

Table A1: Monte Carlo Analysis - Probit as true DGP (Large Sample Estimates)

bOLS bWI bFD bIV

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it : true av. marg. effect 1.0104 (first wave incl.), and 1.0046 (first wave excl.)

β̂ 1.5118 0.0010 0.9110 0.0017 0.5113 0.0013 1.0143 0.0025

xRW
it : true av. marg. effect 1.0018 (first wave incl.), and 0.9898 (first wave excl.)

β̂ 1.2465 0.0007 0.9190 0.0013 0.9915 0.0013 0.9916 0.0012

xTR
it : true av. marg. effect 1.0172 (first wave incl.), and 1.0252 (first wave excl.)

β̂ 1.4778 0.0010 3.9868 0.0014 0.6949 0.0013 1.0389 0.0019

Notes: True DGP: P (yit = 1|ai , xit, t ≤ Ti) = Φ
(
− 1.44 + 3(ai + α + xitβ)

)
; true coefficient value: β = 1; N = 4 · 107,

T = 5; same DGPs for xit as in the simulations discussed in section 4; the # of observations for xST
it is 72 180 570, the

corresponding # of observations for xRW
it is 72 281 575, and for xTR

it it is 72 722 785. For bOLS the #s of observations
are higher by 4 · 107 observations, since no wave is eliminated by the within-transformation or the first-differences
transformation. See Table 1 for corresponding simulation results assuming a DGP consistent with the linear model.

Table A1 shows results from simulations in which the linear estimators are applied to data

that was generated by the process P (yit = 1|ai, xit, t ≤ Ti) = Φ
(
− 1.44 + 3(ai + α + xitβ)

)
, with

β = 1 and Φ denoting the CDF of the standard normal distribution. The explanatory variable

xit and the unobserved heterogeneity ai are generated by the same DGPs as considered in section

4.1. The scaling factor 3 and the location parameter −1.44 are introduced to generate probabili-

ties that exhibit (almost) the same sample mean and same sample variance as the corresponding

linear probabilities considered in section 4.1. Though the true slope coefficient β is still 1, in the

considered probit model the quantity of interest is not β but the corresponding average marginal

effect 3β 1
M+N ∑N

i=1 ∑Ti
t=1 φ

(
− 1.44 + 3(ai + α + xitβ)

)
. For all considered DGPs, its value almost

coincides with β, with and without the first wave being included. From comparing the coefficient

estimate to the true average marginal effects it becomes obvious that the pattern of biases is the

same for the true DGP being linear or being of probit-type. This findig is in line with the literature

(e.g. Wooldridge, 2002, p. 455) that states that in term of average partial effects the linear prob-

ability model does very good job in approximating the results from non-linear binary response

models.

One may object that the above simulation considers a setting in which the linear and the probit

model generate similar average marginal effects, making linear estimators mechanically perform

well even if the true DGP is non-linear. To address this concern we consider an alternative DGP

that generates marginal effects that more strongly deviate from the what the linear model yields.

More specifically we consider P (yit = 1|ai, xit, t ≤ Ti) = Φ
(
− 1 + 3

2 (ai + α + xitβ)
)
, with the

Normal(0.5, 4) distribution, instead of the B(0.2, 0.2) distribution, entering the DGPs for xit. Yet,

this does not change the pattern of results in qualitative terms; see Table A2. In consequence, the

iv



Table A2: Monte Carlo Analysis - Probit as true DGP (Large Sample Estimates; xit normal)

bOLS bWI bFD bIV

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it : true av. marg. effect 0.5041 (first wave incl.), and 0.5034 (first wave excl.)

β̂ 0.5247 0.0003 0.4554 0.0004 0.2553 0.0003 0.5043 0.0005

xRW
it : true av. marg. effect 0.4840 (first wave incl.), and 0.4679 (first wave excl.)

β̂ 0.4544 0.0002 0.4153 0.0003 0.4682 0.0003 0.4682 0.0002

xTR
it : true av. marg. effect 0.5062 (first wave incl.), and 0.5059 (first wave excl.)

β̂ 0.5284 0.0003 0.6836 0.0004 0.3381 0.0003 0.5053 0.0004

Notes: True DGP: P (yit = 1|ai , xit, t ≤ Ti) = Φ
(
− 1 + 3

2 (ai + α + xit β)
)
; true coefficient value: β = 1; N = 4 · 107,

T = 5; deviating from section 4, Normal(0.5, 4) replaces B(0.2, 0.2) in DGPs for xit; the # of observations for xST
it is

71 990 728, the corresponding # of observations for xRW
it is 72 528 280, and for xTR

it it is 72 654 020. For bOLS the #s of
observations are higher by 4 · 107 observations, since no wave is eliminated by the within-transformation or the first-
differences transformation. See Table 1 for corresponding simulation results assuming a DGP consistent with the linear
model.

simulation results indicate that the advantage of bIV over conventional fixed-effects estimators

carries over to settings, in which the true DGP is not fully consistent with the linear hazard model.
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A.5 Simulation Results for Specification with Wave Indicators

Table A3: Monte Carlo Analysis - Large Sample Estimates, Wave Indicators included

bOLS bWI bFD bIV

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.4837 0.0010 0.6411 0.0015 0.5043 0.0013 1.0045 0.0025
τ̂2 −0.0011 0.0001 0.2945 0.0001
τ̂3 −0.0025 0.0001 0.4369 0.0001 −0.0049 0.0001 −0.0025 0.0001
τ̂4 −0.0037 0.0001 0.5289 0.0001 −0.0143 0.0002 −0.0048 0.0001
τ̂5 −0.0049 0.0002 0.5956 0.0002 −0.0283 0.0003 −0.0071 0.0002
α̂ 0.0032 0.0002 −0.1031 0.0003 0.2947 0.0001 0.0968 0.0005
xRW

it follows random walk

β̂ 1.2550 0.0007 1.2017 0.0011 0.9990 0.0013 0.9992 0.0012
τ̂2 −0.0017 0.0001 0.2953 0.0001
τ̂3 −0.0028 0.0001 0.4371 0.0001 −0.0073 0.0001 −0.0024 0.0001
τ̂4 −0.0033 0.0001 0.5265 0.0001 −0.0242 0.0002 −0.0048 0.0001
τ̂5 −0.0031 0.0002 0.5888 0.0002 −0.0529 0.0003 −0.0070 0.0002
α̂ 0.0489 0.0002 −0.2127 0.0002 0.2953 0.0001 0.0978 0.0003
xTR

it with trend and increasing variance around trend

β̂ 1.5074 0.0011 0.8991 0.0016 0.6650 0.0013 1.0032 0.0019
τ̂2 −0.0076 0.0001 0.2840 0.0001
τ̂3 −0.0151 0.0001 0.4279 0.0001 0.0075 0.0001 −0.0024 0.0001
τ̂4 −0.0225 0.0001 0.5251 0.0002 0.0223 0.0002 −0.0047 0.0002
τ̂5 −0.0300 0.0002 0.5989 0.0002 0.0442 0.0003 −0.0071 0.0002
α̂ 0.0050 0.0002 −0.1484 0.0003 0.2869 0.0001 0.0970 0.0004

Notes: τt denote coefficients of wave indicators. True coefficient values: β = 1, α = 0.1, τ2 = . . . = τ5 = 0; N = 4 · 107,
T = 5; the # of observations for xST

it is 71 732 683, the corresponding # of observations for xRW
it is 71 929 363, and for xTR

it
it is 72 211 807. For bOLS the #s of observations are higher by 4 · 107 observations, since no wave is eliminated by the
within-transformation or the first-differences transformation. See Table 1 for corresponding simulation results based
on specification without wave indicators.

Table A.5 displays large-sample simulation results for as specification fully equivalent to the

one for which results are displayed in Table 1, except for including a saturated set of time indi-

cators. The attached true coefficients, hence, capture how the baseline hazard evolves over time.

To isolate the effect including the time indicators has on the results, we use exactly the same sim-

ulated data that is used for generating the results shown in Table 1. This means that the true

DGP does not involve time effects but exhibits a constant baseline hazard. While including these

dummies has almost no effect on β̂ one gets from bOLS, bFD, and bIV, the within-transformation

estimator bWI turns out to be quite sensitive to this change of the model specification. While the

extreme upward bias for an xit with trend disappears and is replaced by an moderate downward

bias, the downward bias for a stationary xit gets more pronounced. For xit following a random

walk, instead of suffering from a small downward bias, bWI exhibits a sizable upward bias, if time

indicators are included. Moreover, bWI yields estimated time effects on the baseline hazard that

are completely misleading. This mirrors the counterintuitive age effects bWI yields in the real data

application; see section 6. The simulation results are inline with our earlier argument about bIV

being biased with regard to the baseline hazard that is α, and τ2 . . . τ5. According to the estimates

of τ2 . . . τ5 the baseline hazard decreases over time, though the data generating process does not

vi



Table A4: Monte Carlo Analysis - Large Samp. Est., true Time Effects and Wave Indicators

bOLS bWI bFD bIV

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

xST
it stationary

β̂ 1.4838 0.0011 0.6275 0.0017 0.5045 0.0014 1.0041 0.0028
τ̂2 −0.0011 0.0001 0.2945 0.0001
τ̂3 0.1975 0.0001 0.6369 0.0001 0.1951 0.0001 0.1975 0.0001
τ̂4 −0.0041 0.0002 0.5937 0.0002 0.1836 0.0002 −0.0057 0.0002
τ̂5 0.1946 0.0002 0.8600 0.0002 0.3679 0.0004 0.1920 0.0002
α̂ 0.0032 0.0002 −0.0924 0.0003 0.2947 0.0001 0.0969 0.0006
xRW

it follows random walk

β̂ 1.2770 0.0008 1.1867 0.0013 1.0012 0.0014 1.0013 0.0014
τ̂2 −0.0016 0.0001 0.2953 0.0001
τ̂3 0.1975 0.0001 0.6373 0.0001 0.1929 0.0001 0.1978 0.0001
τ̂4 −0.0032 0.0002 0.5905 0.0002 0.1721 0.0002 −0.0057 0.0002
τ̂5 0.1976 0.0002 0.8523 0.0002 0.3402 0.0004 0.1925 0.0002
α̂ 0.0445 0.0002 −0.2021 0.0003 0.2953 0.0001 0.0974 0.0003
xTR

it with trend and increasing variance around trend

β̂ 1.5380 0.0012 0.8951 0.0018 0.6745 0.0015 1.0039 0.0022
τ̂2 −0.0079 0.0001 0.2840 0.0001
τ̂3 0.1843 0.0001 0.6280 0.0001 0.2075 0.0001 0.1976 0.0001
τ̂4 −0.0238 0.0002 0.5900 0.0002 0.2201 0.0003 −0.0055 0.0002
τ̂5 0.1684 0.0002 0.8634 0.0002 0.4403 0.0004 0.1920 0.0002
α̂ −0.0008 0.0002 −0.1394 0.0003 0.2868 0.0001 0.0969 0.0004

Notes: τt denote coefficients of wave indicators. True coefficient values: β = 1, α = 0.1, τ2 = 0, τ3 = 0.2, τ4 = 0,
τ5 = 0.2; N = 4 · 107, T = 5; the # of observations for xST

it is 64 986 815, the corresponding # of observations for xRW
it

is 65 167 537, and for xTR
it it is 65 445 856. For bOLS the #s of observations are higher by 4 · 107 observations, since no

wave is eliminated by the within-transformation or the first-differences transformation. See Table 1 for corresponding
simulation results based on specification without wave indicators.

involve such time dependence. This is explained by the fact that the τ̂t capture the decrease of

E(ai|t, X) due to selective survival.

Table A4 shows simulation result for the same model specification used to generate the results

displayed in Table A3. Yet unlike the latter, here the true DGP involves time effects, i.e. the true

baseline hazard is not flat. More precisely the true baseline hazard is inflated by 0.2 in the periods

three and five, that is τ2 = 0, τ3 = 0.2, τ4 = 0, and τ5 = 0.2. In qualitative terms, the results mirror

what is found for a flat baseline hazard. As befor, bIV does not estimate the baseline hazard

unbiasedly. Yet, the error in the estimated baseline hazard turns out to be rather small. bWI still

yields poor results both in terms of the baseline hazard and in terms of the β̂.
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