
How does multiplicative background risk affect risk
taking? Theoretical predictions and experimental

evidence∗

Sebastian Hincka , Richard Peterb , and Petra Steinortha

aUniversität Hamburg, Institute for Risk Management and Insurance
bUniversity of Iowa, Department of Finance

September 7, 2021

Abstract

Preferences exhibit multiplicative risk vulnerability (MRV) if an individual
behaves in a more risk-averse way after the introduction of any unfair multi-
plicative background risk. We examine risk-taking behavior in the standard
portfolio problem and provide conditions for MRV under expected utility the-
ory, cumulative prospect theory and rank-dependent utility. We conduct the
first incentivized laboratory experiment to test the effects of multiplicative
background risk on risk taking. We find that the propensity for MRV choices
is heavily dependent on the shape of the background risk in our sample: the
presence of a left-skewed multiplicative background risk increases risk taking
by approximately 10%. A symmetric background risk does not lead to changes
in risk-taking behavior compared to the situation without background risk. We
do not find any statistical association between MRV and sociodemographic fac-
tors.

Keywords: Decision-making under risk · Lab experiment · Multiplicative risk
vulnerability · Multiplicative background risk

JEL Classification: C81 · C90 · C91 · D81 · G11

∗Corresponding author: Sebastian Hinck: Universität Hamburg, Institute for Risk Manage-
ment and Insurance, Moorweidenstraße 18, 20148 Hamburg, Germany. Phone: +49 40 42838 1515.
E-mail: sebastian.hinck@uni-hamburg.de. This study is registered in the AEA RCT Registry
and the unique identifying number is: AEARCTR-0007953.

1

sebastian.hinck@uni-hamburg.de


1 Introduction

Individuals are routinely exposed to multiple sources of risk, which has generated a
growing literature on the effects of so-called background risk on behavior starting
with Doherty and Schlesinger (1983), and later Gollier and Pratt (1996) and Eeck-
houdt et al. (1996). Background risk can help resolve the equity premium puzzle
(Weil, 1992) and matters for optimal consumption-saving decisions on incomplete
markets (Zeldes, 1989; Gourinchas and Parker, 2002). In this paper, we provide new
results on how the addition of a multiplicative background risk changes risk-taking
behavior. Many settings can give rise to multiplicative background risk. Examples
include (i) a random income tax rate due to legislative uncertainty, (ii) random-
ness in the purchasing power due to inflation risk, or (iii) random foreign exchange
rates. Even though multiplicative background risk arises in various contexts, little
is known about its effects on behavior.

Multiplicative background risk has unique effects on individuals’ risk taking
because of the way it interacts with the endogenous risk. Intuitively, it is not clear
that the addition of a multiplicative background risk leads to less or more risk
taking. When the background risk is additive, the volatility of the final wealth
distribution is always the same for additive background risk conditional on the
value of the endogenous risk. The realization of the endogenous risk only affects
the location of the final wealth distribution. This is not true for a multiplicative
background risk: the realization of the endogenous risk also affects the scale of
the final wealth distribution. When the endogenous risk yields high outcomes,
these are amplified by the multiplicative background risk; when the endogenous risk
yields low outcomes, this scales down the uncertainty arising from the multiplicative
background and limits the downside. As such, it is plausible that multiplicative
background risk may as well encourage risk taking in certain situations. Given the
multiplicative nature of the background risk, it also appears that the shape of the
background risk may impact risk taking: a left-skewed background risk leads to
more variation in relative terms in the bad state of the world and less in the good
state of the world. Increasing the exposure to the endogenous risk leads to less
wealth in the bad state of the world (and more in the good state of the world).
This decreases absolute volatility in the bad state of the world more, the more left
skewed the risk is. Accordingly, a more left-skewed multiplicative background risk
may lead to more risk taking.

Existing literature has mainly concentrated on additive background risk. Gol-
lier and Pratt (1996) call preferences risk vulnerable when individuals behave in
a more risk-averse way after adding any unfair background risk to their wealth.
Under expected utility, additive risk vulnerability places restrictions on the utility
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function that are satisfied by many commonly used functional forms. Guiso and
Paiella (2008) construct a direct measure of absolute risk aversion from survey data
and show that, in the cross-section, income uncertainty is positively associated with
absolute risk aversion. In two laboratory experiments, Beaud and Willinger (2015)
find that approximately 80% of choices are consistent with additive risk vulnerabil-
ity.1

Existing theory is scarce and offers no clear predictions about the effect of mul-
tiplicative background risk on risk-taking behavior. In analogy to Gollier and Pratt
(1996), Franke et al. (2006) call preferences multiplicative risk vulnerable (MRV)
when individuals behave in a more risk-averse way after introducing an arbitrary
independent multiplicative background risk that is undesirable. They then derive a
necessary and sufficient condition for preferences to be MRV in the expected utility
model. Due to its complexity, they also state simpler sufficient conditions, which
place restrictions on the Arrow-Pratt coefficient of relative risk aversion. The class
of hyperbolic absolute risk aversion (HARA) utility functions reveals that standard
choices of preference parameters can lead to behavior that is either more or less
risk-averse after the introduction of a multiplicative background risk. Unlike for
additive background risk, no dominant pattern arises. To resolve this indetermi-
nacy, we conduct the first incentivized laboratory experiment to investigate how
multiplicative background risk affects risk-taking behavior in actuality.

In a first step, we summarize and extend the theoretical predictions about the
effects of multiplicative background risk on risk taking under various theories of
choice under risk. Specifically, we consider expected utility theory (EUT), cumu-
lative prospect theory (CPT) and rank-dependent utility (RDU), and evaluate the
decision situations that individuals face in the experiment. Under EUT, multiplica-
tive risk vulnerability is determined by the monotonicity and curvature of relative
risk aversion and by the comparison of relative risk aversion against unity. In
the knife-edge case of constant relative risk aversion (CRRA), multiplicative back-
ground risk only affects welfare but not behavior. CPT mostly predicts an increase
in risk taking after introducing multiplicative background risk for common param-
eterizations and reference points. RDU predicts less risk taking for a symmetric
multiplicative background risk but more risk taking for a multiplicative background
risk with negative skewness. Overall, RDU predicts the choices in our laboratory
experiment best.

To isolate the effect of multiplicative background risk on behavior, we use a
within-subject design where individuals take two investment decisions, one in the

1Lusk and Coble (2008) also conducted a laboratory experiment but found only weak evidence
of risk vulnerability. They used a between-subjects design. The claim of risk vulnerability is
intrapersonal, not interpersonal, making Beaud and Willinger’s (2015) within-subject design better
aligned with the theory of additive background risk.
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presence of a multiplicative background risk and one in the absence of background
risk. We can thus determine the role of multiplicative background risk for risk
taking at the individual level, consistent with the theory of background risk. In the
experiment, we use two types of background risk between subjects, a symmetric one
and a left-skewed background risk with negative skewness. Both background risks
have a mean of one to mute wealth effects and have the same variance. Ever since
Golec and Tamarkin’s (1998) paper, skewness has been recognized as an important
driver of decision-making under risk.2 Ebert and Wiesen (2011) provide evidence
of skewness-seeking in the laboratory and relate it to downside risk aversion (see
Menezes et al., 1980) and prudence (see Kimball, 1990). We find that the propensity
for MRV choices is heavily dependent on the shape of the background risk in our
sample: the presence of a left-skewed multiplicative background risk increases risk
taking by approximately 10% while a symmetric background risk does not lead
to changes in risk-taking behavior compared to the situation without background
risk. We do not find any statistical association between MRV and sociodemographic
factors.

The remainder of the paper is organized as follows. In section 2, we provide
theoretical predictions of the effect of multiplicative background risk on risk-taking
behavior in the standard portfolio problem for various models of choice under risk.
Section 3 describes the experimental design. We present the results of the experi-
ment in Section 4. A final section concludes.

2 Multiplicative background risk in the standard port-
folio problem

2.1 Preliminaries

We first introduce the version of the standard portfolio problem that we will use
in the experiment. Individuals receive an initial endowment x0 and decide how
to allocate it between a safe asset and a risky asset. We denote by δ ∈ [0,1] the
fraction of the endowment invested in the risky asset. The individual thus decides
to allocate (1 − δ)x0 to the safe asset and δx0 to the risky asset. The amount
invested in the risky asset is subject to a binary return risk. With probability p it
increases to kδx0 for a k > 1, resulting in a return of k− 1. With probability 1− p
the investment is lost. So the value of the individual’s portfolio x̃(δ) is given by

2Already Mao (1970) noted that, everything else equal, surveyed business executives express a
preference for positive over negative skewness.

4



x+ = x0 + (k − 1)δx0 in the good state and by x− = x0 − δx0 in the bad state,

x̃(δ) =

x
+ = x0 + (k − 1)δx0 with probability p,

x− = x0 − δx0 with probability 1− p.

To isolate the effect of multiplicative background risk on behavior, we compare
individuals’ optimal investment amounts in the standard portfolio problem with
and without multiplicative background risk. The version described above does not
include multiplicative background risk and serves as the control treatment, denoted
by C. It corresponds to the investment game used by Gneezy and Potters (1997),
Gneezy et al. (2009), Cohn et al. (2015), Imas (2016), and Cohn et al. (2017) and
many others. In the other version, denoted by B, the value of the individual’s
portfolio is subject to a multiplicative background risk ỹ, which is independent of
the return risk associated with the investment in the risky asset. For simplicity, we
assume a binary background risk with values y+ and y−, resulting in a total of four
possible outcomes for the individual:

x+y+ = (x0 + δ(k − 1)x0)y+, x−y+ = (x0 − δx0)y+,

x+y− = (x0 + δ(k − 1)x0)y−, x−y− = (x0 − δx0)y−.

Figure 1 presents both treatments side by side.

C

x−0.5

x+0.5
B

x−ỹ0.5

x+ỹ0.5

Fig. 1: Investment choice without multiplicative background risk (control
treatment C) and with multiplicative background risk ỹ (treatment B).

Let the individual’s preferences over final wealth be represented by means of
a preference functional V . Assuming unique solutions, the optimal fraction of the
endowment invested in the risky asset is given by

δ∗C = arg max
δ∈[0,1]

V (x̃(δ))

in the absence of background risk (treatment C) and by

δ∗B = arg max
δ∈[0,1]

V (x̃(δ)ỹ)

in the presence of the multiplicative background risk ỹ (treatment B). We can then
compare δ∗C and δ∗B to identify the effect of the multiplicative background risk on
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risk-taking behavior. When δ∗C ≥ δ∗B, multiplicative background risk leads to less
risk taking and strictly less if δ∗C > δ∗B. This behavior is consistent with multi-
plicative risk vulnerability. When δ∗C = δ∗B, multiplicative background risk has no
effect on risk taking. For δ∗C ≤ δ∗B, multiplicative background risk leads to more risk
taking and strictly more if δ∗C < δ∗B. Such behavior is consistent with the reverse of
multiplicative risk vulnerability. When preferences are MRV, then any multiplica-
tive background risk leads to less risk taking whereas if preferences are the opposite
of MRV, any multiplicative background risk leads to more risk taking. In practice,
an individual’s preferences may be neither MRV nor its opposite. Then, some mul-
tiplicative background risks increase risk taking while others reduce it. Therefore,
we only focus on the effects of multiplicative background risk on behavior because
it is conceptually impossible to confront individuals with all possible background
risks in the laboratory.

Definition 1. An individual makes a multiplicative risk vulnerable choice if δ∗C ≥
δ∗B. The individual makes a multiplicative risk strictly vulnerable choice if δ∗C > δ∗B,
an indifferent choice if δ∗C = δ∗B and a multiplicative risk non-vulnerable choice if
δ∗C < δ∗B.

In the following, we first make theoretical predictions on how an individual de-
termines ther optimal δ∗C and δ∗B in EUT, CPT and RDU. In CPT and RDU, we
cannot infer any general predictions based on the shape of the utility function but
require a numerical example to compute predictions. We choose the following nu-
merical example which is identical to the decision situation in our experiment: we
endow our subjects with x0 = EUR 8.00 and let k = 2.5 and p = 0.5. In Bsymm,
we set (y+,y−) = (1.4,0.6) and both outcomes are equally likely. In Bskew, we have
(y+,y−) = (1.2,0.2), where the probability of y+ is 0.8 and the probability of y−

is 0.2. Consequently, both the symmetric and skewed background risk have equal
mean (1) and variance (0.16).

It is important to note that we only consider in-lab wealth x̃(δ) in this analysis.
Thus, we implicitly assume that individuals do not take real life wealth from outside
the experiment into account and the argument of the preference functional V is
income rather than terminal wealth. This is in line with much of the theory on
asset integration and risk taking. For instance, Andersen et al. (2018) find that the
participants in their study only integrated a very small fraction of real life wealth
into the experimental decisions. Fafchamps et al. (2015) similarly only observe a
statistically insignificant and economically small effect of household assets on risk-
taking in a sample with individuals from rural Ethiopia. While real life wealth from
outside the experiment does not change the analysis within Cumulative Prospect
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Theory due to the reference point-dependence, it does make a difference in Expected
Utility Theory (EUT) and Rank-Dependent Utility (RDU). If we include out-of-lab
wealth in the wealth argument within EUT such that the argument is terminal
wealth, multiplicative background risk only affects the risky in-lab wealth, not the
safe out-of-lab wealth. We refer to Appendix A for an analysis of optimal investment
decisions within EUT and full asset integration.

2.2 Expected Utility Theory

In Expected Utility Theory (EUT), we assume that there exists a von Neumann-
Morgenstern utility function u with u′ > 0 and u′′ < 0 such that the individual’s
preference function over random wealth x̃(δ) = x0 + δ(k̃ − 1)x0 is given by

V (x̃(δ)) = E[u(x̃(δ))].

Following Franke et al. (2006), we define an additional utility function U as

U(x) =
∫ b

a
u(xy)dG(y) = E[u(xỹ)],

where G denotes the cumulative distribution function of ỹ. Note that U is also
increasing and concave, as u is. We can interpret the relationship between u and U
such that an individual with utility function u, who faces the additional multiplica-
tive background risk ỹ, behaves in the same way as another individual with utility
function U without any multiplicative background risk.

If an interior solution δ∗ ∈ [0,1] to the optimization problem exists, then it
follows easily that the optimal investment δ∗ solves the following condition (Beaud
and Willinger, 2015):

u′(x−)
u′(x+) = k − 1. (1)

If u
′(x−)
u′(x+) > k − 1 for δ = 0, then δ∗ = 0. Similarly, if u

′(x−)
u′(x+) < k − 1 for δ = 1, then

δ∗ = 1. To summarize, the optimal investment δ∗ is given by (Beaud and Willinger,
2015):

δ∗ = 1 if u
′(x−(1))
u′(x+(1)) < k − 1

δ∗ ∈ [0,1] if u
′(x−(δ∗))
u′(x+(δ∗)) = k − 1

δ∗ = 0 if u
′(x−(0))
u′(x+(0)) > k − 1
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In the presence of the multiplicative background risk, decisions can be described by
utility function U rather than u. Thus, in the presence of multiplicative background
risk, we end up with the same conditions with u being substituted by U .

From Theorem 1 in Pratt (1964), we know that utility function U is at least as
risk-averse than utility function u if and only if

u′(a)
u′(b) ≤

U ′(a)
U ′(b) for all a ≤ b. (2)

Note that x− < x+ ⇔ δ > 0, i.e. it holds for the ratios u′(x−)
u′(x+) > 1⇔ δ > 0 as well

as U ′(x−)
U ′(x+) > 1⇔ δ > 0. Moreover, due to concavity of both u and U , the ratios are

increasing in δ. Thus, if U is at least as risk-averse as u, we observe a multiplicative
risk vulnerable choice, i.e. δ∗B ≤ δ∗C . Equivalently, we can also formulate this in
terms of the coefficients of absolute risk aversion, ruA and rUA : we observe δ∗B ≤ δ∗C if

ruA(x) = −u
′′(x)
u′(x) ≤ −

U ′′(x)
U ′(x) = rUA(x) for all x > 0. (3)

To summarize, we get the following result, which is similar to Proposition 1 in
Beaud and Willinger (2015)

Proposition 1. If U is at least as risk-averse as u (ruA ≤ rUA), the individual makes
a multiplicative risk vulnerable choice (δ∗C ≥ δ∗B).

Note that if we could observe δ∗B ≤ δ∗C for all background risks ỹ and all wealth
levels x, this would imply U to be at least as risk-averse as u, i.e. we obtain an
equivalence in the previous proposition.

Franke et al. (2006) derives conditions on the utility function u under which (3)
holds. For this, it is useful to note that (3) is itself equivalent to

ruR(x) = −xu
′′(x)
u′(x) ≤ −x

U ′′(x)
U ′(x) = −xE[ỹ2u′′(xỹ)]

E[ỹu′(xỹ)] = rUR(x) for all x > 0. (4)

The derived conditions are closely related to the coefficient of relative risk aver-
sion ruR(x). While the necessary and sufficient condition given in Franke et al.
(2006) is technical, they also provide more intuitive sufficient conditions on the co-
efficient of relative risk aversion. We recapitulate these conditions in the following
corollaries. Let F be the cumulative distribution function of x̃.

Corollary 1 (Franke et al., 2006). Suppose that ruR(x) is convex and one of the
following conditions holds for all (x,y) ∈ Supp(F )× Supp(G):

1. ruR(xy) > 1 and ruR decreasing,
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2. ruR(xy) < 1 and ruR increasing.

Then (3) holds, i.e. the individual is multiplicative risk vulnerable.

Corollary 2 (Franke et al., 2006). Suppose that ruR(x) is concave and one of the
following conditions holds for all (x,y) ∈ Supp(F )× Supp(G):

1. ruR(xy) > 1 and ruR increasing,

2. ruR(xy) < 1 and ruR decreasing.

Then (3) holds, i.e. the individual is multiplicative risk vulnerable.

Note that MRV does not hold for one of the most commonly used classes of
utility functions in EUT: isoelastic utility functions u(x) = x1−η

1−η for η ≥ 0, η 6= 1
(u(x) = log(x) for η = 1) which expresses constant relative risk aversion (CRRA).
Then we have ruR(x) = η. Since U(x) = E[u(xỹ)] = x1−η

1−η E[ỹ1−η], it follows that also
rUR(x) = η.

2.3 Cumulative Prospect Theory

In cumulative prospect theory (CPT, Tversky and Kahneman (1992)), the prefer-
ence functional has the following form

V (x̃) =
n∑
i=0

π+
i · v(xi) +

0∑
i=−m

π−i · v(xi)

where π− = [π−−m, . . . , π−0 ] and π+ = [π+
0 , . . . , π

+
n ] are decision weights derived from

the probability weighting functions w− : [0,1]→ [0,1] and w+ : [0,1]→ [0,1]:

π−i = w−

 i∑
j=−m

pj

− w−
 i−1∑
j=−m

pj

 , for −m+ 1 ≤ i ≤ 0,

π+
i = w+

 n∑
j=i

pj

− w+

 n∑
j=i+1

pj

 , for 0 ≤ i ≤ n− 1,

with π−−m = w− (p−m) and π+
n = w+ (pn), where w+ and w− are strictly increasing

functions with w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1.
When deriving the optimal investment level, δ, we assume a piecewise power

value function

v(x) =

v
+(x) = (x− rp)α for gains, i. e., x− rp ≥ 0,

v−(x) = −λ (rp− x)β for losses, i. e., x− rp < 0,
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where rp denotes the reference point, λ measures the degree of loss aversion and α
and β shape how individuals value deviations from the reference point. As usual in
CPT and PT, the question arises which reference point indviduals choose.

Without background risk, we assume that the initial endowment is most intuitive
choice as reference point. In the presence of a background risk, however, there are
several potential reference points which seem intuitive choices: again, the reference
point could simply be the initial endowment x0. Note that the endowment is not
an attainable final outcome in the presence of the background risk: if the individual
does not invest anything, she ends up either with x0y

+ or x0y
−. These two values

could thus also serve as reference points, with the former being the “optimistic”
reference point, and the latter being the “pessimistic” reference point (Beaud and
Willinger, 2015). Hence, we include all three reference points into the numerical
analysis. We follow Beaud and Willinger (2015) and choose Prelec’s (1998) single
parameter probability weighting function to derive the decision weights:

wθ(p) = exp
(
− (− log(p))θ

)
for p ∈ [0,1], (5)

with θ+ = 0.5 for w+ and θ− = 0.65 for w−.
In Table 1, we provide results for investment decisions made according to com-

mon parametrizations in CPT with the symmetric background risk. We compare
investment amounts with and without background risk to classify MRV choices. We
utilize the three different reference points discussed above for the symmetric back-
ground risk as well as three different parameter choices for both the value function
and the probability weighting function. We observe a higher investment in the
risky asset with the background risk if the reference point equals the endowment
(rp = 8.00) or in case of the optimistic reference point rp = 11.60. We only ob-
serve MRV decisions when we assume the pessimistic reference point (rp = 4.80).
Note, however, that the investment in the risky asset predicted by CPT without
background risk is substantially smaller than what is usually found in labratory
experiments.

Table 2 displays the results for the skewed background risk. The table is set
up analogously to Table 1 and results without background risk are naturally the
same. With the skewed background risk, we predominantly oberserve non-MRV
choices. The only exception is the low reference point rp = 1.60 in Panel A where
individuals display the lowest degree of loss aversion and the lowest α and β-factors.

In summary, CPT mostly predicts non-MRV choices unless the reference point
is pessimistic.
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Table 1: Optimal investment within CPT: Symmetric Background Risk

δC δBsymm

rp= 8.00 rp= 8.00 rp= 4.80 rp= 11.20

Panel A: α = 0.2, β = 0.4, λ = 1

0.0047 0.2138 0.0004 1.00

Panel B: α = 0.6, β = 0.9, λ = 2

0.0062 0.2541 0.0041 0.0220

Panel C: α = 0.8, β = 0.88, λ = 2.25

0.0000 0.2846 0.0000 0.0155
Notes: This table provides numerical illustrations of the optimal investment amount according to
cumulative prospect theory. We assume a piecewise power value function, v+(x) = (x − rp)α for
gains, i. e., x − rp ≥ 0, and v−(x) = −λ(rp − x)β for losses, i. e., x − rp < 0, with loss aversion
parameter λ = 1 (panel A), λ = 2 (panel B) and λ = 2.25 (panel C), and power coefficients α = 0.2,
β = 0.4 (panel A), α = 0.6, β = 0.9 (panel B), and α = 0.8, β = 0.88 (panel C). For probability
weights, we use Prelec’s (1998) single parameter function with parameters θ+ = 0.5 (gains) and
θ− = 0.65 (losses).

Table 2: Optimal investment within CPT: Skewed Background Risk

δC δBskew

rp= 8.00 rp= 8.00 rp= 1.60 rp=9.60

Panel A: α = 0.2, β = 0.4, λ = 1

0.0047 0.0720 0.0018 0.0287

Panel B: α = 0.6, β = 0.9, λ = 2

0.0062 0.1199 0.3902 0.0183

Panel C: α = 0.8, β = 0.88, λ = 2.25

0.0000 0.1602 0.6688 0.0034
Notes: This table provides numerical illustrations of the optimal investment amount according to
cumulative prospect theory. We assume a piecewise power value function, v+(x) = (x − rp)α for
gains, i. e., x − rp ≥ 0, and v−(x) = −λ(rp − x)β for losses, i. e., x − rp < 0, with loss aversion
parameter λ = 1 (panel A), λ = 2 (panel B) and λ = 2.25 (panel C), and power coefficients α = 0.2,
β = 0.4 (panel A), α = 0.6, β = 0.9 (panel B), and α = 0.8, β = 0.88 (panel C). For probability
weights, we use Prelec’s (1998) single parameter function with parameters θ+ = 0.5 (gains) and
θ− = 0.65 (losses).
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2.4 Rank Dependent Utility

We also compute optimal investment amounts with and without background risk
in Rank-Dependent Utility (RDU) Theory (Quiggin, 1982), where the preference
functional has the following form

V (x̃) =
n∑
i=1

πiu(xi).

The outcomes are ordered from worst to best: x1 ≤ x2 ≤ · · · ≤ xn. πi are decision
weights derived from a probability weighting function w : [0,1]→ [0,1]:

πi = w

 i∑
j=1

pi

− w
i−1∑
j=1

pi


with w(0) = 0 and w(1) = 1. u denotes a von Neumann-Morgenstern utility
function. To isolate the effect of probability weighting, we use the isoelastic utility
function u(x) = x1−γ

1−γ . Throughout this example, we assume γ = 0.75 as in Beaud
and Willinger (2015). Note that without probability weighting, the utility function
would imply identical investment choices δ∗B = δ∗C as discussed in the previous
section. Probability weights are calculated according to (5) with a single choice
of θ as RDU does not include a reference point. Without background risk, rank-
dependent utility is given by

V (x̃(δ)) = w(0.5,θ)u(x−) + [1− w(0.5,θ)]u(x+).

Taking the first derivative with respect to δ, we obtain the following first-order
condition, which is a rescaled version of (1):

wθ(0.5)
1− wθ(0.5)︸ ︷︷ ︸

:=r1

u′(x−)
u′(x+) = k − 1. (6)

For Prelec’s (1998) single parameter function, we have that the ratio r1(θ) =
wθ(0.5)

1−wθ(0.5) is increasing in θ, as we graphically show in Appendix B. Consequently,
in order to solve the first-order condition, the ratio of marginal utilities needs to
increase as θ decreases, which requires δ to increase. Thus, a larger curvature
parameter θ induces higher investment amounts.

In case of the symmetric multiplicative background risk, rank-dependent utility
is given by
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• δ ∈ [0, 8
23):

V (x̃) = [wθ(0.25)(y−)1−γ + (wθ(0.75)− wθ(0.5))(y+)1−γ ]u(x−)

+ [(wθ(0.5)− wθ(0.25))(y−)1−γ + (1− wθ(0.75))(y+)1−γ ]u(x+).

• δ ∈ [ 8
23 ,1]:

V (x̃) = [wθ(0.25)(y−)1−γ + (wθ(0.5)− wθ(0.25))(y+)1−γ ]u(x−)

+ [(wθ(0.75)− wθ(0.5))(y−)1−γ + (1− wθ(0.75))(y+)1−γ ]u(x+).

Note that at δ = 8
23 , we have x+y− = x−y+, i.e. the two outcomes change their

rank order. Thus, we need to exchange the decision weight ratio r1 in (6) by r2 and
r3 depending on the optimal δ and compare these ratios:

r2(θ) := wθ(0.25)(y−)1−γ + (wθ(0.75)− wθ(0.5))(y+)1−γ

(wθ(0.5)− wθ(0.25))(y−)1−γ + (1− wθ(0.75))(y+)1−γ for δ ∈ [0, 8
23)

and

r3(θ) := wθ(0.25)(y−)1−γ + (wθ(0.5)− wθ(0.25))(y+)1−γ

(wθ(0.75)− wθ(0.5))(y−)1−γ + (1− wθ(0.75))(y+)1−γ for δ ∈ [ 8
23 ,1]

with the respective ratio without multiplicative background risk r1(θ). A ratio
higher than r1(θ) indicates a lower optimal investment amount δ in the presence
of multiplicative background risk compared to the control (as the ratio of marginal
utilities needs to decrease). Similarly, if the ratio is lower than r1(θ), optimal in-
vestment needs to be higher. We discuss details of these computations in Appendix
B.

Similarly, in case of the skewed multiplicative background risk, rank-dependent
utility is given by

• δ ∈ [0,23):

V (x̃) = [wθ(0.1)(y−)1−γ + (wθ(0.6)− wθ(0.2))(y+)1−γ ]u(x−)

+ [(wθ(0.2)− wθ(0.1))(y−)1−γ + (1− wθ(0.6))(y+)1−γ ]u(x+).

• δ ∈ [2
3 ,1]:

V (x̃) = [wθ(0.1)(y−)1−γ + (wθ(0.5)− wθ(0.1))(y+)1−γ ]u(x−)

+ [(wθ(0.6)− wθ(0.5))(y−)1−γ + (1− wθ(0.6))(y+)1−γ ]u(x+).
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Note that at δ = 2
3 , we have x+y− = x−y+, i.e. the two outcomes change their

rank order. Thus, we need to compare the decision weight ratios

r4(θ) := wθ(0.1)(y−)1−γ + (wθ(0.6)− wθ(0.2))(y+)1−γ

(wθ(0.2)− wθ(0.1))(y−)1−γ + (1− wθ(0.6))(y+)1−γ for δ ∈ [0,23)

and

r5(θ) := wθ(0.1)(y−)1−γ + (wθ(0.5)− wθ(0.1))(y+)1−γ

(wθ(0.6)− wθ(0.5))(y−)1−γ + (1− wθ(0.6))(y+)1−γ for δ ∈ [23 ,1]

with the respective ratio without multiplicative background risk r1(θ). Again, we
compute optimal investment amounts based on these ratios and show details of
these computations in Appendix B.

Figure 2 displays optimal investment amounts without background risk as well
as the symmetric and the skewed background risk depending on θ. Individuals
invest consistently more in the risky asset with skewed background risk compared
to the situation without background risk. Accordingly, RDU implies a non-MRV
choice for the skewed background risk independent of the values of the probability
weighting function. In the case of the symmetric background risk, we observe MRV
decision for θ close to 1. A common parametrization for θ in Prelec’s (1998) function
is θ = 0.65 which implies a non-MRV decision for the symmetric background risk.
For smaller values of θ, however, the individual makes a MRV choice.
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Fig. 2: Optimal investment amounts as functions of θ: Comparison of control
and symmetric background risk treatments
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3 Experimental Design

In our incentivized experiment, we present our subjects with two scenarios of a
simple portfolio choice problem where they decide how much to allocate to a risky
asset. The final pay-off is subject to background risk in one scenario (choice B)
while the other scenario (choice C) is without background risk. We classify all
choices as multiplicative risk vulnerable if the subject invest equal or less amount
with the background risk present. A choice is strictly multiplicative risk vulnerable
if subjects invest strictly less with the present background risk. The setup is similar
to the experiment conducted by Beaud and Willinger (2015) to test for (additive)
risk vulnerability who also use the investment game initially proposed by Gneezy
and Potters (1997).

We endow subjects with x0 = EUR 8.00 and, as mentioned, all subjects make
two investment choices, one with and one without a multiplicative background risk.
The return on the investment k equals 2.5 in the good state of the world in both
choices. In the bad state of the world, individuals lose their investment. The
expected return on each invested Cent/Euro is therefore 1.25.

In the task with a present background risk, we randomly assign subjects to a
symmetric or a skewed background risk. In the symmetric case, the background risk
equals ỹ = [y+, 0.5; y−] with y+ = 1.4 and y− = 0.6, while it equals ỹ = [y+, 0.8; y−]
with y+ = 1.2 and y− = 0.2 in the skewed case. Both background risks are zero
mean and they have identical variance.

Figure 3 shows the asset allocation task with a skewed multiplicative background
risk where a random investment amount of EUR 4.20 was pre-selected. We utilize
several measures to make the presentation of the investment task and the multi-
plicative background risk palpable. We present our investment choices in compound
form (see Fig. 3) as this is preferable for risky lotteries as discussed by Harrison
et al. (2015) and Deck and Schlesinger (2018). We display the background risk in
absolute terms and indicate percentage changes. All probabilities are denoted as
fractions out of 10 such as 5

10 . We visually support the notion of probabilities: we
display the 50-50 probability of the investment risk by two boxes of identical size.
We utilize pie charts to present the background risk probabilities. Subjects use
sliders to determine the investment amount. Movement of the slider leads to au-
tomatical adjustment of displayed outcomes in all possible states of the world. We
randomize for each subject whether the positive or negative outcome is presented
on the left or right side.

Figure 4 illustrates the experimental timeline as displayed to subjects before
their actual decisions. Individuals first solve a real effort task to alleviate the house
money effect as discussed by (Thaler and Johnson, 1990) before subjects make the

15



Fig. 3: Screenshot of the Background Risk Treatment
Notes: This figure shows how the investment choice B is presented in compound form. In
this example, δs = EUR 4.20 and x0 = EUR 8.00. Screenshot from the experiment in
German. English translation in the Appendix.
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two asset allocation tasks. We randomize the order of these two asset allocation
tasks for each individual to rule out potential order effects (Harrison et al., 2005).
In part IV, we collect sociodemographic variables in a questionnaire. Finally, all
randomizations play out and final pay-offs are displayed to the subjects.

The experiment was conducted online facilitated by the WiSo-Experimentalla-
bor of the Universität Hamburg in August 2021. During the Covid 19 health crises,
the WiSo-Experimentallabor developed an online labratory where participants are
supervised at their home-computers while playing the experiment. We use oTree
(Chen et al., 2016) for programming and hroot (Bock et al., 2014) for randomized
recruiting within the subject pool of the WiSo-lab, which mostly consists of stu-
dents. In total, 334 participants took part in six experimental sessions. All subjects
only participated in one session.

I:
Slider
task

II:
Asset

Allocation
Task 1

III:
Asset

Allocation
Task 2

IV:
Question-

naire

Fig. 4: Structure of the experiment

We informed participants at the beginning of the experiment that one out of the
two investment choices will be randomly picked and played out.3 The experiment
lasted about 25 minutes on average and subjects’ average payment was EUR 8.52
(about USD 9.97 at that time), with values ranging from EUR 0 to EUR 28.

4 Experimental Results

4.1 Summary Statistics

Table 3 shows summary statistics of individual characteristics of the 301 experi-
ment’s subjects that we include in our analysis.4 On average, individuals invest
4.18 EUR without background risk (investment_c) and 4.41 EUR with background
risk (investment_b). The higher average investment amount with background risk
points towards non-MRV choices. Average age is 25.75 years, as the majority of sub-
jects are students. We observe 65% female participants, which can be attributed to
the fact that the main campus, where the lab is located, mostly hosts humanities

3See Cubitt et al. (1998) and Azrieli et al. (2018) for discussion on the validity of the random
payment technique.

4We exclude four subjects who spent substantially less time on the decision screens than everyone
else. We additionally exclude 29 participants who do not touch all sliders in the slider task at least
once. In Appendix C, we report experimental results including these 29 subjects. Our conclusions
do not substantially differ depending on whether we include these subjects or not.
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and social sciences, while math and sciences have separate campus locations. One
individual identifies as non-binary. The majority of the sample has already taken
part in additional experiments.

Table 3: Summary statistics

Mean Minimum 1st Quartile Median 3rd Quartile Maximum SD

investment_c 4.18 0.00 3.00 4.00 5.20 8.00 (2.23)
investment_b 4.41 0.00 3.00 4.00 6.00 8.00 (2.27)
Age 25.75 19.00 23.00 25.00 28.00 58.00 (4.99)
Female 0.65 1.00
GRQ 4.85 1.00 3.00 5.00 6.00 10.00 (2.07)
First Time 0.06

Observations 301

Table 4 provides summary statistics of the subjects’ investment choices split
up by whether they are exposed to the skewed (column 1) or the symmetric back-
ground risk (column 2). Column 3 shows the difference in means between the
different background risks. We compute two-sided Wilcoxon rank sum tests to
asses whether the observed differences are statistically significant. We do not find
significant differences for investments without background risk (investment_c), age,
gender, whether this is the subject’s first time in the lab or for majors. We find
marginally significant differences between the investment amount with background
risk (investment_b) depending on the kind of background risk the subjects are
exposed to. We find that subjects invest EUR 0.47 more into the risky asset on
average when exposed to the skewed background risk. The average investment with
symmetric background risk equals EUR 4.16, which is almost identical to the mean
investment without background risk over all subjects (EUR 4.18) which is displayed
in Table 3. In addition, we observe a marginally statistically significant difference
in the GRQ between subjects exposed to the skewed and symmetric background
risk. This is of potential concern as differences in risk preferences may drive the
differences in investments amounts under the skewed and the symmetric background
risk. We do not observe any differences in investment amounts without background
risk without controls which alleviates the above mentioned concerns.

As pointed out in the previous section, we randomized the order of the two
investment choices presented to our subjects: approximately half of our subjects
first decide on their investment with background risk and half without background
risk.

18



Table 4: Summary by Background Risk

Skewed BR Symmetric BR Diff
investment_c 4.183 4.167 0.016

(2.180) (2.276)

investment_b 4.643 4.177 0.466∗
(2.136) (2.388)

Age 25.98 25.53 0.454
(5.545) (4.394)

Female 0.631 0.678 -0.047
(0.484) (0.483)

GRQ 5.040 4.671 0.369∗
(2.050) (2.071)

First Time 0.054 0.060 -0.006
(0.226) (0.237)

Law Major 0.121 0.099 0.022
(0.327) (0.299)

Business Major 0.134 0.086 0.049
(0.342) (0.281)

Education Major 0.121 0.112 0.009
(0.327) (0.316)

Humanities Major 0.121 0.145 -0.024
(0.327) (0.353)

Medicine Major 0.027 0.007 0.020
(0.162) (0.081)

Sciences Major 0.148 0.217 -0.069
(0.356) (0.414)

Social Sciences Major 0.275 -0.021 0.286
(0.448) (0.458)

Other Major 0.040 0.033 0.007
(0.197) (0.179)

Major not specified 0.013 0.007 0.007
(0.115) (0.081)

Observations 301

Notes: mean coefficients; sd in parentheses;
Diff: two-sided Wilcoxon rank-sum test, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01 19



4.2 Impact of Type of Background Risk

4.2.1 Skewed Background Risk

As the summary statistics already indicate, we observe different behavior depending
on whether the individual faces the symmetric or the skewed background risk. For
this reason, we provide our main analysis separately for both types of background
risks. We start with the skewed background risk.

0

1

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0 8.02.0 4.0 6.0 8.0

Average share invested into the risky asset

control skewed background risk

Investment amounts: cumulative distribution functions
 

Fig. 5: Cumulative distribution functions of investment amounts, skewed
background risk treatment
Notes: This figure shows the cumulative distribution functions of the investment amounts
for the control and the skewed background risk investment games.

Figure 5 shows the cumulative distribution functions (cdfs) for the investment
amounts in the control treatment and the skewed background risk treatment. We
observe that the investment amount in the skewed background risk treatment first-
order stochastically dominates the investment amount in the control treatment,
indicating that these investment amounts are different and subjedcts invest less
without background risk. The difference in mean investment amounts between the
skewed background risk treatment and the control treatment amounts to around
0.46 EUR (see Table 4), indicating individuals to be less risk averse in the presence
of the skewed background risk. To further analyse this, we run a Wilcoxon signed-
rank test against the null hypothesis that investment amounts are the same. The
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test rejects the null hypothesis (p = 0.010). This implies that investment amounts
in the skewed background risk treatment are significantly larger than investment
amounts in the control treatment.

In Table 5, we report classification of individuals’ choices and the respective
investment amounts. 44% of choices in this treatment can be classified as non-risk
vulnerable, i.e. the individual invests strictly more in the skewed background risk
treatment compared to the control decision. On the other side, approximately 29%
of choices are in accordance with multiplicative risk vulnerability. Approximately
26% of the subjects make identical choices with and without background risk. These
figures are based on the subsample of subjects that we can classify appropriately.
To do so, we have to drop 22 subjects investing the maximum or minimum in both
choices. These subjects cannot be reliably classified as the following example illus-
trates: a subject who invests EUR 8 in both treatments may be MRV indifferent,
but could also be MRV or non-MRV as they potentially would have borrowed ad-
ditional money to invest more than EUR 8 with or without the background risk.
5

Table 5: Investment choices and classification - skewed background risk
treatment, reduced sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 29.13 26.77 44.09 100
δC (mean) 4.2235 3.5297 3.0911 3.5220
δB (mean) 3.1147 3.5297 4.9875 4.0614
No. of Observations 37 34 56 127
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table excludes subjects who invest the same limiting amount in both choices.

We also run a binomial test on the classification in (non-) risk vulnerable choices.
This test rejects the null hypothesis of random behavior (i.e. the probability of
making a risk vulnerable choice, conditional on making a choice, being 0.5) (p =
0.026). This again provides support of a significant effect of the skewed background
risk on classification. Accordingly, we observe more non-MRV choices than MRV
choices. In addition, investment amounts are significantly larger on aggregate in
the presence of the skewed background risk compared to the control investment
decision. Thus, we find support of individuals not behaving in accordance with
multiplicative risk vulnerability in the presence of the skewed background risk.

5In Table D.1 in the Appendix, we include these 23 individuals and consider them to be indif-
ferent.
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4.2.2 Symmetric Background Risk

Figure 6 plots the cumulative distribution functions of the investment amounts in
the symmetric background risk treatment and the control treatment. Unlike in
the case of the skewed background risk, the curves are much closer together in
this case. The difference in mean investment amounts is -0.01 EUR (see Table 4).
Consequently, the Wilcoxon signed-rank test fails to reject the null hypothesis of
equal investment amount distributions.
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Fig. 6: Cumulative distribution functions of investment amounts, symmetric
background risk treatment
Notes: This figure shows the cumulative distribution functions of the investment amounts
for the control and the symmetric background risk investment games.

Again, we exclude those individuals who cannot be classified because they invest
the same limiting amount (27 individuals). We present the classification for this
reduced sample in Table 6. In this sample, 40% of choices are risk vulnerable, while
35% are not in accordance with multiplicative risk vulnerability. 6 A binomial test
fails to reject the null hypothesis of random (or indifferent) behavior at any usual
significance level (p = 0.606). Overall, our results indicate that, on aggregrate,
investment with the symmetric background risk is not different than investment
without multiplicative background risk.

6In Table D.2 in the Appendix, we include the 27 indifferent subjects.
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Table 6: Investment choices and classification - symmetric background risk
treatment, reduced sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 40.00 24.80 35.20 100
δC (mean) 4.2560 3.7516 2.7341 3.5952
δB (mean) 2.9320 3.7516 4.2727 3.6072
No. of Observations 50 31 44 125
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table excludes subjects who invest the same limiting amount in both choices.

4.2.3 Comparison Skewed and Symmetric Background Risk

In the previous two subsections, we find support that skewed background risk sig-
nificantly increases risk taking in the investment task, while symmetric background
risk does not change risk taking. In the following, we check whether these differ-
ences are also statistically significant, i.e. whether behavior significantly changes
across background risk treatments. The mean difference in investment amounts
between B and C is around 0.45 EUR in the skewed background risk treatment,
while it is 0.01 EUR in the symmetric background risk treatment. This difference
is significant (p = 0.018, two-sample Wilcoxon rank-sum test). We also run a pro-
portion test on the proportion of multiplicative risk vulnerable choices (conditional
on making a choice) across the two treatments. We observe 38% of choices are
in accordance with multiplicative risk vulnerability in the skewed background risk
treatment, while the proportion is 53% in the symmetric background risk treatment
(excluding indifferent subjects). The proportion test indicates that these propor-
tions are significantly different (p = 0.036). These tests provide evidence that it
is the shape of the background risk that determines risk taking but not the mere
presence of a multiplicative background risk.

Table 7 presents regression results on the likelihood to make a MRV choice.
We only include subject which can be strictly classified, i.e. who invest different
amounts with and without background risk. We include sampled socio-demographics
to assess whether we find additional factors that drive MRV choices and to account
for potential confounders which may arise due to differences in the two treatment
groups (Column 2). Without and with additional controls, we observe a significant
positive effect of the symmetric background risk on the likelihood to make a choice
in accordance with multiplicative risk vulnerability. Estimates are significant on
the 5%-level. We do not find a significant impact of any other socio-demographic
variables on the likelihood to make a MRV choice including the GRQ, gender, age,
major and whether subjects played in an experiment for the first time.
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Table 7: Probability to Make a MRV Choice

(1) (2)
Probit: MRV Probit: MRV

Symmetric Background Risk 0.391∗∗ (0.187) 0.471∗∗ (0.198)

GRQ -0.046 (0.056)

Female 0.252 (0.237)

Non-binary 0 (.)

Age -0.007 (0.022)

First Time 0.469 (0.402)

Business Major 0.643 (0.408)

Education Major 0.235 (0.394)

Humanities Major -0.123 (0.429)

Medicine Major 0.183 (0.688)

Sciences Major -0.063 (0.383)

Social Sciences major -0.243 (0.358)

Other Major -0.045 (0.693)

Major not specified 0 (.)

Constant -0.311∗∗ (0.135) -0.197 (0.765)
N 184 182
Pseudo R-Squared 0.0174 0.0693

Dependent Variable: Choice in accordance with strict MRV.

Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8 shows an OLS regression on difference in investment amounts between
control and background risk. We also observe a significant positive impact of the
symmetric background risk on the difference in investment amounts between control
and background risk treatment. Without additional controls, the coeffiecient esti-
mate equals EUR 0.45. With additional controls, the coefficient estimate reduces
to EUR 0.40. Both estimates are statistically significant at the 5% level. These
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results support our previous findings: the type of background risk has a significant
impact on changes in risk taking. We further observe that none of the sociodemo-
graphical characteristics are significantly associated with differences in investment
amounts other than being non-binary compared to being male. As we only have
one non-binary subject, we refrain from discussing the economic impact of being
non-binary on the difference in investments amounts.

Table 8: Difference in Investments with and without Background Risk

(1) (2)
OLS: diff OLS: diff

Symmetric Background Risk 0.450∗∗ (0.190) 0.403∗∗ (0.191)

GRQ -0.045 (0.041)

Female 0.150 (0.216)

Non-binary 0.972∗∗∗ (0.278)

Age -0.019 (0.022)

First Time 0.362 (0.338)

Business major 0.150 (0.380)

Education Major 0.227 (0.371)

Medicine Major -0.941 (1.491)

Sciences Major -0.130 (0.354)

Social Sciences Major 0.007 (0.318)

Other Major -0.846 (0.845)

Major not specified 0.144 (0.406)

Constant -0.460∗∗∗ (0.141) 0.166 (0.642)
N 301 301
R-Squared 0.0185 0.0523

Difference in investment amounts with and without background risk treatment.

Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5 Conclusion

Even though multiplicative background risk appears in many situations such as
risky inflation, tax rates or exchange rates, we know little whether individuals have
MRV preferences and consequently make MRV choices. In the example of a ran-
dom exchange rate, multiplicative risk vulnerability would imply that an individual
reduces investment in a risky asset as final wealth does not only depend on the
realization of the investment but also on the realization of the exchange rate.

In this paper, we therefore posit the question whether we actually observe mul-
tiplicative risk vulnerable choices in individuals. We revisit the standard portfolio
choice problem and discuss how a multiplicative background risk changes invest-
ment into the risky asset under EUT, CPT and RDU. EUT predicts no changes
in risk taking under commonly assumed CRRA-preferences. CPT predicts mostly
more risk taking with present multiplicative background risk, while RDU finds that
a left-skewed background risk increases risk taking while a symmetric background
risk has little impact on risk taking. Altogether, all approaches fail to make un-
ambiguous predictions whether the presence of a multiplicative background risk
decreases risk taking as it depends on parametrization. In order to understand
behavior in the presence of multiplicative background risk better, we conduct a lab
experiment where subjects decide on how much to allocate to a risky asset with and
without a present background risk. We find that the addition of a skewed back-
ground risk leads to more risk taking while we do not find any significant changes
in risk-taking behavior when adding a symmetric background risk. Neither gender,
the general risk question or other sociodemographic factors are associated with the
propensity to make a MRV choice.

Summing up, multiplicative risk vulnerable preferences imply that the endoge-
nous and the exogenous risks are substitutes as long as the exogenous risk does not
increase expected wealth. This is intuitively a strong assumption as the interaction
of the volatility in wealth caused by the background risk with the risk taking in the
endogenous risk can favor more risk taking. As noted by Franke et al. (2006), most
of the commonly used utility functions in EUT do not necessarily satisfy conditions
for MRV. Our paper shows that risk taking increases sizably when we increase
the skewness of background risk. Rather than trying to find conditions on utility
functions that predict MRV choices for all kinds of (un)fair multiplicative back-
ground risks, we point future research to the direction of investigating the impact
of characteristics of the background risk on risk taking.
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A Expected Utility Theory and Full Asset Integration

In this section, we study optimal investment amounts within Expected Utility The-
ory (EUT) and full asset integration. For this, we denote by w0 the individual’s
real life assets. We assume that there exists a von Neumann-Morgenstern utility
function v with v′ > 0 and v′′ < 0 such that the decision maker’s preference function
over random wealth x̃(δ) is given by

V (w0 + x̃(δ)) = E[v(w0 + x̃(δ))].

We now define a second utility function u(x) := v(w0 + x). Again, we have u′ > 0
and u′′ < 0 as these inequalities hold for v. Thus, we can also write the preference
functional in terms of u rather than v as

V (w0 + x̃(δ)) = E[u(x̃(δ))].

Thus, decisions with respect to the random component x̃(δ) made according to
either v and u are identical. For ease of notation, we will consider the utility
function u. Following Franke et al. (2006), we define an additional utility function
U defined by

U(x) =
∫ b

a
u(xy)dG(y) = E[u(xỹ)] = E[v(w0 + xỹ)].

Note that U again is increasing and concave, as u is. We can interpret the relation-
ship between u and U such that a decision-maker with utility function u, who faces
the additional multiplicative background risk ỹ, behaves in the same way as another
decision-maker with utility function U without any multiplicative background risk.

Now consider the experimental choices. In the control treatment, the random
wealth is given by x̃(δ) = x0 + δ(k̃ − 1)x0, where k̃ denotes a random variable
taking on values 0 and k with equal probability. Denote by x−(δ) := x0 − δx0 and
x+(δ) := x0 + δkx0 wealth when the investment failed or is successful, respectively.
If an interior solution δ∗ ∈ [0,1] to the optimization problem exists, then it follows
easily that the optimal investment δ∗ solves the following condition (Beaud and
Willinger, 2015):

u′(x−)
u′(x+) = k − 1.

If u
′(x−)
u′(x+) > k − 1 for δ = 0, then δ∗ = 0. Similarly, if u

′(x−)
u′(x+) < k − 1 for δ = 1, then

δ∗ = 1. To summarize, the optimal investment δ∗ is given by (Beaud and Willinger,
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2015):

δ∗ = 1 if u
′(x−(1))
u′(x+(1)) < k − 1

δ∗ ∈ [0,1] if u
′(x−(δ∗))
u′(x+(δ∗)) = k − 1

δ∗ = 0 if u
′(x−(0))
u′(x+(0)) > k − 1

In the presence of the multiplicative background risk, decisions can be described by
utility function U rather than u. Thus, in the presence of multiplicative background
risk, we end up with the same conditions with u being substituted by U .

From Theorem 1 in Pratt (1964), we know that utility function U is at least as
risk averse than utility function u if and only if

u′(a)
u′(b) ≤

U ′(a)
U ′(b) for all a ≤ b. (7)

Note that x− < x+ ⇔ δ > 0, i.e. it holds for the ratios u′(x−)
u′(x+) > 1⇔ δ > 0 as well

as U ′(x−)
U ′(x+) > 1⇔ δ > 0. Moreover, due to concavity of both u and U , the ratios are

increasing in δ. Thus, if U is at least as risk averse as u, we observe a multiplicative
risk vulnerable choice, i.e. δ∗B ≤ δ∗C . Equivalently, we can also formulate this in
terms of the coefficients of absolute risk aversion, ruA and rUA : we observe δ∗B ≤ δ∗C if

ruA(x) = −u
′′(x)
u′(x) ≤ −

U ′′(x)
U ′(x) = rUA(x) for all x > 0. (8)

To summarize, we get the following result, which is similar to Proposition 1 in
Beaud and Willinger (2015)

Proposition 2. If U is at least as risk averse as u (ruA ≤ rUA), the decision-maker
makes a (partial) multiplicative risk vulnerable choice (δ∗C ≥ δ∗B).

Substituting back v for u into (8), the condition becomes

−v
′′(w0 + x)
v′(w0 + x) ≤ −

E[v′′(w0 + xỹ)ỹ2]
E[v′(w0 + xỹ)ỹ] for all x > 0. (9)

Thus, we can restate Proposition 2 in terms of the utility function v

Proposition 3. If

−v′′(w0+x)
v′(w0+x) ≤ −

E[v′′(w0+xỹ)ỹ2]
E[v′(w0+xỹ)ỹ] for all x > 0, then the decision-maker makes a (par-

tial) multiplicative risk vulnerable choice (δ∗C ≥ δ∗B).

We now address the question under which conditions on the utility function v
(9) (respectively (8)) holds. In case of a multiplicative background risk that affects
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the total wealth of the individual, Franke et al. (2006) derive conditions such that
the decision-maker behaves more cautiously in the presence of the multiplicative
background risk. These conditions are found to be closely related to the coefficient
of relative risk aversion ruR(x) = −xu

′′(x)
u′(x) . Their conditions can be easily applied to

the utility function u considered above. However, the individual’s utility over final
wealth is given by v rather than u and we point out that the coefficients of relative
risk aversion of u and v are not identical (as opposed to the coefficient of absolute
risk aversion, for instance). As we want to provide conditions on the utility function
u for (9) to hold, we need to adapt the results provided in Franke et al. (2006) to
account for the fact that multiplicative background risk only partially affects final
wealth.

First, note that for any x > 07 (9) is equivalent to

−xv
′′(w0 + x)
v′(w0 + x) ≤ −x

E[v′′(w0 + xỹ)ỹ2]
E[v′(w0 + xỹ)ỹ] for all x > 0. (10)

Our first result provides the necessary and sufficient condition on the utility
function v such that (9) holds. The result makes use of the coefficient of partial
relative risk aversion, which is defined as rP (w0,x) = −xv

′′(w0+x)
v′(w0+x) . We denote by

r′P (w0,x) the first derivative of rP (w0,x) with respect to x.

Proposition 4. Assume a decision-maker with initial endowment w0 that is not
subject to multiplicative background risk. Preferences exhibit (partial) multiplicative
risk vulnerability for all x > 0 and random variables ỹ with support in [a,b] and
E[ỹ] = 1 if and only if for all x > 0 and y ∈ [a,b]

v′(w0 + xy)y[rP (w0,xy)− rP (w0,x)]− (y − 1)v′(w0 + x)xr′P (w0,x) ≥ 0.

This result can be proven using the diffidence theorem (Gollier and Kimball,
2018) in a way very similar to the proof of the main theorem in Franke et al. (2006)
and is thus omitted here.

Hence, unlike the case in which multiplicative background risk affects total
wealth and relative risk aversion determines the individual’s behavior, in case of
partial multiplicative background risk, the coefficient of partial relative risk aversion
plays the important role. Partial relative risk aversion was originally proposed
independently by Menezes and Hanson (1970) and Zeckhauser and Keeler (1970)
(who call it size-of-risk aversion). Note that if w0 = 0, partial multiplicative risk
vulnerability collapses into the usual multiplicative risk vulnerability of Franke et
al. (2006).

Unlike the coefficients of absolute and relative risk aversion, the coefficient of
7Note that in our experimental setup, xs(δ) > 0 and xf (δ) > 0 for all possible values of δ ∈ [0,1].
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partial relative risk aversion plays a less prominent role in the literature on risk-
taking. To provide some intuition of why we rely on partial relative risk aversion
rather than relative risk aversion, we consider the relationship of these coefficients
with the risk premium for the risk x̃(δ) at some fixed value of δ ∈ [0,1]. First
consider the case in which multiplicative background risk ỹ acts on total wealth:
random total final wealth is then given by (w0 + x̃(δ))ỹ = w0ỹ + x̃(δ)ỹ. Then we
have for any fixed realization y of ỹ that the risk premium π(w0y,x̃(δ)y) for x̃(δ)
solves

v(w0y + E[x̃(δ)y]− π(w0y,x̃(δ)y)) = E[v(w0y + x̃(δ)y)].

Now the coefficient of relative risk aversion, rvR provides information on proportion-
ate changes in the risk premium, i.e. how π(w0y,x̃(δ)y)

y changes as y changes:

∂

∂y

π(w0y,x̃(δ)y)
y

> (= , <) 0

if rvR(x) is increasing (constant, decreasing) (Menezes and Hanson, 1970). As the
multiplicative background risk ultimately results in exactly these kinds of changes,
depending on its realization, it is not surprising that the shape of relative risk
aversion plays an important role in characterizing multiplicative risk vulnerable
behavior.

Now consider the case in which the decision-maker’s initial endowment w0 is
not affected by multiplicative background risk. Then random total final wealth is
given by w0 + x̃(δ)ỹ. Then, we have for any fixed realization y of ỹ that the risk
premium π(w0,x̃(δ)y) for x̃(δ) solves

v(w0 + E[x̃(δ)y]− π(w0,x̃(δ)y)) = E[v(w0 + x̃(δ)y)].

Now the coefficient of partial relative risk aversion, rvP similarly informs us about
proportionate changes in this risk premium, i.e. how π(w0,x̃(δ)y)

y changes as y
changes:

∂

∂y

π(w0,x̃(δ)y)
y

> (= , <) 0

if rvP (w0,x) is increasing (constant, decreasing) (Menezes and Hanson, 1970). Thus,
unlike the coefficient of relative risk aversion, which considers the case of propor-
tionate increases in both the wealth and the risk, the coefficient of partial relative
risk aversion considers proportionate changes in risk, leaving wealth constant. This
is closely related to the situation in which the decision-maker faces partial multi-
plicative background risk: any realization of the background risk results in a pro-
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portionate change in risk, leaving wealth constant. Thus, it is not surprising that
in case of partial multiplicative background risk, the coefficient of partial relative
risk aversion drives the result.

The condition given in (4) is difficult to deal with. However, we get the following
two corollaries, which are adapted versions of Corollaries 1 and 2 in Franke et al.
(2006) and follow easily from Proposition 4.

Corollary 3. Suppose that rvP (w0,x) is convex and one of the following conditions
holds for all (x,y) ∈ Supp(F )× Supp(G):

1. rvP (w0,xy) > 1 and rvP decreasing,

2. rvP (w0,xy) < 1 and rvP increasing.

Then (10) holds, i.e. the decision-maker is partial multiplicative risk vulnerable.

Corollary 4. Suppose that rvP (w0,x) is concave and one of the following conditions
holds for all (x,y) ∈ Supp(F )× Supp(G):

1. rvP (w0,xy) > 1 and rvP increasing,

2. rvP (w0,xy) < 1 and rvP decreasing.

Then (10) holds, i.e. the decision-maker is partial multiplicative risk vulnerable.

The coefficient of partial relative risk aversion rvP (w0,x) relates to the coefficients
of absolute risk aversion, rvA(x), and relative risk aversion, rvR(x). Thus, some
properties of these two coefficients carry over to the coefficient of partial relative
risk aversion. With respect to absolute risk aversion, we have

rvP (w0,x) = xrvA(w0 + x).

Taking the first derivative with respect to w0, we thus obtain

∂

∂w0
rvP (w0,x) = x

∂

∂w0
rvA(w0 + x),

which indicates that decreasing absolute risk aversion results in decreasing partial
risk aversion with respect to initial wealth (Bar-Shira et al., 1997). Moreover, in
terms of the coefficient of relative risk aversion, the coefficient of partial relative
risk aversion can be written as

rvP (w0,x) = x

w0 + x
rvR(w0 + x). (11)
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Taking the first derivative with respect to x yields (Bar-Shira et al., 1997):

∂

∂x
rvP (w0,x) = w0

(w0 + x)2 r
v
R(w0 + x) + x

w0 + x

∂

∂x
rvR(w0 + x).

Consequently, increasing relative risk aversion implies increasing partial relative risk
aversion (constant relative risk aversion implies increasing partial risk aversion for
w0 > 0). Moreover, given that w0

w0+x < 1, it follows from (11) that if relative risk
aversion is smaller than unity, then this carries over to partial relative risk aversion.
Note that in these relations, the reverse implications are generally not true. (11)
also shows that relative and partial relative risk aversion are the more similar the
smaller w0 is.

Some of the conditions in the previous corollaries can thus be inferred from
the coefficient of relative risk aversion, which has widely been studied in both the
theoretical and empirical literature. With respect to theoretical studies, albeit not
as prominent as the coefficient of relative risk aversion, the coefficient of partial
risk aversion plays an important role in determining decisions under risk (examples
can be found in a magnitude of studies, e.g. Eeckhoudt et al. (1995), Dionne and
Gollier (1992), Steinorth (2011) and Tsetlin and Winkler (2005)). Some empirical
studies that assess partial relative risk aversion directly find support for increasing
partial relative risk aversion (e.g. Binswanger (1981) and Wik et al. (2004)).

B RDU: Comparison of weighting ratios

In this section, we first compare the weighting ratios r1, r2, r3 for the symmetric
background risk case. Figure B.1 shows the plot as functions of the single param-
eter θ in the probability weighting function. Note that at around θ = 0.606, the
optimal δ∗ changes from being on [0, 8

23) to being on [ 8
23 ,1]. Thus, this θ serves

as a cutoff point. Above this value, we need to relate r2(θ) and r1(θ). As can
be seen from Figure B.1, for these values of θ, r2(θ) > r1(θ), which results in the
optimal investment amount being lower than without background risk. This is due
to more weight being placed on the bad investment outcome relative to the good
investment outcome. Below θ = 0.606, we need to compare r3(θ) and r1(θ). As
shown clearly in Figure B.1, we have r3(θ) < r1(θ), which indicates the optimal
δ∗ with multiplicative background risk to be larger than in the control treatment.
This is due to relative overweighing of the good investment outcome relative to the
bad investment outcome. These findings are summarized in Figure 2.

Figure B.2 shows the plot as functions of the single parameter θ in the probabil-
ity weighting function in case of the skewed background risk. We plot these ratios
together with the ratio r1(θ) in Figure B.2. Both ratios r4(θ) and r5(θ) are clearly
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Fig. B.1: Ratios of probability weights as functions of θ: control and symmetric
background risk treatment

below the ratio r1(θ). The optimal investment amount switches at around θ = 0.04
from being on [0,23) to being on [2

3 ,1]. Unlike in the symmetric case, this shift does
not change the order of the optimal investment amounts δ∗C and δ∗B. Overall, Figure
B.2 indicates that with the skewed multiplicative background risk, more weight is
placed on the good investment outcome relative to the bad investment outcome,
compared to the control treatment case. Thus, the decision-maker optimally in-
vests a larger proportion of the endowment into the risky asset. This indicates a
non-multiplicative risk vulnerable choice.
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Fig. B.2: Ratios of probability weights as functions of θ: control and skewed
background risk treatment

C Experimental Results Including Subjects Who Do
Not Touch All Sliders

In this Appendix, we report experimental results including the 29 subjects that we
excluded in the main text as these subjects do not touch all sliders in the slider
task. We still exclude four subjects who spent substantially less time on the decision
screens than everyone else.

C.1 Summary Statistics

Table C.1 shows summary statistics of individual characteristics of the 330 experi-
ment’s subjects.

Table C.1: Summary statistics

Mean Minimum 1st Quartile Median 3rd Quartile Maximum SD

investment_c 4.26 0.00 3.00 4.00 5.50 8.00 (2.25)
investment_b 4.45 0.00 3.00 4.00 6.00 8.00 (2.27)
age 25.77 19.00 23.00 25.00 28.00 58.00 (4.96)
female 0.64
grq 4.96 1.00 3.00 5.00 7.00 10.00 (2.13)
first_time 0.05

Observations 330
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Table C.2 provides summary statistics of the subjects’ investment choices split
up by whether they are exposed to the skewed (column 1) or the symmetric back-
ground risk (column 2). Column 3 shows the difference in means between the
different background risks. We compute two-sided Wilcoxon rank sum tests to
asses whether the observed differences are statistically significant.

C.2 Impact of Type of Background Risk

C.2.1 Skewed Background Risk
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Fig. C.1: Cumulative distribution functions of investment amounts, skewed
background risk treatment
Notes: This figure shows the cumulative distribution functions of the investment amounts
for the control and the skewed background risk investment games.

Figure 5 shows the cumulative distribution functions (cdfs) for the investment
amounts in the control treatment and the skewed background risk treatment. We
observe that the investment amount in the skewed background risk treatment first-
order stochastically dominates the investment amount in the control treatment,
indicating that these investment amounts are different. We run a Wilcoxon signed-
rank test against the null hypothesis that investment amounts are the same. The
test rejects the null hypothesis (p = 0.0306). This implies that investment amounts
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Table C.2: Summary by Background Risk

Skewed BR Symmetric BR Diff
investment_c 4.280 4.242 0.038

(2.211) (2.291)

investment_b 4.656 4.245 0.412∗
(2.140) (2.389)

Age 25.87 25.67 0.202
(5.363) (4.532)

Female 0.633 0.64 -0.007
(0.484) (0.490)

GRQ 5.139 4.780 0.358∗
(2.109) (2.134)

First Time 0.048 0.055 -0.007
(0.215) (0.228)

Law Major 0.108 0.091 0.017
(0.024) (0.023)

Business Major 0.133 0.079 0.053
(0.026) (0.021)

Education Major 0.114 0.121 -0.007
(0.025) (0.026)

Humanities Major 0.120 0.159 -0.038
(0.025) (0.028)

Medicine Major 0.024 0.006 0.018
(0.012) (0.006)

Sciences Major 0.157 0.213 -0.057
(0.028) (0.032)

Social Sciences Major 0.289 0.293 -0.004
(0.035) (0.036)

Other Major 0.036 0.030 0.006
(0.015) (0.013)

Major not specified 0.018 0.006 0.012
(0.010) (0.006)

Observations 166 164

Notes: mean coefficients; sd in parentheses;
Diff: two-sided Wilcoxon rank-sum test, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01 40



in the skewed background risk treatment are significantly larger than investment
amounts in the control treatment.

In Table C.3, we report classification of individuals’ choices and the respective
investment amounts. 42% of choices in this treatment can be classified as non-risk
vulnerable, i.e. the individual invests strictly more in the skewed background risk
treatment compared to the control decision. On the other side, approximately 28%
of choices are in accordance with multiplicative risk vulnerability. Approximately
30% of the subjects make identical choices with and without background risk. These
figures are based on the subsample of subjects that we can classify appropriately.
We drop 23 individuals investing the maximum or minimum in both choices and
report classification for the reduced sample in Table C.3. In Table D.3 in the
Appendix, we include these 23 individuals and consider them to be indifferent.

Table C.3: Investment choices and classification - skewed background risk
treatment, reduced sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 28.37 29.79 41.84 100
δC (mean) 4.4325 3.4905 3.1627 4.2801
δB (mean) 3.2275 3.4905 5.0373 4.6560
No. of Observations 40 40 59 141
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table excludes individuals who invest the same limiting amount in both choices.

The binomial test rejects the null hypothesis of random behavior (p = 0.069).
This again provides support of a (marginally) significant effect of the skewed back-
ground risk on classification. Accordingly, we observe more non-MRV choices than
MRV choices. In addition, investment amounts are significantly larger on aggregate
in the presence of the skewed background risk compared to the control investment
decision. Thus, we find support of individuals not behaving in accordance with
multiplicative risk vulnerability in the presence of the skewed background risk.

C.2.2 Symmetric Background Risk

Figure 6 plots the cumulative distribution functions of the investment amounts in
the symmetric background risk treatment and the control treatment. The differ-
ence in mean investment amounts is 0.00 EUR (see Table C.2). Consequently, the
Wilcoxon signed-rank test fails to reject the null hypothesis of equal investment
amount distributions.

Again, we exclude those individuals who cannot be classified because they invest
the same limiting amount (31 individuals). We present the classification for this
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Fig. C.2: Cumulative distribution functions of investment amounts, symmetric
background risk treatment
Notes: This figure shows the cumulative distribution functions of the investment amounts
for the control and the symmetric background risk investment games.

reduced sample in Table C.4. A binomial test fails to reject the null hypothesis
of random (or indifferent) behavior at any usual significance level (p = 0.4841).
Overall, our results indicate that, on aggregrate, investment with the symmetric
background risk is not different than investment without multiplicative background
risk.

C.2.3 Comparison Skewed and Symmetric Background Risk

Finally, we report the results of the respective probit and OLS regressions in Tables
C.5 and C.6. Results are similar to those presented in Tables 7 and 8.
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Table C.4: Investment choices and classification - symmetric background risk
treatment, reduced sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 40.60 24.81 34.59 100
δC (mean) 4.3630 3.7667 2.7783 3.6669
δB (mean) 3.0704 3.7667 4.3043 3.6699
No. of Observations 54 33 46 133
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table excludes individuals who invest the same limiting amount in both choices.

Table C.5: Probability to Make a MRV Choice

(1) (2)
Probit: MRV Probit: MRV

Symmetric Background Risk 0.343∗ (0.179) 0.391∗∗ (0.188)

GRQ -0.048 (0.051)

Female 0.116 (0.218)

Non-binary 0 (.)

Age -0.0180 (0.0209)

First Time 0.339 (0.402)

Business Major 0.641 (0.404)

Education Major 0.445 (0.386)

Humanities Major -0.0110 (0.412)

Medicine Major 0.219 (0.690)

Sciences Major -0.0696 (0.375)

Social Sciences Major -0.198 (0.355)

Other Major -0.0337 (0.676)

Major not specified 0.174 (1.045)

_cons -0.243∗ (0.128) 0.221 (0.701)
N 199 198
Pseudo R-Squared 0.0555 0.0651
Dependent Variable: Choice in accordance with strict MRV.
Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.6: Difference in Investments with and without Background Risk

(1) (2)
OLS: diff OLS: diff

Symmetric Background Risk 0.373∗∗ (0.179) 0.331∗ (0.181)

GRQ -0.0384 (0.0374)

Female 0.118 (0.204)

Non-binary 1.029∗∗∗ (0.258)

Age -0.0277 (0.0212)

First Time 0.306 (0.334)

Business Major 0.164 (0.371)

Education Major 0.384 (0.361)

Humanities Major 0.100 (0.327)

Medicine Major -0.920 (1.465)

Sciences Major -0.0360 (0.345)

Social Sciences Major 0.109 (0.316)

Other Major -0.833 (0.839)

Major not specified 0.284 (0.363)

_cons -0.376∗∗∗ (0.134) 0.393 (0.612)
N 330 330
R-Squared 0.0131 0.0491
Difference in investment amounts with and without background risk treatment.
Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D Additional Tables

Table D.1: Investment choices and classification - skewed background risk
treatment: Main Text Sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 22.8 39.60 37.59 100
δC (mean) 4.2235 5.1966 3.0910 4.1832
δB (mean) 3.1147 5.1966 4.9875 4.6430
No. of Observations 34 59 56 149
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table includes subjects that invest the same limiting amount in both investment decisions and
classifies these individuals as indifferent.

Table D.2: Investment choices and classification - symmetric background risk
treatment: Main Text Sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 32.89 38.16 28.95 100
δC (mean) 4.2560 5.1778 2.7341 4.1671
δB (mean) 2.9320 5.1778 4.2727 4.1770
No. of Observations 50 58 44 152
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table includes subjects that invest the same limiting amount in both investment decisions and
classifies these individuals as indifferent.

Table D.3: Investment choices and classification - skewed background risk
treatment: Appendix C Sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 24.10 40.36 35.54 100
δC (mean) 4.4325 5.1731 3.1627 4.2801
δB (mean) 3.2275 5.1731 5.0373 4.6560
No. of Observations 40 67 59 166
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table includes subjects that invest the same limiting amount in both investment decisions and
classifies these individuals as indifferent.
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Table D.4: Investment choices and classification - symmetric background risk
treatment: Appendix C Sample

Classification Strictly Mult. RV Indifferent Non Mult. RV All
Frequency (%) 32.93 39.02 28.05 100
δC (mean) 4.3630 5.1922 2.7783 4.2421
δB (mean) 3.0704 5.1922 4.3043 4.2445
No. of Observations 54 64 46 164
Notes: Strictly Mult. RV: Strictly multiplicative risk vulnerable choice; Indifferent: same invest-
ment amount in both choices; Non Mult. RV: Non-multiplicative risk vulnerable choice. This
table includes subjects that invest the same limiting amount in both investment decisions and
classifies these individuals as indifferent.

E Experimental Instructions
(translated from German)

E.1 Introduction

Thank you for your participation in this experiment! We recommend activating full
screen mode in your browser (in Chrome, Firefox and Edge: F11) while performing
the experiment. This experiment consists of five sections.

The first section will be a slider task. In the second and third section, you
will make investment decisions. In the fourth section, we will ask you some socio-
demographic questions in a questionnaire. In the fifth section, your compensation
will be determined.

You can see the sequence of each section of the experiment in the diagram above.
Please take enough time to complete each section to the best of your ability. You will
have sufficient time to complete all sections. On average, it will take participants
25 minutes to complete the experiment. Please note that the maximum completion
time is 60 minutes. Exceeding the maximum completion time will result in you
not receiving any compensation. Therefore, we recommend that you complete the
experiment without interruptions after pressing the start button.

In this study, we investigate factors influencing risky investment decisions.
During the experiment, we will collect data anonymously for scientific purposes.

We will not associate this data with you personally. Please do not share information
about this experiment with anyone else.

(Next page)

E.2 Information on Compensation

In this experiment, you will make investment decisions in two different scenarios.
One of these two scenarios will be randomly drawn and played out at the end of
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the experiment. Accordingly, you will receive a compensation depending on your
decisions and the randomness. In total, the compensation ranges between 0 EUR
and 24 EUR (28 EUR).

Please consider your decisions carefully during the experiment. Each of your
decisions can influence your actual payout.

By clicking on the following button you start the experiment and the maximum
completion time of 60 minutes begins.

(Next page)

E.3 Slider Task

Below you will see a total of 20 sliders. Your task is to position the 20 sliders as
close to the center of the respective scale as possible. You have a total of 3 minutes.

(Next page)

Figure F.3 shows the Slider Task.

E.4 Information on Investment Decisions

There will be two scenarios below, each of which requires you to make an investment
decision. Please read the presentation of the scenarios carefully.

On the following two pages, you can set your decision with a slider in each case.
By moving the slider, you will see in real time how your potential payouts change
depending on your investment amount.

One of the two scenarios is randomly drawn at the end of the experiment (each
with a probability of 1/2) and played out. Your decisions will affect your possible
payout at the end of the experiment. We therefore recommend that you consider
your decisions carefully.

(Next page)

E.5 Control Treatment

You receive a starting capital of 8.00 EUR.
You can decide how much of your starting capital you want to invest. You

can invest between 0.00 EUR and 8.00 EUR. With a probability of 5/10 your
investment is successful and worth 2.5 times as much. With a probability of 5/10
your investment is not successful and you lose the invested amount. The uninvested
amount is not exposed to any investment risk.
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You can see the possible payouts depending on the amount you invested below.
You can set the amount using the slider.

Please indicate how much you would like to invest (from 0.00 EUR to 8.00
EUR).

(Slider)

Investing this amount results in the following possible payouts:
Positive (negative) investment result (probability 5/10):
If the investment is (not) successful, your assets will be (Asset).

(Next page)

E.6 Background Risk Treatment

You receive a starting capital of 8.00 EUR.
First, you can decide how much of your starting capital you want to invest.

You can invest between 0.00 EUR and 8.00 EUR. With a probability of 5/10 your
investment is successful and worth 2.5 times as much as before. With a probability
of 5/10 your investment is not successful and you lose the invested amount. The
uninvested amount is not exposed to any investment risk.

In a second step, after the investment has been paid out, your assets are subject
to another, independent risk. With a probability of 8/10 (5/10) your assets will
gain 20% (40%) in value, with a probability of 2/10 (5/10) your assets will lose 80%
(40%) in value. This risk is shown below in the form of a pie chart.

You can see below the possible payouts depending on the amount you invest.
You can set the amount using the slider.

Please indicate how much you would like to invest (from 0.00 EUR to 8.00
EUR).

(Slider)

Investing this amount results in the following possible payouts:
Positive (negative) investment result (probability 5/10):
If the investment is (not) successful, your assets will be (Asset). This amount

of (Asset) is subject to a second risk. With a probability of 8/10 (5/10) your assets
will gain 20% (40%) in value, with a probability of 2/10 (5/10) your assets will lose
80% (40%) in value. You can see the possible final amounts in the following pie
chart.

(Pie Charts)

(Next page)
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E.7 Questionnaire

Please answer the following questions.

• What is your age?

• What is your gender?

• Is this your first participation in a social science experiment?

• What is your highest level of education?

• What is your major studies?

• How do you rate yourself personally? Are you generally a risk-seeking person
or are you trying to avoid risks? Please answer using the following scale with 0
(completely unwilling to take risks) and 10 (completely willing to take risks).
With the values in between, you can graduate your assessment.

E.8 Payoff

In the following table you can see an overview of the rounds played. (First column:
round, second: amount invested, third and fourth: Payout in case of profit and
loss) (Table)

Round 1 (2) was randomly selected to determine your payout.
For the selected round, one of the two possible outcomes of your investment de-

cision was randomly realized based on the corresponding probabilities (50% each).
(Subsequently, the additional risk was randomly realized according to the corre-
sponding probabilities.)
Your investment was (not) successful. In this case, your assets were (not) subject
to any additional risk.
(The result of the additional risk is negative (positive). Your assets are reduced
(increased) by 40% (20% or 80%)). Your total payout is therefore (Payoff).

F Screenshots of the Experiment
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Fig. F.1: Introduction

Fig. F.2: Information on Compensation (skewed background risk treatment)
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Fig. F.3: Slider task
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Fig. F.4: Information on Investment Decisions
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Fig. F.5: Investment Decision with Skewed Background Risk Prior to Activating
the Slider
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Fig. F.6: Investment Decision with Skewed Background Risk After Activating
the Slider
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Fig. F.7: Investment Decision with Symmetric Background Risk Prior to
Activating the Slider

55



Fig. F.8: Investment Decision with Symmetric Background Risk After Activating
the Slider
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Fig. F.9: Investment Decision without Background Risk Prior to Activating the
Slider
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Fig. F.10: Investment Decision without Background Risk After Activating the
Slider
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Fig. F.11: Determination of Payoff
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