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Abstract

This paper analyzes the performance of temporal fusion transformers in forecasting
realized volatilities of stocks listed in the S&P 500 in volatile periods by comparing
the predictions with those of state-of-the-art machine learning methods as well as
GARCH models. The models are trained on weekly and monthly data based on three
different feature sets using varying training approaches including pooling methods. I
find that temporal fusion transformers show very good results in predicting financial
volatility and outperform long short-term memory networks and random forests
when using pooling methods. The use of sectoral pooling substantially improves
the predictive performance of all machine learning approaches used. The results are
robust to different ways of training the models.
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1 Introduction

In a highly interconnected world, crises of all kinds can strongly and quickly affect fi-
nancial markets. The Russian invasion of Ukraine in February 2022 and the associated
consequences such as uncertainties in energy supply or high inflation rates led to enor-
mous fluctuations on stock markets. Two years earlier, with the declaration of COVID-19
as a global pandemic on 11 March 2020 by the World Health Organization (WHO), great
uncertainty about future developments quickly spread to international financial markets.
Major stock indices like the S&P 500, the Dow Jones or the NASDAQ fell enormously and
some even experienced their worst trading days since 1987. Such events emphasize the
importance of being able to measure and assess financial market risks. Financial volatility
is one of the most widespread measures of risk that is used in practice and describes the
variation in returns of financial market instruments. The application of machine learning
(ML) techniques to predict financial volatility has been growing strongly for years (see,
for example, Bucci, 2020; Luong and Dokuchaev, 2018). The availability of large and de-
tailed data sets and the increasing processing power of modern computers create excellent
conditions for ML algorithms.

This paper studies the performance of temporal fusion transformer (TFT) models in
forecasting weekly and monthly realized volatility (RV) of individual stocks listed in the
S&P 500 index in times of crisis. The S&P 500 is a large stock market index of 500
leading companies, which covers around 80 percent of equity market capitalization in
the United States. The TFT network is trained on the basis of three different sets of
features. The first set contains only company-specific data. The second one is extended
by data describing the general US equity development. The last set additionally includes
a number of macroeconomic variables. I also study the impact of pooling strategies on
the results. The models are trained using three different approaches: individually, pooling
at sectoral level and pooling across the entire sample. To compare the performance with
common approaches, I use random forests (RF) and long short-term memory (LSTM)
networks, two state-of-the-art ML methods, as well as econometric GARCH models as a
benchmark. The Diebold-Mariano test is used to check the statistical significance of the
results (Diebold and Mariano, 1995). I find that the TFT approach is able to significantly
outperform all benchmark models given a sufficiently large data set. This is especially
true on a weekly data frequency. Pooling across sectors or across all data available in
the sample greatly improves the predictive results of all ML methods. In addition, I
show how taking into account the returns of large stock or volatility indices as well as
macroeconomic variables reduces forecast errors in the context of RV.

The impact of TFT models on financial applications and on forecasting of RV in
particular has received little academic attention so far. Lim et al. (2021) show that their
TFT approach generates good predictions of daily RV. Hu (2021) finds better performance
outcomes of the TFT model for predicting stock prices than support vector regression and
LSTM networks. However, none of these studies examine the heterogeneity across sectors,
the influence of the temporal frequency of the data, and the potential performance gains
from pooling data across sectors or the entire dataset.

The remainder of this paper is organized as follows. Section 2 explains the data and
describes the construction of the different sets of features as well as the target generation.
Section 3 discusses the ML models and the different methods for the training processes.
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The main results are presented in Section 4. Section 5 shows various robustness checks
and Section 6 concludes.

2 Data

2.1 Stock market data

The stock market data is collected from Refinitiv, a global provider of financial market
data. For each trading day in the period from the 1st of January 2000 to the 30st of June
2022, the data set contains the closing price, trading volume and the economic sector
of all S&P 500 constituents listed on the last day of the sample period. The companies
are classified according to the North American Industry Classification System (NAICS)
consisting of 20 economic sectors, with the sample including companies from only 15
different industries. In addition, the daily closing prices of the S&P 500 index and the
Chicago Board Options Exchange Volatility Index (VIX) covering the full sample period
of 5660 trading days are taken from Refinitiv. The stock price data are adjusted for
dividend payments and splits.

In a first step, I remove companies for which the data are not available for the entire
period. This concerns, for example, companies that were founded or went public after
January 2000. This leaves 355 companies for which the data are completely available.
For each company n ∈ {1, ..., 355}, I calculate the continuously compounded return (log
return) on day t, rn,t. Weekly (monthly) returns are therefore the sum of the daily log
returns occurring in a week (month). Table 1 depicts some average monthly descriptive
statistics for the stock data.

Table 1: Average monthly summary statistics for the S&P 500 stocks presented by sectors

Sector Number of stocks Return Skewness Kurtosis

Manufacturing 133 0.63% -0.54 8.21
Finance & Insurance 45 0.42% -1.87 31.10
Utilities 26 0.46% -2.16 27.60
Real Estate & Rental Leasing 25 0.61% -1.15 18.75
Information 23 0.59% -0.78 7.19
Retail Trade 20 0.81% -0.28 5.13
Professional, Scientific & Technical Services 18 0.57% -0.81 9.85
Mining, Quarrying, Oil & Gas Extraction 17 0.59% -1.45 20.12
Transportation & Warehousing 13 0.58% -1.30 11.35
Wholesale Trade 9 1.10% -0.01 2.77
Accomodation & Food Services 7 0.92% -0.07 18.58
Administrative, Support, Waste Management & Remediation Services 6 0.90% -0.90 13.26
Health Care & Social Assistance 6 1.14% -0.72 7.24
Construction 6 0.97% -2.41 31.50
Other Services (except Public Administration) 1 0.88% -0.52 5.11

All 355 0.63% -0.98 15.08

Notes: This table shows the average monthly descriptive statistics for the reported NAICS sectors as the

average moments of the individual associated stocks.
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2.2 Macroeconomic data

In addition to the stock market data, I consider the following macroeconomic variables
on a daily basis for the entire sample period: US daily news index, effective federal funds
rate (EFFR), 30-year treasury constant maturity rate and two spread series regarding the
ICE BofA US high yield index as well as the ICE BofA AAA US corporate index. The
employment level per sector is only available on a monthly basis.1

The US daily news index measures policy-related economic uncertainty for the United
States. Baker et al. (2016) have created this index based on the coverage of economic
policy uncertainty (EPU) in over 1000 US newspapers. In line with related literature
(see, for example, Shaikh, 2019), Baker et al. (2016) show the strong relationship between
EPU and financial volatility. The EFFR is a short-term interest rate that is determined
daily based on the banks’ overnight federal funds transactions. By setting a certain target
range, the EFFR thus functions as an important instrument of monetary policy. The 30-
year treasury constant maturity rate, on the other hand, represents a long-term interest
rate. It is defined as the nominal yield of actively traded treasury securities adjusted
to a constant maturity. The values are derived from the daily yield curve by means of
interpolation for the respective maturity.

Following the approach of Christiansen et al. (2012), I also include two spread series
as additional regressors in the macroeconomic context. The first time series describes the
option adjusted spreads of the ICE BofA AAA US corporate index. This index comprises
all corporate debt instruments with a given investment grade rating AAA issued in the
US domestic market. The spreads are calculated as the difference between these bonds
and a spot treasury curve. The second series refers to spreads of the ICE BofA US high
yield index. Based on the classification of the three major rating agencies, namely Fitch,
Standard & Poors and Moody’s, this index covers corporate bonds with a rating of BB or
below. Since spreads are interpreted as risk premiums for investors, they are significantly
higher for high-yield securities than for those with an investment grade rating. Due to
the generally higher risk of corporate bonds with a lower rating, the spreads react much
more sensitively in crisis situations.2

Since all models are trained on a weekly and monthly basis, the daily data must be
transformed accordingly. For this purpose, I calculate the average over the respective
time period for both interest rate time series and the EPU. In order to better capture the
swings in highly volatile periods, the maximum of the relevant week or month is used for
the two spread series and the trading volume. For the weekly employment level, I repeat
the respective monthly value.

2.3 Target and feature generation

Andersen et al. (2001) measures daily RV as the square root of the sum of squared
intra-daily returns. This approach is also used when determining weekly or monthly RV,

1The US daily news index is collected from www.policyuncertainty.com. The four time series regarding
interest rates and spreads are taken from FRED. I receive the data on sectoral employment levels from
the US Bureau of Labor Statistics.

2Figure A.1 in the appendix illustrates the development of the two interest rates and spread series
over the entire sample period.
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whereby the squared daily returns are added up. In this paper, I therefore calculate the
annualized weekly (monthly) RV of stock n as

RVn =
√
s

√√√√ T∑
t=1

r2n,t, (1)

where s denotes the number of weeks (months) per year and T is the number of
trading days in the corresponding week (month). Figure 1 illustrates the distribution of
annualized monthly RV for each sector.

Figure 1: Distribution of annualized monthly RV by industry
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Notes: This figure depicts the distribution of annualized monthly RV per economic sector. The boxplots
are sorted in descending order according to the median values.

The boxplots show the sector-specific fluctuations in annualized monthly RV, with the
central level varying roughly between 17% and 31%. As expected, sectors such as Utilities
have low RV dispersion as their products are of everyday importance and the associated
companies tend to have relatively constant revenue expectations. This represents a rather
low risk for investors in times of crisis. On the other hand, industries in the information
and services sectors traditionally show high volatility. Since the number of companies per
sector varies greatly in the sample, the distribution of RV in some sectors is based on few
companies (see Table 1 for the number of companies in each sector).

After defining the target variable, I construct the three different sets of features F1,
F2 and F3 in the next step. Table 2 presents all features and their classification into the
corresponding sets.
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Table 2: Model features

No. Acronym Explanatory variable Included in feature set
F1 F2 F3

1 SQ RET Squared log returns x x x
2 TR VOL Trading volume x x x
3 RV L1 t− 1 lagged RV x x x
4 RV L2 t− 2 lagged RV x x x
5 RV L3 t− 3 lagged RV x x x
6 RET SPX Log returns S&P 500 x x
7 VIX CBOE volatility index x x
8 EPU Economic policy uncertainty index x
9 EFFR Effective federal funds rate x
10 TR 30Y 30-year treasury rate x
11 SPR AAA Spreads AAA firms x
12 SPR HY Spreads HY firms x
13 EL SEC Sectoral employment level x

Notes: This table provides an overview of the classification of the features used into the three

sets F1, F2 and F3.

3 Methodology

Recurrent neural networks (RNN) or LSTM networks, which store information about
previous time steps in a memory, have been established as state-of-the-art methods for
learning long-term dependencies on sequential data. Vaswani et al. (2017) propose a
model architecture with an encoder-decoder structure called transformer, which is no
longer based on recurrent units but on the self-attention mechansim. The use of this deep
learning mechanism helps the model to dynamically decide how much attention to give
to each part of the input sequence by assigning specific weights. To take into account
the order of the sequential data, the transformer network uses a special strategy called
positional encoding. Transformers changed existing ML approaches to natural language
processing (NLP) in a sustainable way since they not only achieve very good results but
also proceed more computationally efficient than the previous models due to parallelizable
training (Dai et al., 2019). However, the originally proposed encoder-decoder structure
is specifically designed for machine translation and therefore not suitable for time series
forecasting without adaptation. In the meantime, numerous variations of transformer
models for time series forecasting exist, which also show promising results (Wen et al.,
2022; Wu et al., 2020; Farsani and Pazouki, 2021). Lim et al. (2021) introduce the TFT
model, which combines attention mechanism and LSTM structures in its architecture and
is able to process different types of data. They show that their new model performs well
in a variety of applications. López Santos et al. (2022) use the TFT structure to predict
hourly day-ahead power generation by solar photovoltaic systems. Sappl et al. (2021)
apply the model to data from biology by forecasting biogas production rates in anaerobic
digesters.
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In the following, I explain the TFT approach, the benchmark models as well as the
main steps of my methodology in detail. Finally, I discuss the measures used to evaluate
the forecasts.

3.1 Temporal fusion transformers

TFT models are deep neural networks (DNN) for multi-horizon forecasting, which are
based on the attention mechanism. For the given time series data set with N individual
stocks, the architecture allows for a set of categorical variables cn ∈ Rmc and time-varying
covariates Xn,t = [zTn,t, x

T
n,t], where zn,t ∈ Rmz are known only up to the present and

xn,t ∈ Rmx are a priori known into the future. The corresponding target variable is given
by RVn,t ∈ R+. Let t denote an arbitrary time step with a given lookback window k and
a maximum step-ahead window Tmax. The model takes the described input variables and
computes the T -step-ahead forecast of RV for stock n. The TFT architecture consists of
different building blocks to filter relevant information of the features. The following five
main units are used for this purpose:

1. Gated residual network (GRN): A special gating mechanism, consisting of several
layers, selects unneeded parts of the model architecture to reduce complexity.

2. Variable selection network (VSN): For each time step t, this component chooses
meaningful features and assigns corresponding weights to them.

3. LSTM encoder-decoder structure: This layer architecture allows the model to rec-
ognize the temporal ordering of the data and thus also the short- and long-term
dependencies of the input variables. For the categorical features, the TFT network
uses separate encoders.

4. Interpretable multi-head attention mechanism: This novel approach provides feature
interpretability by adjusting the common mechanism.

5. Quantile regression forecasts: The prediction of several qth percentiles enables the
calculation of forecast intervals on top of point forecasts.

Figure 2 illustrates a simplified version of the TFT architecture.
Following Lim et al. (2021), I choose a lookback window k of one year and set as a

maximum step-ahead window Tmax the complete test data set of 30% of the available
data. Table 3 shows the general settings for the TFT network selected in this paper.
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Figure 2: Simplified TFT structure

Notes: Own representation based on Sappl et al. (2021). The gray boxes show inputs and outputs. The
black boxes are components of the model.

Table 3: Configuration of the TFT model

Chosen hyperparameters of the TFT architecture

Number of LSTM layers 2
Attention head size 1
Hidden size 160
Minibatch size 64
Dropout regulation 10% at each update
Maximum number of training epochs 500
Loss function quantile loss function
Learning rate 0.01

Notes: This table lists the selected hyperparameters of the TFT network.

3.2 Benchmark models

As benchmark approaches I use RF, LSTM networks as well as GARCH models. Breiman
(2001) introduced the RF, a powerful nonparametric ML algorithm that is based on
decision trees (DT). Binary DT can be used for classification and regression tasks and are
built by repeated splits (tree nodes) of the training set based on a certain splitting criterion
(Breiman et al., 1984). Starting at the root node, each further (inner) node represents a
binary decision leading to a split of the data into disjoint subsets. This process ends when
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no more splits are possible or another stopping criterion such as the predefined maximum
depth of a DT is reached. Individual DT are not very robust, resulting in forecasts with
low bias but high variance. Ensemble methods such as bagging, boosting or RF are
possible approaches to improve their predictive performance (James et al., 2013). The
construction of a RF is directly based on the idea of bagging: aggregating the forecasts
of a large number of bootstrapped DT. In contrast to the bagging technique, however,
only m < p input variables are randomly selected as splitting candidates from the p
available features. The hyperparameter m can be chosen differently, but for regression
tasks typically m = p/3 features are considered (Hastie et al., 2017). This procedure
reduces the correlation between the DT. In addition to the randomly drawn bootstrap
samples, the RF only chooses a random subset of all available features. I select for the
main hyperparameters of the RF the number of trees B = 500, the number of randomly
selected features m = p/3 and a maximum tree depth J = 8.3 I choose the mean squared
error (MSE) as the splitting criterion for selecting the respective nodes, which corresponds
to the default setting in scikit-learn for regression tasks with RF.

Hochreiter and Schmidhuber (1997) propose LSTM networks in their initial form to
prevent the well-known problems of vanishing and exploding gradients often encountered
when training RNN. LSTM models add another cell component, the cell state, which
enables them to remember information over a long period of time. The cell state regulates
the inflow and outflow of information and this process takes place via three specially
constructed gates: forget gate, input gate and output gate. Considering the current
period t, the memory cell and thus each gate receives input data in the form of the feature
vector xt and the previous hidden state ht−1. The extent to which the cell state changes is
determined by the filter mechanism of each gate, which is controlled by sigmoid functions
to ensure that the values always lie between zero and one. The specific proportion per
gate determines how strongly the available information at time step t influences the cell
state.

For the training process, I first prepare the data accordingly by two further steps: scal-
ing and transfer into sequential structure. Scaling features is a common and recommended
approach, as it has a significant impact on the efficiency of the training process (Hastie
et al., 2017). I scale the entire training data set by applying normalization. Since LSTM
networks need a special sequential structure for the training process, i.e., temporally con-
secutive observations of the corresponding features, the training set is converted into the
required three-dimensional form. I choose a quarter as a time step, i.e., three months
or 13 weeks are considered as previous periods per sample. During the training process,
the entire data set is iteratively fed into the LSTM network for a predefined number of
epochs. In each individual epoch, the data set is divided into so-called batches, which
consist of one or more samples. The size of the batches determines how often the weights
of the LSTM network are adjusted during an epoch. I choose a batch size of 32, which
corresponds to the default setting in keras, and a number of 500 epochs. The adjustment
of the respective weights is carried out via the Adam algorithm (Kingma and Ba, 2017),
a stochastic gradient descent method for minimizing a defined loss function (here: MSE).
This optimizer was chosen because it has several advantages over other common optimiza-
tion algorithms (Kingma and Ba, 2017). To avoid overfitting, I additionally implement

3Rounded up to the next larger number, the tuning parameters for the three feature sets are m1 = 2,
m2 = 3 and m3 = 5.
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dropout regulation (Gal and Ghahramani, 2016) and early stopping. I set the dropout
ratio to 10% and employ early stopping with a patience of 10.

Besides the two ML benchmarks, I also compare the prediction results with traditional
generalized autoregressive conditional heteroskedasticity (GARCH) models. Bollerslev
(1986) introduces the GARCH model, an extension of the ARCH model proposed by En-
gle (1982) as a first systematic approach for describing time-varying conditional volatil-
ity. The GARCH(a, b) model describes the current conditional variance as a function of
squared error terms of the a previous periods and conditional variances of the b previous
periods. There are many variations and extensions of the original GARCH(a, b) model.
Hansen and Lunde (2005) provide an excellent overview by comparing 330 GARCH-type
models in the performance of out-of-sample volatility forecasts. This paper uses the fa-
mous GARCH(1,1) and the GARCH-X model.4 The GARCH-X model is introduced
by Brenner et al. (1996) by inserting additional explanatory variables directly into the
variance equation of the GARCH(1,1) model. The idea behind this is that external re-
gressors such as macroeconomic variables (see, for example, Brenner et al., 1996; Engle
and Patton, 2001) or additional information from the time series process itself (see, for
example, Engle and Gallo, 2006) can describe the volatility process more precisely. In
this paper, the GARCH(1,1)-X model adds the following eight additional covariates to
the variance equation of the GARCH(1,1) model: RET SPX, VIX, EPU, EFFR, TR 30Y,
SPR AAA, SPR HY and EL SEC.5 All parameters of the GARCH models are determined
using rolling window estimation. The first rolling window contains the data points from
1 to m and then forecasts the volatility for the period m+ 1. The window is then rolled
forward one period so that the second rolling window extends from observation 2 to m+1
followed by a prediction for period m + 2. This procedure is repeated until the last out-
of-sample forecast at time T is reached. To ensure comparability between the data sets
for training the ML models, the window sizes are 70% of the available data.

3.3 Approaches of model training

First, I split the three different sets of features into non-overlapping training and test sets.
While the proportion of training data in empirical studies typically ranges between 60%
and 80%, other authors also suggest values of 50% (see, for example, Hastie et al., 2017).
I follow the usual procedure for handling time series data in the context of ML and use a
time-based split, where 70% of the data is used to train the models. When training the
TFT and LSTM networks, I additionally hold back 10% of the training data for validation
purposes. The remaining 30% of the data is used as a test set, i.e., this part is reserved to
validate the performance of the trained ML models with so far unknown inputs. In this
way, I check whether the model adequately represents functional relationships between
the features and the target and can also apply this to unseen information. The training
set therefore includes data from January 2000 to October 2015. The test data thus cover
about 6.75 years until the end in June 2022. Figure A.2 in the appendix illustrates the
subdivision into training and test period using the example of the VIX.

In a second step, I train all models mentioned above using three different approaches
on a weekly and monthly basis with all feature sets. For each method, this results in a

4The corresponding equations for the two models can be found in the appendix.
5The abbreviations of the model features refer to Table 2.
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total of 18 training processes.6 The first approach uses only data from the respective com-
pany (individual approach). This makes the amount of available data for the respective
ML model very limited, but it might be better able to capture certain company-specific
aspects. However, the question remains whether this data basis is sufficient for parameter-
intensive ML models. The second approach enlarges the respective training datasets by
the available data of all companies operating in the corresponding sector of the target
company (sectoral pooling). Now, the model has considerably more data available in
some cases, and yet there is not much heterogeneity among the companies. Since firms
in the same industry are exposed to similar risks, the additional data can be helpful in
predicting the individual RV. To ensure that the number of companies per sector is not
too small, I combine sectors whose number of companies in the sample is less than ten
or assign them to similar industries. The grouping of sectors is based on content-related
aspects and the correlations of sectoral unemployment. Thus, the number of sectors for
this pooling approach is reduced from 15 to 10.7 In the last approach, the training data
set consists of all available data from the 355 stocks (overall pooling). The models are
not trained individually for all stocks, but a pooled data set with all available companies
is used in each case. However, the data come from a wide variety of industries, so that
the training set is clearly more heterogeneous and it is therefore more difficult for the ML
model to identify functional relationships at the level of individual stocks.

3.4 Forecast evaluation

I evaluate the performance of the different models by comparing two statistical error
measures, which assess the accuracy of the forecasts. I use the root mean squared error
(RMSE) and the mean absolute error (MAE), two common scale-dependent measures,
since they are prominent in the context of RV prediction (see, for example, Kim and
Won, 2018; Luong and Dokuchaev, 2018). Due to the large number of different model
combinations, I only present the values of the RMSE in Section 4. The appendix contains
further results. For each company n, the two measures are formally given by the following
equations:

RMSEn =
√
MSEn =

√√√√ 1

T

T∑
t=1

(et)2, (2)

MAEn =
1

T

T∑
t=1

|et|, (3)

where et denotes the forecast error at time t for a given set of T true RV values and
available predictions.

Since it is not practical to look at all individual error measures, for the sake of clarity I

6This is the combination of three training approaches with three sets of features for two frequencies.
7The following sectors were combined: (1) Retail Trade, Wholesale Trade, (2) Real Estate & Rental

Leasing, Construction, (3) Accomodation & Food Services, Administrative, Support, Waste Management
& Remediation Services, Health Care & Social Assistance, Other Services (except Public Administration).
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will only show the average of these evaluation measures over all 355 forecasts (mean RMSE
and mean MAE). For comparison with the various benchmarks, I also report relative
measures by setting the evaluation measure of the model in relation to the benchmark
(Hyndman and Koehler, 2006). If they are smaller than one, the respective model was
able to beat the benchmark.

This comparison does not indicate whether the result is statistically significant. Diebold
and Mariano (1995) propose to test for equal forecast accuracy, i.e., to check whether the
two measures are statistically significantly different or not. The idea of the Diebold-
Mariano test is based on the loss differential between the two models at period t, which
is given by

d1,2t = L(e1t )− L(e2t ), (4)

where eit denotes the forecast error for model i and L(·) describes an arbitrary loss function.
In this paper, I use the common quadratic loss function. The null hypothesis states that
both models have the same forecasting accuracy, i.e., E(d1,2t ) = 0.

4 Results

This section discusses the main findings of this paper. I first present the results of the
TFT models. I will then explain the performance results of the different benchmarks and
also discuss the differences regarding the sets of features and varying training approaches.

4.1 Forecasts of the TFT

Table 4 shows the mean RMSE values for all combinations of training sets, frequencies and
approaches mentioned above. It is evident that the model performs significantly better
on a weekly frequency than with monthly data. One possible explanation for this finding
could be the much smaller data base. Since the TFT network is a DNN and thus learns
dependencies using a complex architecture, a training sample that is too small can have
a negative impact on the learning process. Similar results from the LSTM model give
further support for this explanation. Comparing the performance over the three different
training approaches, a clear reduction of the mean RMSE values is recognizable by the use
of the two pooling methods. Both pooling approaches substantially improve individual
RV forecasts, with overall pooling producing the best results. With a sufficiently large
training sample, the TFT network appears to be able to address the heterogeneity across
sectors. A comparison of the three sets of features clearly shows that, regardless of
temporal frequency and approach chosen, F2 leads to the best prediction results. Taking
into account the holistic development of the US stock market thus improves the forecasting
results. The returns of the S&P 500 index and the VIX show certain predictive power of
individual RV. The inclusion of macroeconomic variables is also helpful since the mean
RMSE values of feature set F3 are consistently lower than those of F1.
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Table 4: Performance measurement of the TFT model

Approach Frequency Feature set Mean RMSE

individual weekly F1 0.0902
F2 0.0857
F3 0.0879

monthly F1 0.1410
F2 0.1376
F3 0.1393

sectoral pooling weekly F1 0.0716
F2 0.0692
F3 0.0728

monthly F1 0.1119
F2 0.1099
F3 0.1107

overall pooling weekly F1 0.0711
F2 0.0699
F3 0.0704

monthly F1 0.1018
F2 0.1003
F3 0.1008

Notes: This table displays the mean RMSE values of the TFT models

for all possible combinations of approach, frequency and sets of fea-

tures. The lowest RMSE values per approach are highlighted in each

case.

Even though the TFT model shows the best results on average for overall pooling,
a detailed analysis of the sectoral pooling is necessary since the results of this approach
differ across the industries. Figure 3 illustrates the sectoral mean RMSE values of the TFT
model for the best-performing set of features F2 on a weekly basis. The distribution of the
RMSE values shows that with sectoral pooling, the prediction accuracy tends to decline
for sectors with higher volatility. The high dispersion in the sector ‘Mining, Quarrying,
Oil & Gas Extraction’ is nevertheless a major outlier to this extent. As Figure 1 already
shows, the median RV in this industry is also quite high, but this RMSE distribution is
still surprising. A plausible explanation could be the sharp increase in volatility of the
corresponding energy companies due to the Russian invasion of Ukraine in February 2022.
An event with such an impact is unique for this industry in terms of the training period.
Considering the three sectors grouped due to an insufficient number of firms, pooling
also seems to provide good results. In particular, the forecasts in the newly constructed
trade sector show a low error dispersion, which can be explained by the content coverage
and thus very similar risks of wholesale and retail trade. Despite the manual aggregation
of individual sectors, it is important to note that the number of companies per sector
still varies considerably. For instance, following the NAICS classification, 133 companies,
and thus more than one-third of the entire sample, are assigned to the manufacturing
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sector. This sector includes companies whose activities are extremely heterogeneous as
they operate in different markets.8 One could assume that this fact has a negative impact
on the predictive performance of the models when sectoral pooling is applied. Figure 3
shows that this does not seem to be the case as the median of the RMSE values in the
corresponding sector is rather low.

Figure 3: Distribution of mean RMSE values by industry
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Notes: This figure illustrates the distribution of the mean RMSE values by economic sector when using
the TFT network with the best-performing feature set F2 to forecast weekly RV.

4.2 Benchmark models

I now turn to the analysis of the three benchmark models. First of all, it can be generally
stated that the two pooling approaches also lead to a considerable improvement in the
predictions when using RF and LSTM networks. Overall pooling shows the best results
for both ML benchmark models, even if the differences are marginal in some cases. The
RF is the only ML approach that shows similar outcomes on a weekly and monthly basis,
although the performance is slightly better on a weekly frequency. Furthermore, the
forecasts of the RF vary less across the different sets of features. Looking at the results
of the LSTM network separately, we see that the mean RMSE values become much more
robust with increasing pooling degree. The different sets of features then influence the
values only slighty. Table 5 reports the relative mean RMSE values for the ML benchmark
models, i.e., the evaluation measures of the corresponding benchmark model in relation
to the TFT model. If the measures are smaller than one, the respective model has
been able to beat the TFT approach. If they are greater than one, the TFT network
has performed better than the benchmark model. As explained in detail above, the TFT
network performs rather poorly in the individual approach due to the very limited amount

8For example, the manufacturing sector includes the companies Apple, Boeing and Coca-Cola.
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of training data. Therefore, the benchmark models partially beat the TFT forecasts when
using this training approach. However, when the data are pooled across sectors or the
entire sample, the outcomes of the TFT model are for the most part significantly better
than those of the other ML methods. This is especially true for weekly forecasts, where the
evaluation measures now differ greatly. Table C.1 in the appendix lists all corresponding
test statistics for the Diebold-Mariano test and shows that the TFT network, with a few
exceptions, is able to make significantly better predictions of the individual RV across all
model variants. A comparison of the three sets of features shows that F2, which includes
data on the S&P 500 index and the VIX in addition to company-specific characteristics,
leads to the the lowest RMSE values across almost all benchmark models and training
methods.

Table 5: Relative performance measurement of the ML benchmark models

Approach Frequency Feature set Relative Mean RMSE
RF LSTM

individual weekly F1 1.3947 0.9457
F2 1.3676 0.9218
F3 1.3811 1.0683

monthly F1 0.9390 1.1837
F2 0.8132 1.0916
F3 0.7925 1.4795

sectoral pooling weekly F1 1.6383 1.0992
F2 1.6069 1.0867
F3 1.5440 1.1099

monthly F1 1.0974 1.1090
F2 0.9454 1.0992
F3 0.9575 1.1545

overall pooling weekly F1 1.6273 1.2208
F2 1.5837 1.1960
F3 1.5668 1.2670

monthly F1 1.1807 1.1110
F2 1.0269 1.0977
F3 1.0516 1.1329

Notes: This table displays the realtive mean RMSE values of the ML benchmark

models in relation to the TFT network. RMSE values greater than one show the

cases where the TFT model beats the benchmark, and are therefore highlighted.

To illustrate the differences between the various models in predicting RV, Figure 4
plots all RMSE values for the individual sectors. All models shown are based on the
best-performing set of features F2. It is noticeable that the RMSE values of the TFT
network correlate positively with those of the RF, while they are uncorrelated with the
performance measures of the LSTM model. As expected, the RF produces similarly poor
forecast results in the sector ‘Mining, Quarrying, Oil & Gas Extraction’ that I have already
mentioned above. Negative performance outliers can also be observed in this respect in the
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sectors ‘Services’ and ‘Transportation and Warehousing’. In contrast, the LSTM network
has problems in predicting individual RV of companies in the sector ‘Manufacturing’.
One possible explanation could be the great heterogeneity of the business areas of the
associated companies.

Figure 4: Scatterplot of monthly and weekly RMSE values by industry
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Notes: This figure shows the scatterplots of the RMSE values of the TFT model and the two ML bench-
marks on a monthly (left plots) and weekly (right plots) frequency split by economic sector. The subfigures
in the upper row refer to the LSTM network as a benchmark, the subfigures in the lower row refer to RF.

Comparing the performance of the TFT method with econometric GARCH models,
the predictions are significantly better regardless of selected frequency, training approach
and set of features. Table 5 in the appendix reports the corresponding performance
measures for the GARCH(1,1) and the GARCH(1,1)-X model. In contrast to all ML
approaches, both GARCH models perform better on a monthly data basis.
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5 Robustness

Different factors such as the chosen hyperparameters or even randomness play an impor-
tant role for the performance of all ML models. The initialization of weights during the
training process of the TFT and LSTM networks or random feature selection of the RF
influence the results, regardless of the chosen model configuration. In order to verify that
the results are robust, I carry out a series of robustness checks. Following Schnaubelt et al.
(2020), I implement the following two checks: changes of seed values and implementation
of various model configurations.

For replication purposes, I set constant seed values for the training processes of all
models presented so far. It is therefore possible that the results are partly driven by the
choice of a specific seed value. To rule this out, I train all models with three different
seed variations. Table D.1 in the appendix displays the average performance measures for
all three seed variations. I find that the TFT and LSTM networks react more sensitively
to changed seed values than the RF models. Overall, however, the results obtained
with different seed values do not change with respect to the sets of features or training
approaches and therefore do not affect the model ranking. I conclude that the setting of
the seed value has a small influence on the results of the models and that they are robust.

The second robustness check examines whether the results are significantly dependent
on the specific construction of the different ML models. For this purpose, I implement
several variations of the ML approaches. The TFT networks are trained with an increased
attention head size of 4, a new state size of 80 and an adjusted dropout ratio of 30%. For
the LSTM networks, I change the number of neurons in the hidden layer from 100 to 200.
The resulting increase in the number of parameters not only extends the training time,
but should also improve the network’s ability to learn complex functional relationships.
I also run the RF model with a different number of trees and a lower depth per tree.
Since increasing the number of trees does not lead to overfitting (Hastie et al., 2017), I
double the number to 1000 trees and set the maximum depth per tree to 4. Table D.2
in the appendix shows how the changed model variations influence the performance of
the individual methods for predicting RV. The more complex model architecture leads
to marginally worse results for the TFT model on a weekly frequency, but noticeably
improves the results on a monthly data basis. The RF predictions, on the other hand,
become less accurate with the new setting, regardless of the frequency. A depth of 4
per tree therefore appears to be insufficient for specific predictions of individual RV. The
results of the LSTM network with doubled number of neurons lead to a slight improvement
on monthly frequency. As expected, the overall outcomes of the different ML models vary
more than for changed seed values, but are also robust with respect to the ranking of the
methods.

6 Conclusion

This paper investigates the performance of the TFT model, a novel DNN architecture for
multi-horizon forecasting, in predicting annualized weekly and monthly RV of individual
stocks listed in the S&P 500 index. This network combines different types of input vari-
ables to learn short- and long-term dependencies based on a specific gating procedure.
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For the training process of the different ML methods, I use three different sets of features
as well as three different training approaches. The former allows statements to be made
about the predictive power of individual input variables, the latter about the data basis
to be selected for the models. The TFT network is able to beat econometric GARCH
benchmarks, regardless of the training process or the frequency chosen. The TFT ap-
proach also significantly outperforms two ML benchmarks, namely LSTM networks and
RF, when using sectoral and overall pooling. The use of pooling methods generates the
model a much larger data set, but also leads to growing heterogeneity in the data. I find
that sectoral and overall pooling improves the prediction performance for all ML models.
The use of exclusively company-specific data in the individual approach, and thus a rather
small data set, means that the TFT network still clearly beats classic GARCH models,
but less frequently common ML approaches. My results confirm that ML algorithms are
very useful for forecasting financial volatility. In particular, they suggest that the novel
and flexible TFT approach might become helpful in asset pricing and risk management.
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Appendix

A Additional figures

Figure A.1: Development of interest rates and spreads
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Notes: The left plot presents the development of the EFFR and the 30-year treasury constant maturity
rate, the right plot the development of AAA and HY spreads.

Figure A.2: Training and test period
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Notes: This plot shows the split of the time series into training (black) and test period (red), using the
VIX as an example.
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B GARCH models

This section provides additional information on the GARCH benchmarks and lists the
results achieved in detail. In general, the GARCH(a, b) model can be written as

σ2
t = α0 +

a∑
i=1

αiε
2
t−i +

b∑
j=1

βjσ
2
t−j, εt = σtZt, (5)

with Zt
iid∼ N (0, 1). The parameter constraints to meet the non-negativity and stationarity

condition of the variance are: α0 > 0, αi ≥ 0, βj ≥ 0 and
∑max(a,b)

i=1 (αi + βi) < 1 (Tsay,
2010). This paper focuses on the famous GARCH(1,1) and the GARCH-X model, where
additional explanatory variables are included in the variance equation. The variance
equation of a GARCH(1,1)-X model is therefore given by

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 +

r∑
l=1

γlx
2
l,t−1, (6)

where xl is one additional covariate.
Table 5 reports the mean RMSE and mean MAE values of both GARCH models for

the RV forecasts of all 355 stocks.

Table 5: Performance measurement of the GARCH models

Model Frequency Mean RMSE Mean MAE

GARCH(1,1) weekly 0.1694 0.1140
monthly 0.1543 0.0915

GARCH(1,1)-X weekly 0.2047 0.1270
monthly 0.1559 0.0930

22



C Results of the Diebold-Mariano test

This section shows in detail the results of the Diebold-Mariano test. Table C.1 reports
the respective test statistics and the corresponding p-values for all model variants. In
each case, the performance of the TFT models is compared with the benchmark models
listed in the last three columns of the table.
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Table C.1: Results of the Diebold-Mariano test

Approach Frequency Feature set DM test statistic
RF LSTM GARCH

individual weekly F1 -39.76 2.36 -61.55
(0.00) (0.00) (0.00)

F2 -40.23 3.14 -
(0.00) (0.00)

F3 -37.75 -5.74 -75.78
(0.00) (0.00) (0.00)

monthly F1 2.91 -10.79 -10.30
(0.00) (0.00) (0.00)

F2 10.75 -7.25 -
(0.00) (0.00)

F3 11.40 -40.11 -7.37
(0.00) (0.00) (0.00)

sectoral pooling weekly F1 -47.84 -7.40 -
(0.00) (0.00)

F2 -49.38 -6.56 -
(0.00) (0.00)

F3 -43.36 -7.48 -
(0.00) (0.00)

monthly F1 -7.36 -7.43 -
(0.00) (0.00)

F2 2.44 -7.40 -
(0.02) (0.00)

F3 0.96 -9.17 -
(0.34) (0.00)

overall pooling weekly F1 -50.04 -13.89 -
(0.00) (0.00)

F2 -49.93 -11.90 -
(0.00) (0.00)

F3 -48.38 -16.01 -
(0.00) (0.00)

monthly F1 -11.06 -7.83 -
(0.00) (0.00)

F2 -4.01 -7.10 -
(0.00) (0.00)

F3 -5.64 -8.11 -
(0.00) (0.00)

Notes: This table shows the DM test statistics and the corresponding p-values. The

predictions of the TFT models are compared with the listed benchmarks. If the test

statistics are positive, the benchmark beats the TFT model.
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D Results of the robustness checks

Table D.1: Average performance measures with seed variations

Approach Frequency Feature set Avg. Mean RMSE
TFT RF LSTM

individual weekly F1 0.0905 0.1259 0.0858
F2 0.0855 0.1172 0.0798
F3 0.0882 0.1212 0.0933

monthly F1 0.1469 0.1321 0.1657
F2 0.1389 0.1118 0.1493
F3 0.1402 0.1107 0.2045

sectoral pooling weekly F1 0.0740 0.1174 0.0796
F2 0.0699 0.1109 0.0766
F3 0.0715 0.1127 0.0818

monthly F1 0.1104 0.1234 0.1255
F2 0.1091 0.1041 0.1213
F3 0.1116 0.1061 0.1297

overall pooling weekly F1 0.0712 0.1161 0.0851
F2 0.0708 0.1103 0.0842
F3 0.0716 0.1106 0.0911

monthly F1 0.1003 0.1206 0.1169
F2 0.0998 0.1025 0.1126
F3 0.1020 0.1049 0.1108

Notes: This table displays the mean RMSE values of all ML models as an average over

all three seed variations. The lowest values per approach are highlighted in each case.
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Table D.2: Performance measures with different model structures

Approach Frequency Feature set Mean RMSE
TFT RF LSTM

individual weekly F1 0.0921 0.1358 0.0889
F2 0.0820 0.1254 0.0831
F3 0.0842 0.1305 0.0995

monthly F1 0.1472 0.1404 0.1629
F2 0.1421 0.1211 0.1480
F3 0.1460 0.1233 0.1922

sectoral pooling weekly F1 0.0722 0.1191 0.0788
F2 0.0688 0.1121 0.0749
F3 0.0692 0.1132 0.0798

monthly F1 0.1098 0.1246 0.1232
F2 0.1080 0.1051 0.1192
F3 0.1103 0.1072 0.1244

overall pooling weekly F1 0.0699 0.1213 0.0833
F2 0.0692 0.1179 0.0813
F3 0.0721 0.1181 0.0875

monthly F1 0.1009 0.1266 0.1138
F2 0.1033 0.1108 0.1109
F3 0.1061 0.1123 0.1092

Notes: This table displays the mean RMSE values of all ML models with a different

model structure. The TFT network has now a head size of 4, a state size of 80 and a

dropout ratio of 30%. I increased the number of neurons in the LSTM hidden layer

from 100 to 200. For the RF models, I doubled the number of trees to 1000 and

reduced the depth per tree to 4. The lowest values per approach are highlighted in

each case.
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